JP2005154784A - Bearing steel excellent in corrosion resistance - Google Patents

Bearing steel excellent in corrosion resistance Download PDF

Info

Publication number
JP2005154784A
JP2005154784A JP2003382604A JP2003382604A JP2005154784A JP 2005154784 A JP2005154784 A JP 2005154784A JP 2003382604 A JP2003382604 A JP 2003382604A JP 2003382604 A JP2003382604 A JP 2003382604A JP 2005154784 A JP2005154784 A JP 2005154784A
Authority
JP
Japan
Prior art keywords
steel
carbide
corrosion resistance
rolling fatigue
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003382604A
Other languages
Japanese (ja)
Other versions
JP4283643B2 (en
Inventor
Toshiya Kinami
俊哉 木南
Toshimitsu Kimura
利光 木村
Hisato Nishisaka
寿人 西坂
Masao Goto
将夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Koyo Seiko Co Ltd
Original Assignee
Daido Steel Co Ltd
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Koyo Seiko Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2003382604A priority Critical patent/JP4283643B2/en
Publication of JP2005154784A publication Critical patent/JP2005154784A/en
Application granted granted Critical
Publication of JP4283643B2 publication Critical patent/JP4283643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide bearing steel which is excellent in corrosion resistance, and rolling fatigue life even when adapted for bearings etc., of rolling mills. <P>SOLUTION: The bearing steel has a composition containing, by weight %, 0.10 to 0.3 C, ≤0.5 Si, 0.2 to 1.5 of Mn, ≤0.03 P, ≤0.03 S, 1.0 to 3.5 Ni, 1.0 to 5.0 Cr, 0.03 to 2.5 Mo, 0.005 to 0.050 Al, ≤0.003 Ti, ≤0.0015 O, ≤0.025 N, and substantially the balance Fe, wherein after carburizing or carbonitriding treatment, a surface C concentration is ≥0.7%, the content of the carbide is ≤15% by area and the content of the rod-like carbide 10 having an aspect ratio expressed by the ratio of major diameter to minor diameter of ≥3 and having a minor diameter of ≥2 μm is ≤0.1%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は軸受鋼に関し、特に圧延機用,火力及び水力発電機用等の大型軸受部品用として好適な耐食性及び面疲労強度,転動疲労寿命に優れた軸受鋼に関する。   The present invention relates to a bearing steel, and more particularly to a bearing steel excellent in corrosion resistance, surface fatigue strength, and rolling fatigue life suitable for use in large-sized bearing parts such as for rolling mills, thermal power and hydroelectric generators.

これまで大型軸受部品用の軸受鋼としてJIS SCr,JIS SCM,JIS SNCMに代表される肌焼鋼の浸炭処理材が用いられて来た。
しかしながら近年、軸受部品の長寿命化の要求がますます高まって来ており、そのような事情の下でSi,Ni,Mo等の合金元素の添加による転動疲労強度の向上が図られて来た。
Until now, carburized steel of case hardening steel represented by JIS SCr, JIS SCM and JIS SNCM has been used as bearing steel for large bearing parts.
However, in recent years, there has been an increasing demand for longer bearing life. Under such circumstances, rolling fatigue strength has been improved by adding alloy elements such as Si, Ni, and Mo. It was.

例えば下記特許文献1にJIS SNCM 815ベースでSi,Niを適正添加した大型軸受部品用の軸受鋼が開示されている。   For example, Patent Document 1 below discloses a bearing steel for large-sized bearing parts in which Si and Ni are appropriately added based on JIS SNCM 815.

ところで例えば圧延機に用いる軸受部品の場合、圧延機によっては圧延水の浸入による置き錆が発生する場合があり、この置き錆起因により転動疲労寿命が低下する問題がある。
このため、大型軸受部品に適用可能なより耐食性に優れた軸受鋼の開発が新たに求められている。
Incidentally, for example, in the case of bearing parts used in a rolling mill, depending on the rolling mill, there is a case where rusting due to intrusion of rolling water may occur, and there is a problem that the rolling fatigue life is reduced due to this rusting.
For this reason, development of bearing steel with higher corrosion resistance that can be applied to large-sized bearing parts is newly demanded.

他方、通常の浸炭処理に対して浸炭窒化処理が、窒化により耐熱性が向上し、また残留オーステナイトの安定性により耐異物転動疲労強度(ゴミ混入環境下での転動疲労強度)が向上するなど、その有効性が明らかとなっており、従って浸炭窒化性に優れた軸受鋼の開発も求められている。   On the other hand, the carbonitriding treatment improves the heat resistance by nitriding compared to the normal carburizing treatment, and the foreign material rolling fatigue resistance (rolling fatigue strength in a dusty environment) is improved by the stability of retained austenite. Therefore, the effectiveness of the bearing steel has been clarified, and therefore, development of bearing steel excellent in carbonitriding is also required.

特公平2−14416号公報Japanese Patent Publication No. 2-14416

本発明はこのような課題を解決するためになされたものであって、耐食性に優れるとともに面疲労強度及び転動疲労寿命に優れ、浸炭窒化性にも優れた、特に大型軸受部品として好適な軸受鋼を提供することを目的とする。   The present invention has been made to solve such problems, and has excellent corrosion resistance, excellent surface fatigue strength and rolling fatigue life, and excellent carbonitriding properties, and is particularly suitable as a large bearing component. The purpose is to provide steel.

而して請求項1のものは、重量%で、C:0.10〜0.35%,Si:0.5%未満,Mn:0.2〜1.5%,P:≦0.03%,S:≦0.03%,Ni:1.0〜3.5%,Cr:1.0〜5.0%,Mo:0.03〜2.5%,Al:0.005〜0.050%,Ti:≦0.003%,O:≦0.0015%,N:≦0.025%,残部が実質的にFeから成り、浸炭又は浸炭窒化処理後において表面C濃度が0.7%以上,面積率で炭化物が15%以下であり且つ長径と短径との比で表されるアスペクト比が3以上且つ短径が2μm以上の炭化物が0.1%以下であることを特徴とする。   Thus, the content of claim 1 is, by weight, C: 0.10 to 0.35%, Si: less than 0.5%, Mn: 0.2 to 1.5%, P: ≦ 0.03%, S: ≦ 0.03%, Ni: 1.0 to 3.5%, Cr: 1.0 to 5.0%, Mo: 0.03 to 2.5%, Al: 0.005 to 0.050%, Ti: ≤0.003%, O: ≤0.0015%, N: ≤0.025%, the balance being substantially composed of Fe After the carburizing or carbonitriding treatment, the surface C concentration is 0.7% or more, the carbide ratio is 15% or less, the aspect ratio expressed by the ratio of the major axis to the minor axis is 3 or more, and the minor axis is 2 μm or more. Carbide content is 0.1% or less.

請求項2のものは、請求項1において、合金成分として更にV,Nbの1種又は2種を、V:0.05〜1.0%,Nb:≦0.1%の範囲で含有していることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the alloy component further includes one or two of V and Nb in a range of V: 0.05 to 1.0% and Nb: ≦ 0.1%. To do.

発明の作用・効果Effects and effects of the invention

本発明者等は種々の合金元素について検討した結果、耐食性の向上にはSi添加量を低減すること、及びNi及びCrの適正添加が有効であることを見出した。   As a result of examining various alloy elements, the present inventors have found that reducing the amount of Si added and improving the appropriate addition of Ni and Cr are effective for improving the corrosion resistance.

また耐食性及び転動疲労寿命に関し、浸炭又は浸炭窒化処理後における表面C濃度,炭化物面積率及び棒状炭化物の影響が大きいことが明らかになった。
即ち転動疲労寿命の向上にはある程度以上の表面C濃度が必要であるが、一方においてC濃度が高くなると炭化物面積率が増加することにより耐食性が劣化するのみならず、棒状炭化物の生成によって転動疲労寿命及び衝撃特性が著しく低下することが明らかとなった。
It was also found that the effects of surface C concentration, carbide area ratio, and rod-like carbide after carburizing or carbonitriding were significant on corrosion resistance and rolling fatigue life.
In other words, a surface C concentration of a certain level or more is required for improving the rolling fatigue life. On the other hand, when the C concentration is increased, not only the corrosion resistance is deteriorated due to an increase in the carbide area ratio, but also the rolling C It was found that the dynamic fatigue life and impact properties are significantly reduced.

ここで棒状炭化物の存在によって転動疲労寿命及び衝撃特性が低下するのは、介在物である棒状炭化物の界面に沿って亀裂が進み或いはその棒状炭化物が亀裂の起点となり易いことによるものと考えられる。
更にはまたこの棒状炭化物の界面に沿って腐食が進行し易く、耐腐食性も低下するものと考えられる。
本発明においては、特にアスペクト比が3以上且つ短径が2μm以上の棒状炭化物が生成したときにそれらの特性が劣化することを見出した。
Here, it is considered that the rolling fatigue life and impact characteristics are lowered due to the presence of the rod-shaped carbide because the crack progresses along the interface of the rod-shaped carbide which is an inclusion or the rod-shaped carbide tends to be the starting point of the crack. .
Furthermore, corrosion is likely to proceed along the interface of the rod-like carbide, and it is considered that the corrosion resistance is also lowered.
In the present invention, it has been found that the characteristics deteriorate particularly when a rod-like carbide having an aspect ratio of 3 or more and a minor axis of 2 μm or more is produced.

本発明者等はまた、浸炭窒化処理により耐食性,転動疲労寿命ともに向上すること、またその転動疲労寿命の向上にはNi及びMoの適正添加が有効であることを見出した。
本発明は以上のような知見に基づいてなされたものである。
The present inventors have also found that carbonitriding improves both corrosion resistance and rolling fatigue life, and that appropriate addition of Ni and Mo is effective for improving the rolling fatigue life.
The present invention has been made based on the above findings.

本発明においては、浸炭又は浸炭窒化処理する前において、鋼中の酸化物系介在物の大きさを最大径で50μm以下としておくことが望ましい。即ち本発明者等は鋼中に存在する酸化物系介在物の大きさを50μm以下に低減することにより耐食性が改善することを見出した。
この酸化物系介在物の大きさ保証に、酸溶解抽出したものの細孔電気抵抗法による評価が有効であることも併せて明らかにした。
In the present invention, it is desirable that the oxide inclusions in the steel have a maximum diameter of 50 μm or less before carburizing or carbonitriding. That is, the present inventors have found that the corrosion resistance is improved by reducing the size of oxide inclusions present in the steel to 50 μm or less.
It was also clarified that the evaluation by the pore electrical resistance method of the acid-dissolved extract was effective for guaranteeing the size of the oxide inclusions.

また浸炭又は浸炭窒化処理した後、中間焼鈍を行い、その後2次焼入れ・焼戻しすることにより、耐食性と転動疲労寿命を併せて向上させることができることも明らかにした。   It was also clarified that the corrosion resistance and rolling fatigue life can be improved by carrying out intermediate annealing after carburizing or carbonitriding, followed by secondary quenching and tempering.

即ち本発明においては、酸化物系介在物の最大径が50μm以下である鋼を浸炭又は浸炭窒化処理した後、中間焼鈍を行い、その後2次焼入れ・焼戻しした後において、表面C濃度が0.7%以上,炭化物の面積率が15%以下,アスペクト比が3以上且つ短径が2μm以上の炭化物が0.1%以下となすようにすることが望ましい。   That is, in the present invention, after steel having a maximum diameter of oxide inclusions of 50 μm or less is subjected to carburizing or carbonitriding, intermediate annealing is performed, and then secondary quenching and tempering is performed. As described above, it is desirable that the carbide area ratio is 15% or less, the carbide having an aspect ratio of 3 or more and a minor axis of 2 μm or more is 0.1% or less.

本発明においては、合金成分として更にV,NbをそれぞれV:0.05〜1.0%,Nb:0.1%以下の範囲で含有させておくことができる。
これら成分を含有させることによって結晶粒を微細化することができ、軸受鋼としての特性を高めることができる。
In the present invention, V and Nb can be further contained as alloy components in the ranges of V: 0.05 to 1.0% and Nb: 0.1% or less, respectively.
By containing these components, the crystal grains can be refined and the characteristics as bearing steel can be enhanced.

次に本発明における各化学成分等の限定理由について以下に詳述する。
C :0.10〜0.35%
Cは軸受として必要な強度を得るとともに、浸炭又は浸炭窒化処理後に十分な表面硬さを確保する上で0.10%以上必要である。但し0.35%より多く含有させると靭性及び被削性が低下するので0.10〜0.35%の範囲とする。
Next, the reasons for limiting the chemical components and the like in the present invention will be described in detail below.
C: 0.10 to 0.35%
C needs to be 0.10% or more in order to obtain the strength necessary for a bearing and to secure sufficient surface hardness after carburizing or carbonitriding. However, if the content is more than 0.35%, the toughness and machinability are lowered, so the range is 0.10 to 0.35%.

Si:0.5%未満
Siは焼入れマルテンサイト組織を緻密なものとし、鋼の靭性や耐疲労特性を向上させる上で有効である。この意味においてSiは本発明において重要な成分であるが、その添加量が0.5%以上になると鋼の耐食性を著しく劣化させる。また靭性及び加工性が劣化するのでその含有量については0.5%未満とする。
Si: Less than 0.5%
Si is effective in improving the toughness and fatigue resistance of steel by increasing the quenching martensite structure. In this sense, Si is an important component in the present invention. However, when the added amount is 0.5% or more, the corrosion resistance of steel is remarkably deteriorated. Moreover, since toughness and workability deteriorate, the content is set to less than 0.5%.

Mn:0.2〜1.5%
Mnは鋼の溶製時における脱酸並びに脱硫元素として作用するとともに、鋼の焼入性を高める上で有効な元素であり、そのために本発明では0.2%以上含有させる。但し1.5%より多く含有させると加工性及び被削性が劣化するので上限を1.5%とする。
Mn: 0.2-1.5%
Mn acts as a deoxidizing and desulfurizing element during melting of steel, and is an element effective for enhancing the hardenability of steel. For this reason, it is contained in an amount of 0.2% or more in the present invention. However, if the content is more than 1.5%, the workability and machinability deteriorate, so the upper limit is made 1.5%.

P :≦0.03%
S :≦0.03%
P,Sは軸受の強度劣化の原因となる。そこで本発明ではP,Sをそれぞれ0.03%以下に規制する。
P: ≤0.03%
S: ≦ 0.03%
P and S cause bearing strength deterioration. Therefore, in the present invention, P and S are restricted to 0.03% or less.

Ni:1.0〜3.5%
Niは本発明において重要な成分であって鋼の耐食性を向上する効果が大きい。またNiは鋼の焼入性及び焼入れ・焼戻し後の靭性を向上させるのに有効な元素であり、そのために本発明では1.0%以上含有させる。但し3.5%より多く含有させると鋼の靭性及び加工性を低下させるので上限を3.5%とする。
Ni: 1.0-3.5%
Ni is an important component in the present invention and has a great effect of improving the corrosion resistance of steel. Ni is an element effective for improving the hardenability of steel and the toughness after quenching and tempering. For this reason, Ni is contained in an amount of 1.0% or more in the present invention. However, if the content is more than 3.5%, the toughness and workability of the steel are lowered, so the upper limit is made 3.5%.

Cr:1.0〜5.0%
Crもまた本発明において重要な成分であって鋼の耐食性を向上する効果が大きい。またCrは鋼の焼入性及び焼入れ・焼戻し後の強度及び靭性を向上させるのに有効な元素で、そのために本発明では1.0%以上含有させる。但し5.0%より多く含有させると耐食性の向上効果は飽和する一方で、焼入性及び被削性を害するので上限を5.0%とする。
Cr: 1.0-5.0%
Cr is also an important component in the present invention and has a great effect of improving the corrosion resistance of steel. Cr is an element effective for improving the hardenability of steel and the strength and toughness after quenching and tempering. For this reason, it is contained in an amount of 1.0% or more in the present invention. However, if the content exceeds 5.0%, the effect of improving corrosion resistance is saturated, but the hardenability and machinability are impaired, so the upper limit is made 5.0%.

Mo:0.03〜2.5%
Moは鋼の強度を向上させる上で有用な元素であり、そこで本発明では0.03%以上含有させる。但し2.5%より多く含有させると焼入性が低下すると同時に被削性も劣化するので上限を2.5%とする。
Mo: 0.03-2.5%
Mo is an element useful for improving the strength of steel. Therefore, in the present invention, it is contained in an amount of 0.03% or more. However, if the content is more than 2.5%, the hardenability is lowered and the machinability is also deteriorated, so the upper limit is made 2.5%.

Al:0.005〜0.050%
AlはAlNとなって結晶粒を微細化する効果があり、そのため本発明ではAlを0.005%以上含有させる。但し0.050%より多く含有させると鋼の清浄度が低下するとともに、結晶粒の粗大化防止効果が却って低下するため、上限を0.050%とする。
Al: 0.005 to 0.050%
Al has the effect of becoming AlN to refine the crystal grains. Therefore, in the present invention, Al is contained in an amount of 0.005% or more. However, if the content is more than 0.050%, the cleanliness of the steel is lowered, and the effect of preventing the coarsening of the crystal grains is decreased, so the upper limit is made 0.050%.

Ti:≦0.003%
Tiは硬質析出物TiNを生成して転動疲労破壊の破壊起点となり、転動疲労寿命低下の原因となる。そこで本発明ではTiの含有量を0.003%以下に規制する。
Ti: ≦ 0.003%
Ti forms hard precipitate TiN and becomes the fracture starting point of rolling fatigue failure, which causes a reduction in rolling fatigue life. Therefore, in the present invention, the Ti content is restricted to 0.003% or less.

O :≦0.0015%
Oは鋼の清浄度を低下させ、転動疲労寿命を劣化させる原因となる。そこで本発明ではOの含有量を0.0015%以下に規制する。
O: ≦ 0.0015%
O decreases the cleanliness of the steel and causes the rolling fatigue life to deteriorate. Therefore, in the present invention, the O content is restricted to 0.0015% or less.

N :≦0.025%
NはAlと結合してAlNを生成し、結晶粒を微細化する働きをする。但し多量に含有させると却って鋼の強度を劣化させる。そこで本発明ではNの含有量の上限を0.025%とする。より望ましい範囲は0.01〜0.02%である。
N: ≦ 0.025%
N combines with Al to produce AlN, and serves to refine crystal grains. However, if contained in a large amount, the strength of the steel is deteriorated. Therefore, in the present invention, the upper limit of the N content is 0.025%. A more desirable range is 0.01 to 0.02%.

V :0.05〜1.0%
Nb:≦0.1%
V,Nbは結晶粒の微細化に寄与する元素であるが、含有量が多過ぎると結晶粒微細化効果が小さくなるため、これらを選択元素として添加する際に、Vについては0.05〜1.0%、Nbについては0.1%以下の範囲で含有させる。
V: 0.05-1.0%
Nb: ≤0.1%
V and Nb are elements that contribute to the refinement of crystal grains. However, if the content of V and Nb is too large, the effect of grain refinement is reduced. Therefore, when adding these as selective elements, V is 0.05 to 1.0%. , Nb is contained in the range of 0.1% or less.

表面C濃度
熱処理後の表面C濃度は鋼の強度を確保する上で重要であって、所定の硬さ及び転動疲労寿命を得るためには、0.7%以上の表面C濃度が必要である。
ここで熱処理後の表面C濃度は、熱処理が浸炭窒化処理の場合は0.7〜0.9%未満、浸炭処理の場合は0.9〜1.2%であるのが望ましい。
特に浸炭窒化の場合は、表面C濃度が高くなると炭化物面積率が増加することにより耐食性が劣化するのみならず、棒状炭化物の生成によって転動疲労寿命及び衝撃特性が低下するため、表面C濃度は0.9%未満とするのが望ましい。
Surface C concentration The surface C concentration after heat treatment is important for securing the strength of the steel, and in order to obtain a predetermined hardness and rolling fatigue life, a surface C concentration of 0.7% or more is required.
Here, the surface C concentration after the heat treatment is desirably 0.7 to less than 0.9% when the heat treatment is carbonitriding and 0.9 to 1.2% when the carburizing treatment is performed.
In particular, in the case of carbonitriding, as the surface C concentration increases, not only the corrosion resistance deteriorates due to an increase in the carbide area ratio, but also the rolling fatigue life and impact characteristics decrease due to the formation of rod-like carbides. It is desirable to make it less than 0.9%.

炭化物
微細炭化物は転動疲労寿命を確保するために必要であるが、炭化物面積率が15%を超えると逆に鋼の強度を低下させる。
特に、合金元素及び熱処理条件が不適切であると、図1に示しているように炭化物の長径と短径との比(アスペクト比)が3以上且つ短径2μm以上の棒状炭化物10が生成するが、このような棒状炭化物10が0.1%を超えて生成すると、転動疲労寿命及び衝撃特性ともに著しく低下する。
Carbide Fine carbide is necessary to ensure the rolling fatigue life, but if the carbide area ratio exceeds 15%, the strength of the steel is reduced.
In particular, if the alloy elements and the heat treatment conditions are inappropriate, a rod-like carbide 10 having a ratio of the major axis to the minor axis (aspect ratio) of 3 or more and a minor axis of 2 μm or more is generated as shown in FIG. However, when such a rod-like carbide 10 is produced exceeding 0.1%, both the rolling fatigue life and the impact characteristics are remarkably deteriorated.

酸化物系介在物
酸化物系介在物は転動疲労の破壊起点となって転動疲労寿命を低下させるとともに、腐食環境下においてはマトリックスとの界面が優先的に腐食するため、大型介在物の存在により耐食性も低下する。
耐食性及び転動疲労寿命に優れた軸受鋼を得るためには酸化物系介在物の最大径を50μm以下に制御するのが望ましい。
Oxide inclusions Oxide inclusions serve as fracture starting points for rolling fatigue and lower the rolling fatigue life.In addition, in the corrosive environment, the interface with the matrix is preferentially corroded. Corrosion resistance also decreases due to the presence.
In order to obtain a bearing steel having excellent corrosion resistance and rolling fatigue life, it is desirable to control the maximum diameter of oxide inclusions to 50 μm or less.

熱処理
浸炭或いは浸炭窒化ままでは合金元素添加量が多い場合、鋼のマルテンサイト変態点(Ms点)が低下し、残留オーステナイトが大量に生成し、所定の表面硬さが得られないことがあるため、2次焼入れ・焼戻しを行うのが望ましい。
この際、2次焼入れの前に中間焼鈍を行い、炭化物形態を適正化し、マトリックスの焼入性を高めておくのが良い。また窒素添加は耐食性改善に有効である。
Heat treatment If the amount of alloying elements added is large when carburized or carbonitrided, the martensitic transformation point (Ms point) of the steel will be lowered, a large amount of retained austenite may be generated, and the specified surface hardness may not be obtained It is desirable to perform secondary quenching and tempering.
At this time, it is preferable to perform intermediate annealing before the secondary quenching to optimize the carbide form and enhance the hardenability of the matrix. Nitrogen addition is effective in improving corrosion resistance.

以上のような本発明に従って合金成分の添加及び各成分のバランスを図るとともに、浸炭処理又は浸炭窒化処理後における表面C濃度,炭化物面積率及び棒状炭化物を適正化することにより、圧延機や火力及び水力発電機用等の軸受部品に用いた場合においても優れた耐食性を示し、また面疲労強度及び転動疲労寿命に優れ、浸炭窒化性にも優れた軸受鋼を提供することができる。   According to the present invention as described above, the addition of alloy components and the balance of each component, and by optimizing the surface C concentration, carbide area ratio and rod-like carbide after carburizing or carbonitriding, rolling mills and thermal power and A bearing steel that exhibits excellent corrosion resistance even when used in bearing parts for hydroelectric generators, etc., is excellent in surface fatigue strength and rolling fatigue life, and is excellent in carbonitriding ability.

次に本発明の実施形態を以下に詳述する。
<素材>
表1に示す化学組成の鋼を150kg真空誘導溶解炉で溶製し、1200℃での熱間鍛造で直径32mm及び65mmの丸棒を作製し、900℃で焼ならし処理の後、軟化処理として760℃で球状化焼なまし処理を行い試験用の素材とした。
素材の清浄度評価として酸溶解抽出―細孔電気抵抗法(粒子が細孔を通過する際の電気抵抗の変化により粒子体積を測定する方法)による酸化物系介在物の粒度分布を測定した。
Next, embodiments of the present invention will be described in detail below.
<Material>
Steel with the chemical composition shown in Table 1 is melted in a 150kg vacuum induction melting furnace, round bars with diameters of 32mm and 65mm are produced by hot forging at 1200 ° C, softened after normalizing at 900 ° C. Was subjected to spheroidizing annealing at 760 ° C. to obtain a test material.
As an evaluation of the cleanliness of the material, the particle size distribution of oxide inclusions was measured by acid dissolution extraction-pore electrical resistance method (a method of measuring particle volume by changing electrical resistance when particles pass through the pores).

素材R/2部よりφ20mmの丸棒を削り出し、これを850℃から焼入れ後、厚さ1mmの薄板を約30g切り出し、酸溶解に供した。
酸溶解による酸化物系介在物抽出は硫酸及び過マンガン酸溶液で行った。
抽出した酸化物系介在物を200ccの電解溶液に分散し、ベックマンコールター社のマルチサイザーを用いて分散溶液500μl中の粒度分布をアパチャー径(孔径)100μmで測定した。
A φ20 mm round bar was cut out from the R / 2 part of the material, and after quenching from 850 ° C., about 30 g of a 1 mm thick thin plate was cut out and subjected to acid dissolution.
Extraction of oxide inclusions by acid dissolution was performed with sulfuric acid and permanganic acid solution.
The extracted oxide inclusions were dispersed in a 200 cc electrolytic solution, and the particle size distribution in 500 μl of the dispersion solution was measured with an aperture diameter (pore diameter) of 100 μm using a Beckman Coulter Multisizer.

表1にこれより求めた酸化物系介在物の最大径を示す。
本発明鋼では何れの鋼でも最大介在物径は50μm以下である。
Table 1 shows the maximum diameter of the oxide inclusions obtained from this.
In any of the steels of the present invention, the maximum inclusion diameter is 50 μm or less in any steel.

Figure 2005154784
Figure 2005154784

<腐食試験>
耐食性を評価するため湿潤条件及び隙間腐食での腐食試験を行った。
詳しくは上記素材より直径20mm、長さ36mmの粗加工試験片を削り出した後、浸炭条件としてカーボンポテンシャル1.2%の雰囲気炉内で、960℃で22時間の浸炭処理を行い、860℃から焼入れを行った後、660℃で4時間の中間焼鈍を行い、790℃で2次焼入れ、180℃で焼戻しを行い、円筒表面を研削仕上げし腐食試験に供した。
<Corrosion test>
In order to evaluate the corrosion resistance, a corrosion test was conducted under wet conditions and crevice corrosion.
Specifically, after cutting out a 20 mm diameter and 36 mm long rough specimen from the above materials, carburizing conditions were carburized at 960 ° C for 22 hours in an atmosphere furnace with a carbon potential of 1.2%, and quenched from 860 ° C. Thereafter, intermediate annealing was performed at 660 ° C. for 4 hours, secondary quenching was performed at 790 ° C., and tempering was performed at 180 ° C., and the cylindrical surface was ground and subjected to a corrosion test.

また、同様の粗加工試験片を浸炭窒化条件として前述の浸炭処理の後カーボンポテンシャル1.2%、5%アンモニア添加の雰囲気炉内で、850℃で7時間の浸炭窒化処理を行い、同様に中間焼鈍、2次焼入れ後、同上の仕上げを行い試験片とした。
腐食試験は複合サイクル試験機を用い、試験温度49℃±1℃で、相対湿度95%以上で、24時間保持した後、腐食状態を調査した。
また、隙間腐食についてはVブロック上に試験片を静置し、Vブロックと試験片の接点部を隙間腐食条件とした。
In addition, carbonitriding was performed at 850 ° C. for 7 hours in an atmosphere furnace with 1.2% carbon potential and 5% ammonia after the above carburizing treatment using the same rough-processed test piece as the carbonitriding condition. After the secondary quenching, the same finishing was performed to obtain a test piece.
The corrosion test was carried out using a combined cycle tester, and the corrosion state was investigated after holding at a test temperature of 49 ° C. ± 1 ° C. and a relative humidity of 95% or more for 24 hours.
Moreover, about crevice corrosion, the test piece was left still on V block and the contact part of V block and a test piece was made into crevice corrosion conditions.

<C濃度測定>
また、同試験片の中央部をミクロカッターで切断し、研磨仕上げ後、EPMAを用いて表層からのC濃度分布を測定し、表面C濃度を求めた。
<C concentration measurement>
Moreover, the center part of the test piece was cut with a microcutter, and after polishing and finishing, the C concentration distribution from the surface layer was measured using EPMA to determine the surface C concentration.

<炭化物測定>
炭化物測定は同上試験片の中央部をミクロカッターで切断し、研磨仕上げ後、ピクラルにより腐食して炭化物を現出し、SEMを用いて5000倍で、5視野の観察を行い、画像解析により炭化物面積率及び全炭化物について図1に示した長径、短径の測定を行った。
<Carbide measurement>
For carbide measurement, cut the center of the specimen with a microcutter, and after polishing finish, corrode with picral to reveal carbide, observe 5 views at 5000 times using SEM, and analyze the carbide area by image analysis. The major axis and the minor axis shown in FIG. 1 were measured for the rate and total carbides.

<転動疲労試験>
軸受部品での転動疲労強度を調査するためにスラスト型転動疲労試験を行った。
素材より外径63mm、内径28.7mm、厚さ9mmのリング状試験片を削り出し粗加工試験片とした。
<Rolling fatigue test>
A thrust type rolling fatigue test was conducted to investigate the rolling fatigue strength of bearing parts.
A ring-shaped test piece having an outer diameter of 63 mm, an inner diameter of 28.7 mm, and a thickness of 9 mm was cut out from the material to obtain a roughing test piece.

この試験片を熱処理として、浸炭,焼入れ・焼戻し処理を行った。
浸炭条件は腐食試験片と同じである。
熱処理後、片側は0.15mm研磨仕上げを、もう一方の試験面はラッピング仕上げを行い、スラスト型転動疲労試験用の試験片とした。
This test piece was subjected to carburizing, quenching and tempering treatment as a heat treatment.
The carburizing conditions are the same as the corrosion test pieces.
After the heat treatment, one side was 0.15 mm polished and the other test surface was lapped to obtain a test piece for a thrust type rolling fatigue test.

また、同様の粗加工試験片を浸炭窒化,焼入れ・焼戻し処理を行った。
浸炭窒化条件も腐食試験片と同じである。
熱処理後、同上の研磨仕上げを行い試験片とした。
Further, the same roughened test piece was subjected to carbonitriding, quenching and tempering treatment.
The carbonitriding conditions are the same as the corrosion test pieces.
After the heat treatment, the above polishing finish was performed to obtain a test piece.

試験はスラスト型転動疲労試験機を用い、表2に示した試験条件で行った。
異物混入環境下での試験には粒径100〜180μmに分級された硬度750Hvの高速度鋼ガスアトマイズ粉を用いた。
転動疲労寿命は同一試験条件で16回の繰返し試験を行い、ワイブル確率における累積破損確率が10%となる繰返し数(L10)及び同50%となる繰返し数(L50)により評価した。
The test was conducted under the test conditions shown in Table 2 using a thrust type rolling fatigue tester.
A high-speed steel gas atomized powder with a hardness of 750 Hv classified to a particle size of 100 to 180 μm was used for the test in a foreign matter mixed environment.
The rolling fatigue life was evaluated by the number of repetitions (L 10 ) at which the cumulative failure probability in the Weibull probability was 10% (L 10 ) and the number of repetitions (L 50 ) at 50%.

Figure 2005154784
Figure 2005154784

<シャルピー衝撃試験>
軸受部品での靭性を調査するためにシャルピー衝撃試験を行った。
上記素材から削り出しで巾12mm、高さ14mm、長さ55mmで、長さ中央部に深さ1.8mmで曲率半径10mmのノッチを有する粗加工試験片を作製した。
<Charpy impact test>
A Charpy impact test was conducted to investigate the toughness of bearing parts.
A roughing test piece having a width of 12 mm, a height of 14 mm, a length of 55 mm, a notch having a depth of 1.8 mm and a radius of curvature of 10 mm was produced from the above material.

この試験片を熱処理として、浸炭,焼入れ・焼戻し処理を行った。
浸炭条件はカーボンポテンシャル1.2%の雰囲気炉内で、930℃で4時間の浸炭処理を行い、850℃から焼入れた後、660℃で4時間の中間焼鈍を行い、790℃より2次焼入れ、180℃で焼戻しを行った。
熱処理後、研削加工で巾10mm、高さ10mmでノッチ曲率半径10mm、深さ2mmに仕上げ、シャルピー試験に供した。
This test piece was subjected to carburizing, quenching and tempering treatment as a heat treatment.
Carburizing conditions are as follows: Carburizing treatment at 930 ° C for 4 hours in an atmosphere furnace with a carbon potential of 1.2%, quenching from 850 ° C, followed by intermediate annealing at 660 ° C for 4 hours, secondary quenching from 790 ° C, 180 ° C Tempering was performed at ° C.
After the heat treatment, it was finished by grinding to a width of 10 mm, a height of 10 mm, a notch curvature radius of 10 mm, and a depth of 2 mm, and subjected to the Charpy test.

また、同様の粗加工試験片を浸炭窒化,焼入れ・焼戻し処理を行った。
浸炭窒化条件は同上の浸炭処理後、カーボンポテンシャル1.2%、5%アンモニア添加の雰囲気炉内で、850℃で5時間の浸炭窒化処理を行った後、同上の中間焼鈍、2次焼入れ・焼戻しを行った。
熱処理後、同上の研削仕上げを行い試験片とした。
試験はシャルピー試験機を用い、常温での試験片破断時の吸収エネルギーを測定した。
Further, the same roughened test piece was subjected to carbonitriding, quenching and tempering treatment.
Carbonitriding conditions are the same as above. After carburizing and nitriding for 5 hours at 850 ° C in an atmosphere furnace with 1.2% carbon potential and 5% ammonia added, intermediate annealing and secondary quenching / tempering are performed. went.
After the heat treatment, the same grinding finish as above was performed to obtain a test piece.
The test was performed using a Charpy tester to measure the energy absorbed when the test piece was broken at room temperature.

<結果>
表3に浸炭処理材の試験結果を示す。

Figure 2005154784
<Result>
Table 3 shows the test results of the carburized material.
Figure 2005154784

浸炭処理を施した本発明鋼では表面C濃度は0.9%以上であり、炭化物面積率は15%以下であり、棒状炭化物は0.1%以下である。ここで棒状炭化物とは炭化物の長径と短径の比(アスペクト比)が3以上且つ短径が2μm以上の炭化物である。   In the steel of the present invention subjected to carburizing treatment, the surface C concentration is 0.9% or more, the carbide area ratio is 15% or less, and the rod-like carbide is 0.1% or less. Here, the rod-like carbide is a carbide having a ratio of a major axis to a minor axis (aspect ratio) of 3 or more and a minor axis of 2 μm or more.

同試験結果から明らかなように、耐食性は湿潤及び隙間腐食ともに本発明鋼が成分組成範囲を満たしていない比較例鋼に比べて優れている。   As is clear from the test results, the corrosion resistance is superior to the comparative steel in which the steel of the present invention does not satisfy the component composition range in both wet and crevice corrosion.

転動疲労試験結果では、清浄油で本発明鋼は比較例鋼に比べて長寿命となることが分った。また、異物混入条件下では清浄油に比べて1オーダー以上転動疲労寿命が低下するが、本発明鋼は比較例鋼に比べて長寿命である。   As a result of the rolling fatigue test, it was found that the steel of the present invention has a longer life than the comparative example steel with clean oil. In addition, the rolling fatigue life is reduced by one order or more compared with clean oil under the foreign matter mixing conditions, but the steel of the present invention has a longer life than the comparative example steel.

シャルピー衝撃値も本発明鋼は比較例鋼に対して同等以上であり、軸受部品としての圧壊強度にも優れることが分った。   It was found that the Charpy impact value of the steel of the present invention is equal to or higher than that of the comparative steel, and the crushing strength as a bearing part is excellent.

次に表4に浸炭窒化処理材の試験結果を示す。

Figure 2005154784
Next, Table 4 shows the test results of the carbonitrided material.
Figure 2005154784

浸炭窒化処理を施した本発明鋼は表面C濃度が0.7%以上であり、炭化物面積率が15%以下であり、且つ棒状炭化物が0.1%以下であることにより、成分組成範囲を満たしていない比較例鋼に比べて耐食性,転動疲労寿命,衝撃値の何れも優れていることが分った。
また、浸炭窒化処理材は浸炭処理材に比べて耐食性が優れること、異物混入条件下での転動疲労寿命が向上することが分った。
The invention steel subjected to carbonitriding treatment has a surface C concentration of 0.7% or more, a carbide area ratio of 15% or less, and a rod-like carbide of 0.1% or less. It was found that the corrosion resistance, rolling fatigue life, and impact value were all superior to that of the example steel.
Further, it was found that the carbonitrided material is superior in corrosion resistance compared to the carburized material, and the rolling fatigue life is improved under the contamination condition.

鋼中に存在する棒状炭化物を模式的に表した図である。It is the figure which represented typically the rod-shaped carbide | carbonized_material which exists in steel.

符号の説明Explanation of symbols

10 棒状炭化物         10 Bar carbide

Claims (2)

重量%で、
C :0.10〜0.35%
Si:0.5%未満
Mn:0.2〜1.5%
P :≦0.03%
S :≦0.03%
Ni:1.0〜3.5%
Cr:1.0〜5.0%
Mo:0.03〜2.5%
Al:0.005〜0.050%
Ti:≦0.003%
O :≦0.0015%
N :≦0.025%
残部が実質的にFeから成り、浸炭又は浸炭窒化処理後において表面C濃度が0.7%以上,面積率で炭化物が15%以下であり且つ長径と短径との比で表されるアスペクト比が3以上且つ短径が2μm以上の炭化物が0.1%以下であることを特徴とする耐食性に優れた軸受鋼。
% By weight
C: 0.10 to 0.35%
Si: Less than 0.5%
Mn: 0.2-1.5%
P: ≤0.03%
S: ≦ 0.03%
Ni: 1.0-3.5%
Cr: 1.0-5.0%
Mo: 0.03-2.5%
Al: 0.005 to 0.050%
Ti: ≦ 0.003%
O: ≦ 0.0015%
N: ≦ 0.025%
The balance is substantially Fe, and after carburizing or carbonitriding, the surface C concentration is 0.7% or more, the area ratio is 15% or less of carbide, and the aspect ratio expressed by the ratio of the major axis to the minor axis is 3. A bearing steel excellent in corrosion resistance, characterized in that the carbide having a minor axis of 2 μm or more is 0.1% or less.
請求項1において、合金成分として更にV,Nbの1種又は2種を、
V :0.05〜1.0%
Nb:≦0.1%
の範囲で含有していることを特徴とする耐食性に優れた軸受鋼。
In claim 1, one or two of V and Nb are further added as an alloy component.
V: 0.05-1.0%
Nb: ≤0.1%
Bearing steel excellent in corrosion resistance, characterized by containing in the range of
JP2003382604A 2002-11-12 2003-11-12 Bearing steel and bearing parts with excellent corrosion resistance Expired - Lifetime JP4283643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382604A JP4283643B2 (en) 2002-11-12 2003-11-12 Bearing steel and bearing parts with excellent corrosion resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002328854 2002-11-12
JP2003367758 2003-10-28
JP2003382604A JP4283643B2 (en) 2002-11-12 2003-11-12 Bearing steel and bearing parts with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2005154784A true JP2005154784A (en) 2005-06-16
JP4283643B2 JP4283643B2 (en) 2009-06-24

Family

ID=34743362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382604A Expired - Lifetime JP4283643B2 (en) 2002-11-12 2003-11-12 Bearing steel and bearing parts with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4283643B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025010A (en) * 2006-07-25 2008-02-07 Ntn Corp Rolling parts and rolling bearing
JP2008248349A (en) * 2007-03-30 2008-10-16 Nsk Ltd Method for manufacturing rolling bearing constituting member and rolling bearing
JP2009091649A (en) * 2007-04-05 2009-04-30 Kobe Steel Ltd Forging steel, forging and crankshaft
WO2010067872A1 (en) * 2008-12-12 2010-06-17 株式会社ジェイテクト Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP2010248612A (en) * 2008-12-12 2010-11-04 Jtekt Corp Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP2011094224A (en) * 2008-12-12 2011-05-12 Jtekt Corp Component of bearing, method for manufacturing the same and rolling bearing
EP2514844A2 (en) 2011-04-22 2012-10-24 Jtekt Corporation Rolling sliding member, method of manufacturing the same, and rolling bearing
EP2716784A1 (en) 2012-10-05 2014-04-09 Jtekt Corporation Rolling sliding member, method of manufacturing the same, and rolling bearing
WO2015194609A1 (en) * 2014-06-17 2015-12-23 日本精工株式会社 Rotary support device
JP2016138320A (en) * 2015-01-28 2016-08-04 株式会社日本製鋼所 NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
CN109136764A (en) * 2018-09-28 2019-01-04 共享铸钢有限公司 A kind of production method of large thick-wall axis class steel-casting
JP2019218582A (en) * 2018-06-18 2019-12-26 株式会社小松製作所 Mechanical component
JP2019218583A (en) * 2018-06-18 2019-12-26 株式会社小松製作所 Manufacturing method of mechanical component

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025010A (en) * 2006-07-25 2008-02-07 Ntn Corp Rolling parts and rolling bearing
JP2008248349A (en) * 2007-03-30 2008-10-16 Nsk Ltd Method for manufacturing rolling bearing constituting member and rolling bearing
JP2009091649A (en) * 2007-04-05 2009-04-30 Kobe Steel Ltd Forging steel, forging and crankshaft
WO2010067872A1 (en) * 2008-12-12 2010-06-17 株式会社ジェイテクト Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP2010248612A (en) * 2008-12-12 2010-11-04 Jtekt Corp Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JP2011094224A (en) * 2008-12-12 2011-05-12 Jtekt Corp Component of bearing, method for manufacturing the same and rolling bearing
US8596875B2 (en) 2008-12-12 2013-12-03 Jtekt Corporation Bearing constituent member and process for producing the same, and rolling bearing having bearing constituent member
EP2514844A2 (en) 2011-04-22 2012-10-24 Jtekt Corporation Rolling sliding member, method of manufacturing the same, and rolling bearing
EP2716784A1 (en) 2012-10-05 2014-04-09 Jtekt Corporation Rolling sliding member, method of manufacturing the same, and rolling bearing
WO2015194609A1 (en) * 2014-06-17 2015-12-23 日本精工株式会社 Rotary support device
JP2016138320A (en) * 2015-01-28 2016-08-04 株式会社日本製鋼所 NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
KR20160121785A (en) * 2015-01-28 2016-10-20 더 재팬 스틸 워크스 엘티디 NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL
KR102554100B1 (en) * 2015-01-28 2023-07-12 니혼 세이꼬쇼 엠앤이 가부시키가이샤 NiCrMo STEEL AND METHOD FOR MANUFACTURING NiCrMo STEEL MATERIAL
JP2019218582A (en) * 2018-06-18 2019-12-26 株式会社小松製作所 Mechanical component
JP2019218583A (en) * 2018-06-18 2019-12-26 株式会社小松製作所 Manufacturing method of mechanical component
WO2019244503A1 (en) * 2018-06-18 2019-12-26 株式会社小松製作所 Mechanical component
WO2019244504A1 (en) * 2018-06-18 2019-12-26 株式会社小松製作所 Method for producing machine components
US11326220B2 (en) 2018-06-18 2022-05-10 Komatsu Ltd. Method for producing machine component
US11332817B2 (en) 2018-06-18 2022-05-17 Komatsu Ltd. Machine component
JP7152832B2 (en) 2018-06-18 2022-10-13 株式会社小松製作所 machine parts
JP7270343B2 (en) 2018-06-18 2023-05-10 株式会社小松製作所 Method for manufacturing mechanical parts
CN109136764A (en) * 2018-09-28 2019-01-04 共享铸钢有限公司 A kind of production method of large thick-wall axis class steel-casting
CN109136764B (en) * 2018-09-28 2021-02-12 共享铸钢有限公司 Production method of large thick-wall shaft steel casting

Also Published As

Publication number Publication date
JP4283643B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP6205061B2 (en) Carbonitrided steel for bearings
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
CN113260728B (en) Carbonitrided bearing component
KR20020083181A (en) High-strength spring steel and spring steel wire
JP2956324B2 (en) Bearing steel with excellent workability and rolling fatigue
JP2015096657A (en) Case hardened steel and carburized material
JP4283643B2 (en) Bearing steel and bearing parts with excellent corrosion resistance
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP2005113256A (en) Rolling bearing
CN113227424B (en) Steel material as material for carbonitrided bearing member
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP2006161144A (en) Carburizing rolled steel having excellent high temperature carburizing property and hot forgeability
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JP2001303173A (en) Steel for carburizing and carbo-nitriding
EP1420078B1 (en) Bearing steel excellent in corrosion resistance
JP2000204445A (en) Rolling bearing parts for high temperature use
JP3466328B2 (en) Long life steel for induction hardened bearings
JP2006299313A (en) Rolling supporter
JP2000297345A (en) Steel for carburized bearing
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
JP4458592B2 (en) Rolling bearing parts for high temperature
JP3317516B2 (en) Bearing steel
WO2000028102A1 (en) High-temperature rolling bearing part
WO2015133273A1 (en) Case hardening steel wire
JPH07216508A (en) Bearing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term