WO2012098938A1 - Delayed-fracture-resistant boron-containing steel for high-strength bolts, and high-strength bolts - Google Patents

Delayed-fracture-resistant boron-containing steel for high-strength bolts, and high-strength bolts Download PDF

Info

Publication number
WO2012098938A1
WO2012098938A1 PCT/JP2012/050157 JP2012050157W WO2012098938A1 WO 2012098938 A1 WO2012098938 A1 WO 2012098938A1 JP 2012050157 W JP2012050157 W JP 2012050157W WO 2012098938 A1 WO2012098938 A1 WO 2012098938A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
delayed fracture
steel
strength
Prior art date
Application number
PCT/JP2012/050157
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 松本
淳 稲田
千葉 政道
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2012098938A1 publication Critical patent/WO2012098938A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel for bolts used in automobiles, various industrial machines, and the like, and a high-strength bolt obtained by using this steel for bolts, and particularly has excellent delayed fracture resistance even when the tensile strength is 1100 MPa or more.
  • the present invention relates to a boron-added high-strength bolt steel and a high-strength bolt.
  • Patent Document 1 proposes a technique for improving the corrosion resistance by adding a predetermined amount of Cu to the boron-added steel and reducing the hydrogen generated during the corrosion reaction to suppress the penetration of hydrogen into the steel. Has been. However, it is difficult to ensure corrosion resistance only by containing Cu.
  • Patent Document 2 and Patent Document 3 the resistance to delayed fracture is improved by refining crystal grains, but it is difficult to apply to severe environments only by the effect of refining crystal grains.
  • Patent Document 4 relates to a steel material excellent in delayed fracture evaluation method and delayed fracture resistance, and shows a steel material in which the carbon equivalent is defined and the amount of S is reduced.
  • it is difficult to completely suppress the occurrence of delayed fracture only by making extremely low sulfur.
  • it is necessary to reduce sulfur extremely, there exists a possibility of causing the increase in manufacturing cost.
  • Patent Document 5 is a technique related to wear-resistant steel having excellent toughness and delayed fracture resistance.
  • the technique disclosed in Patent Document 5 since it is necessary to perform quenching as it is after rolling and to stop quenching in a specific temperature range, the process becomes complicated and there is a possibility that the manufacturing cost increases.
  • Patent Document 6 relates to a wear resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same.
  • the steel material which becomes object by patent document 6 is plate shape, and the evaluation of delayed fracture resistance is also performed using the flat plate without a notch.
  • the bolt which is the subject of the present invention has a notch, it is necessary to evaluate the delayed fracture resistance based on a stricter standard than the delayed fracture resistance shown in Patent Document 6.
  • JP 2006-118033 A Japanese Patent No. 3535754 Japanese Patent No. 3490293 Japanese Patent No. 4370991 JP 2002-80930 A JP 2002-1105024 A
  • the present invention has been made under such circumstances, and its purpose is to have a high tensile strength of 1100 MPa or more without adding a large amount of expensive alloy elements such as Cr and Mo, and
  • An object of the present invention is to provide a boron-added high-strength bolt steel exhibiting excellent delayed fracture resistance, and a high-strength bolt made of such a boron-added high-strength bolt steel.
  • the boron-added high-strength bolt steel of the present invention that has achieved the above-mentioned object is: C: 0.20 to less than 0.40% (0.20% to less than 0.40%) (% means mass%) The same shall apply hereinafter), Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03% or less (excluding 0%), S: 0.03% or less ( Ni: 0.05 to 1.0%, Cr: 0.01 to 1.50%, Cu: 1.0% or less (including 0%), Al: 0.01 to 0 .10%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.0050% and N: 0.002 to 0.010%, respectively, and a group consisting of Cu, Ni and Cr And a total of 0.10 to 3.0% selected from the group consisting of iron and unavoidable impurities, and a Si content [Si]
  • the content [C] ratio ([Si] / [C]) is 1.0 or more and the structure is a composite structure of fer
  • the present invention is a steel for boron added high-strength bolts, C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 2.0% , P: 0.03% or less (excluding 0%), S: 0.03% or less (not including 0%), Ni: 0.10 to 0.50%, Cr: 0.03 to 0.00.
  • the present invention relates to a steel for boron added high-strength bolts, C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 1.5% , P: 0.03% or less (excluding 0%), S: 0.03% or less (not including 0%), Ni: 0.10 to 0.50%, Cr: 0.03 to 0.00.
  • the boron-added high-strength bolt steel of the present invention may further contain at least one selected from the group consisting of Nb: 0.01 to 0.1% and V: 0.01 to 0.1%, if necessary.
  • the characteristics of the steel for boron-added high-strength bolts can be further improved by including these.
  • the ratio ([Si] / [C]) of the Si content [Si] and the C content [C] is (a) the C content is 0.20% or more and 0.00. When it is less than 25%, it is 2.0 or more. (B) When the C content is 0.25% or more and less than 0.29%, it is 1.5 or more. (C) The C content is 0.29. % Or more and less than 0.40% is 1.0 or more.
  • the high-strength bolt of the present invention that has achieved the above object is the structure using the steel (boron-added high-strength bolt steel), formed into a bolt shape, and then subjected to quenching and tempering treatment.
  • the point is that the tensile strength when tempered martensite is 1100 MPa or more.
  • the chemical composition is strictly defined, and the ratio of the content ratio of Si and C ([Si] / [C]) is controlled within an appropriate range, so that severe fracture is likely to occur. It is possible to realize a boron-added high-strength bolt steel that exhibits excellent delayed fracture resistance even in a difficult environment. Moreover, the high strength bolt excellent in delayed fracture resistance is realizable using this boron addition steel for high strength bolts.
  • the present inventors show high strength with a tensile strength of 1100 MPa or more without adding a large amount of expensive alloy elements such as Mo and Cr, and excellent delay resistance even at such high strength.
  • a boron-added steel that exhibits destructive properties.
  • reducing the C content as much as possible rather than containing an alloy element is very effective in securing delayed fracture resistance.
  • the Si content is equal to or higher than the C content [ie, the ratio of Si and C content ([Si] / [C]) is 1.0 or higher]. It was found that the strength reduction due to the reduction of the C content can be sufficiently secured.
  • the corrosion resistance is improved by reducing the C content, it is also effective to control the total content of Cu, Ni, Cr, etc. in order to ensure sufficient delayed fracture resistance under harsh environments, Furthermore, by adjusting other chemical components, it has been found that a boron-added steel having excellent delayed fracture resistance can be realized even with a high tensile strength of 1100 MPa or more, and the present invention has been completed.
  • the steel material of this invention may implement a spheroidizing annealing process before bolt shaping
  • C is an element useful for ensuring the strength of the steel, but increasing its content deteriorates the toughness and corrosion resistance of the steel and tends to cause delayed fracture.
  • Si is also an element useful for ensuring the strength of steel, but the relationship with delayed fracture was unclear. Therefore, the present inventors investigated the influence of Si on delayed fracture. As a result, by increasing the Si content over the C content, it was possible to achieve both a tensile strength of 1100 MPa or more and excellent delayed fracture resistance in a harsh environment.
  • the combined addition of C and Si can increase the strength with Si, so that the C content can be relatively reduced. That is, it is possible to ensure excellent corrosion resistance and delayed fracture resistance and tensile strength of 1100 MPa or more by lowering the C content of the matrix and ensuring the strength with Si that does not significantly affect the corrosion resistance of steel. It became possible. Further, it has been found that the effect of the corrosion resistance improving element such as Cu, Ni, Cr, etc. appears remarkably by increasing the corrosion resistance of the matrix.
  • the steel for boron-added bolts of the present invention has a ratio ([Si] / [C]) of the Si content [Si] (mass%) and the C content [C] (mass%) from the above purpose. It is necessary to satisfy 1.0 or more. When ([Si] / [C]) satisfies 1.0 or more, excellent delayed fracture resistance can be secured.
  • the value of the ratio ([Si] / [C]) is preferably 2.0 or more, and more preferably 3.0 or more. However, even if the ratio ([Si] / [C]) satisfies 1.0 or more, if the chemical component composition is out of the proper range, the delayed fracture resistance and other characteristics deteriorate. Occurs.
  • the value of the ratio ([Si] / [C]) is preferably controlled in an appropriate range according to the C content. Specifically, when (a) C: 0.20% or more and less than 0.25%, the ratio ([Si] / [C]) is set to 2.0 or more, and (b) C: 0.25. % Or more and less than 0.29%, the ratio ([Si] / [C]) is set to 1.5 or more, and (c) C: 0.29% or more (that is, 0.29% or more and 0.40). %), The ratio ([Si] / [C]) value is preferably 1.0 or more.
  • components such as C, Si, Mn, P, S, Al, Ti, B, N, Cu, Ni, and Cr contained in the steel are appropriately adjusted. There is a need. The reasons for limiting the ranges of these components are as follows.
  • C 0.20 to less than 0.40% (0.20% or more and less than 0.40%)]
  • C is an element indispensable for forming carbides and securing the necessary tensile strength as high-strength steel. In order to exhibit such an effect, it is necessary to contain 0.20% or more. However, when C is contained excessively, the delayed fracture resistance is deteriorated due to a decrease in toughness and a decrease in ductility. In order to avoid such an adverse effect of C, the C content needs to be less than 0.40%.
  • the minimum with preferable C content is 0.22%, It is good to set it as 0.25% or more more preferably.
  • the upper limit with preferable C content is 0.35%, It is good to set it as 0.30% or less more preferably.
  • Si is an element necessary as a solid solution element that acts as a deoxidizer during melting and strengthens the matrix. By containing 0.20% or more of Si, sufficient strength can be secured. However, if the Si content exceeds 1.50% and is excessively contained, the cold workability of the steel material is lowered even when spheroidizing annealing is performed, and the grain boundary oxidation during quenching (heat treatment) is promoted. Deteriorates delayed fracture resistance.
  • the minimum with preferable Si content is 0.3%, More preferably, it is good to set it as 0.4% or more.
  • the upper limit with preferable Si content is 1.0%, It is good to set it as 0.8% or less more preferably.
  • Mn is an element that improves hardenability, and is an important element for achieving high strength. The effect can be exhibited by containing 0.30% or more of Mn. However, if the Mn content is excessive, segregation to the grain boundary is promoted, the grain boundary strength is lowered, and the delayed fracture resistance is lowered, so 2.0% was made the upper limit.
  • the minimum with preferable Mn content is 0.4%, It is good to set it as 0.6% or more more preferably.
  • the upper limit with preferable Mn content is 1.5%, It is good to set it as 1.0% or less more preferably.
  • P 0.03% or less (excluding 0%)
  • P is contained as an impurity, but if it is present in excess, it causes segregation at the grain boundary, lowers the grain boundary strength, and deteriorates the delayed fracture characteristics. Therefore, the upper limit of the P content is 0.03%. In addition, the upper limit with preferable P content is 0.01%, It is good to set it as 0.005% or less more preferably.
  • the upper limit of the S content is set to 0.03%.
  • the upper limit with preferable S content is 0.01%, It is good to set it as 0.006% or less more preferably.
  • Ni 0.05 to 1.0%
  • Ni is an element that improves corrosion resistance, and exhibits an effect when added in an amount of 0.05% or more. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.0%.
  • the minimum with preferable Ni content is 0.10%, More preferably, it is 0.15% or more.
  • the upper limit with preferable Ni content is 0.80%, and a more preferable upper limit is 0.50%.
  • Cr 0.01 to 1.50%
  • Cr is an element for improving corrosion resistance, and exhibits an effect by adding 0.01% or more. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.50%.
  • the preferable lower limit of the Cr content is 0.03%, the more preferable lower limit is 0.05%, and the still more preferable lower limit is 0.10%.
  • the upper limit with preferable Cr content is 1.0%, and a more preferable upper limit is 0.80%.
  • Cu 1.0% or less (including 0%)
  • Cu is an element for improving corrosion resistance, and in order to exert this effect, 0.05% or more is preferably contained. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.0%. In addition, the upper limit with preferable Cu content is 0.80%, and a more preferable upper limit is 0.50%.
  • Al 0.01 to 0.10%
  • Al is an element effective for deoxidation of steel, and by forming AlN, austenite grains can be prevented from becoming coarse.
  • the Al content needs to be 0.01% or more. However, even if the Al content exceeds 0.10% and becomes excessive, the effect is saturated.
  • the minimum with preferable Al content is 0.02%, More preferably, it is good to set it as 0.03% or more.
  • the upper limit with preferable Al content is 0.08%, More preferably, it is good to set it as 0.05% or less.
  • Ti 0.01 to 0.1%
  • Ti is an element effective for fixing N in steel and precipitating TiC to improve delayed fracture resistance.
  • Ti nitrides and carbides are useful for refining crystal grains, and the refining of crystal grains contributes to further improvement of delayed fracture resistance.
  • it is necessary to contain Ti 0.01% or more.
  • the minimum with preferable Ti content is 0.02%, More preferably, it is good to set it as 0.03% or more.
  • the upper limit with preferable Ti content is 0.08%, More preferably, it is 0.06% or less, More preferably, it is good to set it as 0.05% or less.
  • B is an element effective in improving the hardenability of steel, and in order to exhibit the effect, it is necessary to contain 0.0003% or more. However, if the B content becomes excessive and exceeds 0.0050%, the toughness is lowered instead.
  • the minimum with preferable B content is 0.0005%, More preferably, it is good to set it as 0.0010% or more.
  • the upper limit with preferable B content is 0.004%, More preferably, it is good to set it as 0.003% or less.
  • N combines with Ti to form TiN in the solidification stage after melting, and has the effect of improving the delayed fracture resistance by miniaturizing crystal grains. Such an effect is effectively exhibited when the N content is 0.002% or more.
  • TiN is formed in a large amount, TiN is not dissolved by heating at about 1300 ° C., and formation of Ti carbide useful for improving delayed fracture resistance is inhibited. Excess N is also harmful to delayed fracture characteristics. In particular, if the N content exceeds 0.010% and becomes excessive, the delayed fracture characteristics are significantly reduced.
  • the minimum with preferable N content is 0.003%, It is good to set it as 0.004% or more more preferably.
  • the upper limit with preferable N content is 0.008%, More preferably, it is good to set it as 0.006% or less.
  • Cu, Ni and Cr are all elements that improve corrosion resistance, and by making their total content 0.10% or more, hydrogen penetration into the steel can be suppressed and delayed fracture resistance can be improved.
  • the steel material cost increases, so the total amount needs to be 3.0% or less.
  • the minimum with preferable total content of these elements is 0.15%, and a more preferable minimum is 0.20%.
  • the upper limit with preferable total content of these elements is 2.0%, and a more preferable upper limit is 1.5%.
  • the basic components of the steel for boron-added high-strength bolts of the present invention are as described above, with the balance being iron and inevitable impurities.
  • Nb and V are effective elements for refining crystal grains and improving delayed fracture resistance.
  • the content of these elements is preferably set to 0.01% or more.
  • the minimum with preferable content of these elements is 0.02%, respectively, More preferably, it is good to set it as 0.03% or more.
  • the upper limit with preferable content is 0.08%, respectively, More preferably, it is good to set it as 0.06% or less.
  • the structure after rolling is basically a composite structure of ferrite and pearlite (indicated as “ferrite / pearlite”).
  • ferrite / pearlite a composite structure of ferrite and pearlite
  • Using this steel material it is formed into a bolt shape with or without spheroidizing treatment if necessary, and then subjected to quenching and tempering treatment to make the structure tempered martensite, thereby obtaining a predetermined tensile strength.
  • quenching and tempering treatment to make the structure tempered martensite, thereby obtaining a predetermined tensile strength.
  • Appropriate conditions for quenching and tempering at this time are as follows.
  • heating at 850 ° C. or higher is necessary for stable austenitization treatment.
  • the crystal grains become coarse, which causes deterioration in delayed fracture characteristics. Therefore, in order to prevent coarsening of crystal grains, it is useful to heat and quench at 960 ° C. or lower.
  • the as-quenched bolts have low toughness and ductility and do not become bolt products as they are, so they need to be tempered.
  • it is effective to perform a tempering treatment at a temperature of at least 200 ° C.
  • the tempering temperature exceeds 600 ° C.
  • the steel material having the above chemical composition cannot secure a tensile strength of 1100 MPa or more.
  • the delayed fracture resistance improves as the prior austenite crystal grain size becomes finer.
  • the grain size number JIS G 0551
  • the grain size number has a structure of 8 or more.
  • the steel materials (test Nos. 1 to 24) having the chemical composition shown in Table 1 below were melted and then rolled into a wire having a diameter of 12 mm ⁇ .
  • Table 1 shows the structure of each wire after rolling. Thereafter, quenching was performed from 870 ° C., and tempering was performed within a range in which a tensile strength of 1100 MPa or more could be secured, and then a tensile test was performed.
  • corrosion resistance and delayed fracture resistance were evaluated using the test piece with a notch shown in FIG. In the tensile test, the one having no notch in the shaft portion was used, but in the delayed fracture test, the test piece with the notch was used as described above so as to simulate the stress concentration of the screw portion. Further, in the delayed fracture test, the test piece of FIG. 1 having no notch was also evaluated.
  • Corrosion resistance was evaluated by corrosion weight loss before and after immersion when the test piece was immersed in 15% HCl for 30 minutes. Delayed fracture resistance was implemented by immersing the test piece in 15% HCl for 30 minutes, washing with water and drying, then applying a constant load, and comparing the load that did not break for more than 100 hours. At this time, a value obtained by dividing the load that does not break for 100 hours or more after acid immersion by the maximum load when the tensile test is performed without acid immersion is defined as a delayed fracture strength ratio, and this value (delayed fracture strength ratio) is 0.70. The above was judged as acceptable. The results are shown in Table 2 below together with the structures after quenching and tempering.
  • “Delayed Fracture Strength Ratio 1” indicates the result of evaluation of delayed fracture resistance using a test piece without a notch
  • “Delayed Fracture Strength Ratio 2” indicates a test piece with a notch. It shows the results of evaluating delayed fracture resistance.
  • prescribed tensile strength tensile strength of 1100 Mpa or more
  • the test of corrosion resistance and delayed fracture resistance was not implemented. Further, based on these results, the relationship between the value of the ratio ([Si] / [C]) and the delayed fracture strength ratio 2 is shown in FIG.
  • Test No. 1 to 14 are examples (the steel of the present invention) that satisfy the requirements [chemical composition and ratio ([Si] / [C])] defined in the present invention, and exhibit excellent delayed fracture resistance along with high strength. You can see that it is demonstrating.
  • test no. No. 15 has insufficient C content, so that it cannot secure a tensile strength of 1100 MPa or more by ordinary heat treatment.
  • Test No. No. 19 has an insufficient Mn content, and a tensile strength of 1100 MPa or more cannot be secured under normal heat treatment conditions.
  • Test No. No. 22 does not contain essential Ni and Cr, and therefore corrosion resistance deteriorates and delayed fracture resistance is low (delayed fracture strength ratio 1 is 0.62, delayed fracture strength ratio 2 is 0.2. 39).
  • Fig. 3 shows test no. 1 to 14 (examples of the present invention) and Test No. 15 is a graph showing the values of corrosion weight loss and delayed fracture strength ratio 2 in an example (comparative example) in which corrosion resistance and delayed fracture resistance tests were carried out among 15-24. From FIG. 3, it can be seen that the inventive example has a smaller corrosion weight loss than the comparative example and has a high delayed fracture strength ratio 2 measured using a notched test piece, that is, excellent delayed fracture resistance. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The present invention provides, without adding an expensive alloying element such as Cr or Mo in a large amount, a boron-containing steel for high-strength bolts which combines excellent delayed fracture resistance and high strength of 1100MPa or more. This boron-containing steel contains 0.20 to less than 0.40% of C, 0.20 to 1.50% of Si, 0.30 to 2.0% of Mn, up to 0.03% (exclusive of 0%) of P, up to 0.03% (exclusive of 0%)of S, 0.05 to 1.0% of Ni, 0.01 to 1.50% of Cr, up to 1.0% (inclusive of 0%) of Cu, 0.01 to 0.10% of Al, 0.01 to 0.1% of Ti, 0.0003 to 0.0050% of B and 0.002 to 0.010% of N, and contains one ore more elements selected from the group consisting of Cu, Ni and Cr in a total amount of 0.10 to 3.0% with the balance consisting of iron and unavoidable impurities and the [Si]/[C] ratio being 1.0 or more. Further, the boron-containing steel has a ferrite/pearlite dual-phase structure.

Description

耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼および高強度ボルトBoron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
 本発明は、自動車や各種産業機械等に用いられるボルト用鋼、およびこのボルト用鋼を用いて得られる高強度ボルトに関し、特に引張強さが1100MPa以上であっても優れた耐遅れ破壊性を発揮するボロン添加高強度ボルト用鋼および高強度ボルトに関するものである。 The present invention relates to a steel for bolts used in automobiles, various industrial machines, and the like, and a high-strength bolt obtained by using this steel for bolts, and particularly has excellent delayed fracture resistance even when the tensile strength is 1100 MPa or more. The present invention relates to a boron-added high-strength bolt steel and a high-strength bolt.
 現在、引張強さが1100MPaまでのボルトは、ボロン添加鋼への移行による低廉化が進められている。一方、引張強さが1100MPa以上の高強度ボルトには、クロムモリブデン鋼(JIS G 4053 SCM等)の規格鋼が依然として多用されている。この規格鋼には、CrやMo等の高価な合金元素が多量に添加されているため、鋼材コスト低減の要請に伴い、CrやMoを低減した、上記クロムモリブデン鋼の代替鋼への要望が高まっている。しかしながら、合金元素を単純に低減するだけでは、強度の確保が困難となる。 Currently, bolts with a tensile strength of up to 1100 MPa are being made cheaper by shifting to boron-added steel. On the other hand, standard steel such as chromium molybdenum steel (JIS G 4053, SCM, etc.) is still frequently used for high strength bolts having a tensile strength of 1100 MPa or more. This standard steel contains a large amount of high-priced alloy elements such as Cr and Mo. Therefore, there is a demand for an alternative steel of the above chromium molybdenum steel with reduced Cr and Mo in response to a request for reducing the steel material cost. It is growing. However, it is difficult to ensure the strength simply by reducing the alloy elements.
 そこで、ボロン添加による焼入れ性向上効果を利用したボロン添加鋼を高強度ボルトの素材として用いることが検討されている。しかしながら、強度上昇に伴って耐遅れ破壊性が大幅に悪化するため、遅れ破壊の生じやすい使用環境の厳しい部位への適用は困難である。 Therefore, the use of boron-added steel, which uses the effect of improving hardenability by adding boron, as a material for high-strength bolts has been studied. However, since the delayed fracture resistance greatly deteriorates as the strength increases, it is difficult to apply to a severe part of the usage environment where delayed fracture is likely to occur.
 耐遅れ破壊性を改善するための技術が、これまでにも様々提案されている。例えば、特許文献1では、ボロン添加鋼に所定量のCuを含有させることによって、耐食性を向上させ、腐食反応時に発生する水素を低減することで鋼中への水素の侵入を抑制する技術が提案されている。しかしながら、Cuを含有させるだけでは、耐食性の確保は難しい状況にある。 Various technologies for improving delayed fracture resistance have been proposed so far. For example, Patent Document 1 proposes a technique for improving the corrosion resistance by adding a predetermined amount of Cu to the boron-added steel and reducing the hydrogen generated during the corrosion reaction to suppress the penetration of hydrogen into the steel. Has been. However, it is difficult to ensure corrosion resistance only by containing Cu.
 また特許文献2や特許文献3では、結晶粒微細化によって耐遅れ破壊性の向上を図っているが、結晶粒微細化の効果のみでは更なる過酷環境下への適用は困難である。 In Patent Document 2 and Patent Document 3, the resistance to delayed fracture is improved by refining crystal grains, but it is difficult to apply to severe environments only by the effect of refining crystal grains.
 特許文献4は、遅れ破壊の評価方法と耐遅れ破壊性に優れた鋼材に関するものであり、炭素当量が規定され、かつS量を低減した鋼材が示されている。しかし、極低硫黄を図るだけでは遅れ破壊の発生を完全に抑制することは困難である。また、硫黄を極端に低減する必要があるため製造コストの増大を招く可能性もある。 Patent Document 4 relates to a steel material excellent in delayed fracture evaluation method and delayed fracture resistance, and shows a steel material in which the carbon equivalent is defined and the amount of S is reduced. However, it is difficult to completely suppress the occurrence of delayed fracture only by making extremely low sulfur. Moreover, since it is necessary to reduce sulfur extremely, there exists a possibility of causing the increase in manufacturing cost.
 一方、特許文献5は、靭性および耐遅れ破壊性に優れた耐摩耗鋼材に関する技術である。この特許文献5に開示の技術では、圧延後にそのまま焼入れを行い、また焼入れを特定の温度域で途中停止する必要があるため、工程が複雑化し、製造コストの増大を招く可能性がある。 On the other hand, Patent Document 5 is a technique related to wear-resistant steel having excellent toughness and delayed fracture resistance. In the technique disclosed in Patent Document 5, since it is necessary to perform quenching as it is after rolling and to stop quenching in a specific temperature range, the process becomes complicated and there is a possibility that the manufacturing cost increases.
 また特許文献6は、靭性および耐遅れ破壊性に優れた耐摩耗鋼材ならびにその製造方法に関するものである。この特許文献6に開示の技術では、焼入れ焼戻し後に加工する必要があるため、ボルトに転用した場合、ボルト成型が困難になるといった問題がある。更に、特許文献6で対象となる鋼材は板状であり、耐遅れ破壊性の評価も、切り欠きのない平板を用いて行っている。しかし、本発明で対象とするボルトは切り欠き部を有するため、この特許文献6に示される耐遅れ破壊性よりも、より厳しい基準で耐遅れ破壊性を評価する必要がある。 Patent Document 6 relates to a wear resistant steel material excellent in toughness and delayed fracture resistance, and a method for producing the same. In the technique disclosed in Patent Document 6, since it is necessary to process after quenching and tempering, there is a problem that when it is diverted to a bolt, it is difficult to mold the bolt. Furthermore, the steel material which becomes object by patent document 6 is plate shape, and the evaluation of delayed fracture resistance is also performed using the flat plate without a notch. However, since the bolt which is the subject of the present invention has a notch, it is necessary to evaluate the delayed fracture resistance based on a stricter standard than the delayed fracture resistance shown in Patent Document 6.
 上記の通り、耐遅れ破壊性を改善するためにこれまで提案されている技術は、いずれも強度、過酷環境下での耐遅れ破壊性や製造面で問題を有している。 As described above, all of the technologies proposed so far to improve delayed fracture resistance have problems in strength, delayed fracture resistance in harsh environments, and manufacturing.
特開2006-118003号公報JP 2006-118033 A 特許第3535754号公報Japanese Patent No. 3535754 特許第3490293号公報Japanese Patent No. 3490293 特許第4370991号公報Japanese Patent No. 4370991 特開2002-80930号公報JP 2002-80930 A 特開2002-115024号公報JP 2002-1105024 A
 本発明はこのような状況の下でなされたものであって、その目的は、CrやMo等の高価な合金元素を多量に添加せずとも、引張強さが1100MPa以上の高強度で、かつ優れた耐遅れ破壊性を示すボロン添加高強度ボルト用鋼、およびこのようなボロン添加高強度ボルト用鋼からなる高強度ボルトを提供することにある。 The present invention has been made under such circumstances, and its purpose is to have a high tensile strength of 1100 MPa or more without adding a large amount of expensive alloy elements such as Cr and Mo, and An object of the present invention is to provide a boron-added high-strength bolt steel exhibiting excellent delayed fracture resistance, and a high-strength bolt made of such a boron-added high-strength bolt steel.
 上記目的を達成することのできた本発明のボロン添加高強度ボルト用鋼は、C:0.20~0.40%未満(0.20%以上0.40%未満)(%は質量%の意味、以下同じ)、Si:0.20~1.50%、Mn:0.30~2.0%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.05~1.0%、Cr:0.01~1.50%、Cu:1.0%以下(0%を含む)、Al:0.01~0.10%、Ti:0.01~0.1%、B:0.0003~0.0050%およびN:0.002~0.010%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.10~3.0%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、組織が、フェライトとパーライトの複合組織(フェライト・パーライト組織)である点に要旨を有するものである。 The boron-added high-strength bolt steel of the present invention that has achieved the above-mentioned object is: C: 0.20 to less than 0.40% (0.20% to less than 0.40%) (% means mass%) The same shall apply hereinafter), Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03% or less (excluding 0%), S: 0.03% or less ( Ni: 0.05 to 1.0%, Cr: 0.01 to 1.50%, Cu: 1.0% or less (including 0%), Al: 0.01 to 0 .10%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.0050% and N: 0.002 to 0.010%, respectively, and a group consisting of Cu, Ni and Cr And a total of 0.10 to 3.0% selected from the group consisting of iron and unavoidable impurities, and a Si content [Si] The content [C] ratio ([Si] / [C]) is 1.0 or more and the structure is a composite structure of ferrite and pearlite (ferrite / pearlite structure). is there.
 また本発明には、ボロン添加高強度ボルト用鋼であって、C:0.20~0.40%未満、Si:0.20~1.50%、Mn:0.30~2.0%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.10~0.50%、Cr:0.03~0.80%、Cu:0.50%以下(0%を含む)、Al:0.01~0.10%、Ti:0.01~0.1%、B:0.0003~0.0050%およびN:0.002~0.010%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.15~1.5%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、組織が、フェライトとパーライトの複合組織(フェライト・パーライト組織)である点に要旨を有するものも含まれる。 Further, the present invention is a steel for boron added high-strength bolts, C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 2.0% , P: 0.03% or less (excluding 0%), S: 0.03% or less (not including 0%), Ni: 0.10 to 0.50%, Cr: 0.03 to 0.00. 80%, Cu: 0.50% or less (including 0%), Al: 0.01 to 0.10%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.0050% and N: 0.002 to 0.010% each, and one or more selected from the group consisting of Cu, Ni and Cr in total of 0.15 to 1.5%, the balance being iron and inevitable It is made of impurities, and the ratio of Si content [Si] to C content [C] ([Si] / [C]) is 1.0 or more, Also include those having the gist in that a composite structure of ferrite and pearlite (ferrite-pearlite structure).
 更に本発明には、ボロン添加高強度ボルト用鋼であって、C:0.20~0.40%未満、Si:0.20~1.50%、Mn:0.30~1.5%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.10~0.50%、Cr:0.03~0.80%、Cu:0.50%以下(0%を含む)、Al:0.02~0.05%、Ti:0.02~0.06%、B:0.0010~0.003%およびN:0.003~0.006%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.15~1.5%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、組織が、フェライトとパーライトの複合組織(フェライト・パーライト組織)である点に要旨を有するものも含まれる。 Further, the present invention relates to a steel for boron added high-strength bolts, C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 1.5% , P: 0.03% or less (excluding 0%), S: 0.03% or less (not including 0%), Ni: 0.10 to 0.50%, Cr: 0.03 to 0.00. 80%, Cu: 0.50% or less (including 0%), Al: 0.02-0.05%, Ti: 0.02-0.06%, B: 0.0010-0.003% and N: 0.003 to 0.006% each contained, and one or more selected from the group consisting of Cu, Ni and Cr in total of 0.15 to 1.5%, the balance being iron and inevitable It is made of impurities, and the ratio of Si content [Si] to C content [C] ([Si] / [C]) is 1.0 or more, Also include those having the gist in that a composite structure of ferrite and pearlite (ferrite-pearlite structure).
 上記本発明のボロン添加高強度ボルト用鋼は、必要によって、更に、Nb:0.01~0.1%およびV:0.01~0.1%よりなる群から選択される1種以上を含んでいてもよく、これらを含有させることによってボロン添加高強度ボルト用鋼の特性が更に改善される。 The boron-added high-strength bolt steel of the present invention may further contain at least one selected from the group consisting of Nb: 0.01 to 0.1% and V: 0.01 to 0.1%, if necessary. The characteristics of the steel for boron-added high-strength bolts can be further improved by including these.
 本発明の好ましい実施形態において、前記Siの含有量[Si]とCの含有量[C]の比([Si]/[C])は、(a)C量が0.20%以上0.25%未満のときは、2.0以上であり、(b)C量が0.25%以上0.29%未満のときは、1.5以上であり、(c)C量が0.29%以上0.40%未満のときは、1.0以上である。 In a preferred embodiment of the present invention, the ratio ([Si] / [C]) of the Si content [Si] and the C content [C] is (a) the C content is 0.20% or more and 0.00. When it is less than 25%, it is 2.0 or more. (B) When the C content is 0.25% or more and less than 0.29%, it is 1.5 or more. (C) The C content is 0.29. % Or more and less than 0.40% is 1.0 or more.
 また、上記目的を達成することのできた本発明の高強度ボルトとは、上記鋼材(ボロン添加高強度ボルト用鋼)を使用し、ボルト形状に成形加工した後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとした際の引張強さが1100MPa以上である点に要旨を有するものである。 In addition, the high-strength bolt of the present invention that has achieved the above object is the structure using the steel (boron-added high-strength bolt steel), formed into a bolt shape, and then subjected to quenching and tempering treatment. The point is that the tensile strength when tempered martensite is 1100 MPa or more.
 本発明においては、化学成分組成を厳密に規定すると共に、SiとCの含有量の比([Si]/[C])の値を適正な範囲に制御することによって、遅れ破壊の生じやすい過酷な環境下でも優れた耐遅れ破壊性を発揮するボロン添加高強度ボルト用鋼を実現することができる。また、このボロン添加高強度ボルト用鋼を用いて、耐遅れ破壊性に優れた高強度ボルトを実現することができる。 In the present invention, the chemical composition is strictly defined, and the ratio of the content ratio of Si and C ([Si] / [C]) is controlled within an appropriate range, so that severe fracture is likely to occur. It is possible to realize a boron-added high-strength bolt steel that exhibits excellent delayed fracture resistance even in a difficult environment. Moreover, the high strength bolt excellent in delayed fracture resistance is realizable using this boron addition steel for high strength bolts.
実施例で用いた試験片の外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece used in the Example. 比([Si]/[C])の値と遅れ破壊強度比2との関係を示すグラフである。It is a graph which shows the relationship between the value of ratio ([Si] / [C]) and delayed fracture strength ratio 2. 実施例における本発明例と比較例の腐食減量と遅れ破壊強度比2をグラフ化したものである。The corrosion weight loss and delayed fracture strength ratio 2 of the examples of the present invention and comparative examples in Examples are graphed.
 本発明者らは、MoやCr等の高価な合金元素を多量に添加することなく、引張強さが1100MPa以上の高強度を示し、かつこの様に高強度であっても、優れた耐遅れ破壊性を示すボロン添加鋼を得るべく、鋭意研究を重ねた。その結果、引張強さが1100MPa以上のボロン添加鋼では、合金元素を含有させるよりもC含有量を極力低減することが、耐遅れ破壊性の確保に非常に有効であることを見出した。Cの低減は強度不足につながるが、Si含有量をC含有量と同等以上[即ち、SiとCの含有量の比([Si]/[C])が1.0以上]とすることで、C含有量の低減による強度低下を十分担保できることが判明した。 The present inventors show high strength with a tensile strength of 1100 MPa or more without adding a large amount of expensive alloy elements such as Mo and Cr, and excellent delay resistance even at such high strength. In order to obtain a boron-added steel that exhibits destructive properties, we conducted extensive research. As a result, it has been found that, in a boron-added steel having a tensile strength of 1100 MPa or more, reducing the C content as much as possible rather than containing an alloy element is very effective in securing delayed fracture resistance. Although the reduction of C leads to insufficient strength, the Si content is equal to or higher than the C content [ie, the ratio of Si and C content ([Si] / [C]) is 1.0 or higher]. It was found that the strength reduction due to the reduction of the C content can be sufficiently secured.
 また、C含有量の低減によって耐食性も向上するが、過酷環境下で十分な耐遅れ破壊性を確保するためには、Cu,Ni,Cr等の合計含有量を制御することも有効であり、更に他の各化学成分を調整することで、1100MPa以上の高い引張強さでも優れた耐遅れ破壊性を有するボロン添加鋼が実現できることを見出し、本発明を完成した。尚、本発明の鋼材は、必要に応じてボルト成型前に球状化焼鈍処理を実施してもよい。 Moreover, although the corrosion resistance is improved by reducing the C content, it is also effective to control the total content of Cu, Ni, Cr, etc. in order to ensure sufficient delayed fracture resistance under harsh environments, Furthermore, by adjusting other chemical components, it has been found that a boron-added steel having excellent delayed fracture resistance can be realized even with a high tensile strength of 1100 MPa or more, and the present invention has been completed. In addition, the steel material of this invention may implement a spheroidizing annealing process before bolt shaping | molding as needed.
 Cは、鋼の強度を確保する上で有用な元素であるが、その含有量を増加させると鋼の靭性や耐食性が悪化し、遅れ破壊を引き起こしやすくなる。一方、Siも鋼の強度を確保する上で有用な元素であるが、遅れ破壊との関係は不明確であった。そこで本発明者らは、Siによる遅れ破壊への影響について調査した。その結果、Cの含有量よりもSiの含有量を多くすることで、1100MPa以上の引張強さと、過酷環境下での優れた耐遅れ破壊性を両立できたのである。 C is an element useful for ensuring the strength of the steel, but increasing its content deteriorates the toughness and corrosion resistance of the steel and tends to cause delayed fracture. On the other hand, Si is also an element useful for ensuring the strength of steel, but the relationship with delayed fracture was unclear. Therefore, the present inventors investigated the influence of Si on delayed fracture. As a result, by increasing the Si content over the C content, it was possible to achieve both a tensile strength of 1100 MPa or more and excellent delayed fracture resistance in a harsh environment.
 即ち、Cの単独添加のみで1100MPa以上を確保しようとすると、C量を増加させる必要がある。しかし、上述した通りC含有量を増加させると鋼の耐食性が悪化し、鋼表面での水素発生量が増加して、結果的に鋼に侵入する水素量も増加し、遅れ破壊が発生しやすくなる。上記C量を多く含む鋼の耐食性改善を図るべく、Cu,Ni,Cr等の耐食性向上元素を添加しても、マトリクスの耐食性が低いため、大きな改善効果は現れなかった。 That is, in order to secure 1100 MPa or more only by adding C alone, it is necessary to increase the amount of C. However, as described above, when the C content is increased, the corrosion resistance of the steel is deteriorated, the amount of hydrogen generated on the steel surface is increased, and as a result, the amount of hydrogen entering the steel is increased and delayed fracture is likely to occur. Become. Even when an element for improving the corrosion resistance such as Cu, Ni, Cr, etc. is added in order to improve the corrosion resistance of the steel containing a large amount of C, a large improvement effect does not appear because the corrosion resistance of the matrix is low.
 これに対して、CとSiの複合添加では、Siで強度を上げることができるため、相対的にCの含有量を減少させることができる。即ち、マトリクスのC含有量を低下し、鋼の耐食性にあまり影響を与えないSiで強度を担保することによって、優れた耐食性および耐遅れ破壊性と、1100MPa以上の引張強さを確保することが可能となったのである。また、マトリクスの耐食性を上げることで、Cu,Ni,Cr等の耐食性向上元素の効果が顕著に現れることが判明した。 On the other hand, the combined addition of C and Si can increase the strength with Si, so that the C content can be relatively reduced. That is, it is possible to ensure excellent corrosion resistance and delayed fracture resistance and tensile strength of 1100 MPa or more by lowering the C content of the matrix and ensuring the strength with Si that does not significantly affect the corrosion resistance of steel. It became possible. Further, it has been found that the effect of the corrosion resistance improving element such as Cu, Ni, Cr, etc. appears remarkably by increasing the corrosion resistance of the matrix.
 本発明のボロン添加ボルト用鋼は、上記の趣旨から、Siの含有量[Si](質量%)とCの含有量[C](質量%)の比([Si]/[C])が1.0以上を満たす必要がある。([Si]/[C])が1.0以上を満たすことによって、優れた耐遅れ破壊性を確保できる。上記比([Si]/[C])の値は、好ましくは2.0以上であり、より好ましくは3.0以上である。但し、上記比([Si]/[C])が1.0以上を満たしていても、化学成分組成が適正な範囲から外れる場合は、耐遅れ破壊性やその他の特性が劣化するような不都合が生じる。 The steel for boron-added bolts of the present invention has a ratio ([Si] / [C]) of the Si content [Si] (mass%) and the C content [C] (mass%) from the above purpose. It is necessary to satisfy 1.0 or more. When ([Si] / [C]) satisfies 1.0 or more, excellent delayed fracture resistance can be secured. The value of the ratio ([Si] / [C]) is preferably 2.0 or more, and more preferably 3.0 or more. However, even if the ratio ([Si] / [C]) satisfies 1.0 or more, if the chemical component composition is out of the proper range, the delayed fracture resistance and other characteristics deteriorate. Occurs.
 上記比([Si]/[C])の値は、Cの含有量に応じて、その適正な範囲を制御することが好ましい。具体的には、(a)C:0.20%以上0.25%未満のときには、比([Si]/[C])の値を2.0以上とし、(b)C:0.25%以上0.29%未満のときには、比([Si]/[C])の値を1.5以上とし、(c)C:0.29%以上(即ち、0.29%以上0.40%未満)のときには、比([Si]/[C])の値を1.0以上とすることが好ましい。 The value of the ratio ([Si] / [C]) is preferably controlled in an appropriate range according to the C content. Specifically, when (a) C: 0.20% or more and less than 0.25%, the ratio ([Si] / [C]) is set to 2.0 or more, and (b) C: 0.25. % Or more and less than 0.29%, the ratio ([Si] / [C]) is set to 1.5 or more, and (c) C: 0.29% or more (that is, 0.29% or more and 0.40). %), The ratio ([Si] / [C]) value is preferably 1.0 or more.
 また、ボルト用鋼としての基本的特性を満足させるため、鋼材に含まれるC,Si,Mn,P,S,Al,Ti,B,N,Cu,Ni,Cr等の成分を適切に調整する必要がある。これらの成分の範囲限定理由は、次の通りである。 Moreover, in order to satisfy the basic characteristics as steel for bolts, components such as C, Si, Mn, P, S, Al, Ti, B, N, Cu, Ni, and Cr contained in the steel are appropriately adjusted. There is a need. The reasons for limiting the ranges of these components are as follows.
 [C:0.20~0.40%未満(0.20%以上0.40%未満)]
 Cは、炭化物を形成すると共に、高強度鋼として必要な引張強さを確保する上で欠くことのできない元素である。こうした効果を発揮させるためには、0.20%以上含有させる必要がある。しかし、Cを過剰に含有させると、靭性低下や延性低下を招いて耐遅れ破壊性が劣化する。このようなCの悪影響を避けるためには、C含有量は0.40%未満とする必要がある。尚、C含有量の好ましい下限は0.22%であり、より好ましくは0.25%以上とするのが良い。また、C含有量の好ましい上限は0.35%であり、より好ましくは0.30%以下とするのが良い。
[C: 0.20 to less than 0.40% (0.20% or more and less than 0.40%)]
C is an element indispensable for forming carbides and securing the necessary tensile strength as high-strength steel. In order to exhibit such an effect, it is necessary to contain 0.20% or more. However, when C is contained excessively, the delayed fracture resistance is deteriorated due to a decrease in toughness and a decrease in ductility. In order to avoid such an adverse effect of C, the C content needs to be less than 0.40%. In addition, the minimum with preferable C content is 0.22%, It is good to set it as 0.25% or more more preferably. Moreover, the upper limit with preferable C content is 0.35%, It is good to set it as 0.30% or less more preferably.
 [Si:0.20~1.50%]
 Siは、溶製時の脱酸剤として作用すると共に、マトリクスを強化する固溶元素として必要な元素である。Siを0.20%以上含有させることによって、十分な強度を確保できる。しかしながら、Si量が1.50%を超えて過剰に含まれると、球状化焼鈍を実施しても鋼材の冷間加工性が低下すると共に、焼入れ(熱処理)時の粒界酸化を助長して耐遅れ破壊性を劣化させる。尚、Si含有量の好ましい下限は0.3%であり、より好ましくは0.4%以上とするのが良い。また、Si含有量の好ましい上限は1.0%であり、より好ましくは0.8%以下とするのが良い。
[Si: 0.20 to 1.50%]
Si is an element necessary as a solid solution element that acts as a deoxidizer during melting and strengthens the matrix. By containing 0.20% or more of Si, sufficient strength can be secured. However, if the Si content exceeds 1.50% and is excessively contained, the cold workability of the steel material is lowered even when spheroidizing annealing is performed, and the grain boundary oxidation during quenching (heat treatment) is promoted. Deteriorates delayed fracture resistance. In addition, the minimum with preferable Si content is 0.3%, More preferably, it is good to set it as 0.4% or more. Moreover, the upper limit with preferable Si content is 1.0%, It is good to set it as 0.8% or less more preferably.
 [Mn:0.30~2.0%]
 Mnは焼入れ性向上元素であり、高強度化を達成する上で重要な元素である。Mnは0.30%以上含有させることで、その効果を発揮させることができる。しかしながら、Mn含有量が過剰になると、粒界への偏析を助長して粒界強度が低下し、耐遅れ破壊性が却って低下するため、2.0%を上限とした。尚、Mn含有量の好ましい下限は0.4%であり、より好ましくは0.6%以上とするのが良い。また、Mn含有量の好ましい上限は1.5%であり、より好ましくは1.0%以下とするのが良い。
[Mn: 0.30 to 2.0%]
Mn is an element that improves hardenability, and is an important element for achieving high strength. The effect can be exhibited by containing 0.30% or more of Mn. However, if the Mn content is excessive, segregation to the grain boundary is promoted, the grain boundary strength is lowered, and the delayed fracture resistance is lowered, so 2.0% was made the upper limit. In addition, the minimum with preferable Mn content is 0.4%, It is good to set it as 0.6% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.5%, It is good to set it as 1.0% or less more preferably.
 [P:0.03%以下(0%を含まない)]
 Pは不純物として含まれるが、過剰に存在すると粒界偏析を起こして粒界強度を低下させて、遅れ破壊特性を悪化させる。そのため、P含有量の上限は0.03%とした。尚、P含有量の好ましい上限は0.01%であり、より好ましくは0.005%以下とするのが良い。
[P: 0.03% or less (excluding 0%)]
P is contained as an impurity, but if it is present in excess, it causes segregation at the grain boundary, lowers the grain boundary strength, and deteriorates the delayed fracture characteristics. Therefore, the upper limit of the P content is 0.03%. In addition, the upper limit with preferable P content is 0.01%, It is good to set it as 0.005% or less more preferably.
 [S:0.03%以下(0%を含まない)]
 Sが過剰に存在すると、硫化物が結晶粒界に偏析し、粒界強度の低下を招いて耐遅れ破壊性が低下する。そのため、S含有量の上限を0.03%とした。尚、S含有量の好ましい上限は0.01%であり、より好ましくは0.006%以下とするのが良い。
[S: 0.03% or less (excluding 0%)]
If S is present in excess, sulfides segregate at the grain boundaries, leading to a decrease in grain boundary strength and delayed fracture resistance. Therefore, the upper limit of the S content is set to 0.03%. In addition, the upper limit with preferable S content is 0.01%, It is good to set it as 0.006% or less more preferably.
 [Ni:0.05~1.0%]
 Niは耐食性向上元素であり、0.05%以上添加することで効果を発揮する。しかしながら、多量に添加すると鋼材コストの増大を招くため、上限は1.0%とする。尚、Ni含有量の好ましい下限は0.10%であり、より好ましくは0.15%以上である。また、Ni含有量の好ましい上限は0.80%であり、より好ましい上限は0.50%である。
[Ni: 0.05 to 1.0%]
Ni is an element that improves corrosion resistance, and exhibits an effect when added in an amount of 0.05% or more. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.0%. In addition, the minimum with preferable Ni content is 0.10%, More preferably, it is 0.15% or more. Moreover, the upper limit with preferable Ni content is 0.80%, and a more preferable upper limit is 0.50%.
 [Cr:0.01~1.50%]
 Crは耐食性向上元素であり、0.01%以上添加することで効果を発揮する。しかしながら、多量に添加すると鋼材コストの増大を招くため、上限は1.50%とする。尚、Cr含有量の好ましい下限は0.03%であり、より好ましい下限は0.05%であり、更に好ましい下限は0.10%である。また、Cr含有量の好ましい上限は1.0%であり、より好ましい上限は0.80%である。
[Cr: 0.01 to 1.50%]
Cr is an element for improving corrosion resistance, and exhibits an effect by adding 0.01% or more. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.50%. The preferable lower limit of the Cr content is 0.03%, the more preferable lower limit is 0.05%, and the still more preferable lower limit is 0.10%. Moreover, the upper limit with preferable Cr content is 1.0%, and a more preferable upper limit is 0.80%.
 [Cu:1.0%以下(0%を含む)]
 Cuは耐食性向上元素であり、この効果を発揮させるには、0.05%以上含有させることが好ましい。しかし、多量に添加すると鋼材コストの増大を招くため、上限は1.0%とする。尚、Cu含有量の好ましい上限は0.80%であり、より好ましい上限は0.50%である。
[Cu: 1.0% or less (including 0%)]
Cu is an element for improving corrosion resistance, and in order to exert this effect, 0.05% or more is preferably contained. However, if added in a large amount, the steel material cost increases, so the upper limit is made 1.0%. In addition, the upper limit with preferable Cu content is 0.80%, and a more preferable upper limit is 0.50%.
 [Al:0.01~0.10%]
 Alは、鋼の脱酸に有効な元素であり、且つAlNを形成することによって、オーステナイト粒の粗大化を防止することができる。こうした効果を発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が0.10%を超えて過剰になっても、その効果が飽和する。尚、Al含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上とするのが良い。また、Al含有量の好ましい上限は0.08%であり、より好ましくは0.05%以下とするのが良い。
[Al: 0.01 to 0.10%]
Al is an element effective for deoxidation of steel, and by forming AlN, austenite grains can be prevented from becoming coarse. In order to exert such effects, the Al content needs to be 0.01% or more. However, even if the Al content exceeds 0.10% and becomes excessive, the effect is saturated. In addition, the minimum with preferable Al content is 0.02%, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable Al content is 0.08%, More preferably, it is good to set it as 0.05% or less.
 [Ti:0.01~0.1%]
 Tiは、鋼中のNを固定するとともに、TiCを析出させて耐遅れ破壊性を向上させるのに有効な元素である。また、Tiの窒化物や炭化物は、結晶粒の微細化に有用であり、この結晶粒の微細化が耐遅れ破壊性の更なる向上に寄与する。これらの効果を有効に発揮させるためには、Tiは0.01%以上含有させる必要がある。しかしながら、Ti含有量が過剰になって0.1%を超えると、加工性の低下を招く。尚、Ti含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上とするのが良い。また、Ti含有量の好ましい上限は0.08%であり、より好ましくは0.06%以下、更に好ましくは0.05%以下とするのが良い。
[Ti: 0.01 to 0.1%]
Ti is an element effective for fixing N in steel and precipitating TiC to improve delayed fracture resistance. Ti nitrides and carbides are useful for refining crystal grains, and the refining of crystal grains contributes to further improvement of delayed fracture resistance. In order to exhibit these effects effectively, it is necessary to contain Ti 0.01% or more. However, if the Ti content is excessive and exceeds 0.1%, workability is reduced. In addition, the minimum with preferable Ti content is 0.02%, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable Ti content is 0.08%, More preferably, it is 0.06% or less, More preferably, it is good to set it as 0.05% or less.
 [B:0.0003~0.0050%]
 Bは、鋼の焼入れ性を向上させる上で有効な元素であり、その効果を発揮させるためには0.0003%以上含有させる必要がある。しかしながら、B含有量が過剰になって0.0050%を超えると靭性が却って低下する。尚、B含有量の好ましい下限は0.0005%であり、より好ましくは0.0010%以上とするのが良い。また、B含有量の好ましい上限は0.004%であり、より好ましくは0.003%以下とするのが良い。
[B: 0.0003 to 0.0050%]
B is an element effective in improving the hardenability of steel, and in order to exhibit the effect, it is necessary to contain 0.0003% or more. However, if the B content becomes excessive and exceeds 0.0050%, the toughness is lowered instead. In addition, the minimum with preferable B content is 0.0005%, More preferably, it is good to set it as 0.0010% or more. Moreover, the upper limit with preferable B content is 0.004%, More preferably, it is good to set it as 0.003% or less.
 [N:0.002~0.010%]
 Nは、溶製後の凝固段階で、Tiと結合してTiNを形成し、結晶粒の微細化を図って耐遅れ破壊性を向上させる効果を有する。こうした効果は、Nの含有量が0.002%以上で有効に発揮される。しかしながら、上記TiNが多量に形成されると、1300℃程度の加熱ではTiNが溶解せず、耐遅れ破壊性の向上に有用なTi炭化物の形成が阻害される。また過剰のNは、遅れ破壊特性に対し却って有害となる。特にN含有量が0.010%を超えて過剰になると、遅れ破壊特性を著しく低下させる。尚、N含有量の好ましい下限は0.003%であり、より好ましくは0.004%以上とするのが良い。また、N含有量の好ましい上限は0.008%であり、より好ましくは0.006%以下とするのが良い。
[N: 0.002 to 0.010%]
N combines with Ti to form TiN in the solidification stage after melting, and has the effect of improving the delayed fracture resistance by miniaturizing crystal grains. Such an effect is effectively exhibited when the N content is 0.002% or more. However, when TiN is formed in a large amount, TiN is not dissolved by heating at about 1300 ° C., and formation of Ti carbide useful for improving delayed fracture resistance is inhibited. Excess N is also harmful to delayed fracture characteristics. In particular, if the N content exceeds 0.010% and becomes excessive, the delayed fracture characteristics are significantly reduced. In addition, the minimum with preferable N content is 0.003%, It is good to set it as 0.004% or more more preferably. Moreover, the upper limit with preferable N content is 0.008%, More preferably, it is good to set it as 0.006% or less.
 [Cu,NiおよびCrよりなる群から選ばれる1種以上:合計で0.10~3.0%]
 Cu,NiおよびCrは、いずれも耐食性向上元素であり、それらの合計の含有量を0.10%以上にすることで,鋼中への水素侵入を抑制し、耐遅れ破壊性を向上できる。しかしながら、これらの元素が過剰になると,鋼材コストの増大を招くため、合計で3.0%以下とする必要がある。尚、これらの元素の合計含有量の好ましい下限は0.15%であり、より好ましい下限は0.20%である。また、これらの元素の合計含有量の好ましい上限は2.0%であり、より好ましい上限は1.5%である。
[One or more selected from the group consisting of Cu, Ni and Cr: 0.10 to 3.0% in total]
Cu, Ni and Cr are all elements that improve corrosion resistance, and by making their total content 0.10% or more, hydrogen penetration into the steel can be suppressed and delayed fracture resistance can be improved. However, when these elements become excessive, the steel material cost increases, so the total amount needs to be 3.0% or less. In addition, the minimum with preferable total content of these elements is 0.15%, and a more preferable minimum is 0.20%. Moreover, the upper limit with preferable total content of these elements is 2.0%, and a more preferable upper limit is 1.5%.
 本発明のボロン添加高強度ボルト用鋼の基本成分は上記の通りであり、残部は鉄および不可避的不純物からなる。 The basic components of the steel for boron-added high-strength bolts of the present invention are as described above, with the balance being iron and inevitable impurities.
 また、本発明のボロン添加高強度ボルト用鋼には、上記成分の他に必要によって、更に、NbやVを含有させることも有効である。これらの元素を含有させるときの適正な範囲および作用は下記の通りである。 In addition to the above components, it is also effective to further contain Nb or V in the boron-added high-strength bolt steel of the present invention, if necessary. Appropriate ranges and actions when these elements are contained are as follows.
 [Nb:0.01~0.1%およびV:0.01~0.1%よりなる群から選択される1種以上]
 NbおよびVは、結晶粒の微細化や耐遅れ破壊性の向上に有効な元素である。こうした効果を発揮させるためには、これらの元素の含有量を夫々0.01%以上とすることが好ましい。しかしながら、これらの元素を過剰に含有させると、熱間圧延材の強度が必要以上に高くなる。また鋼材コストの増大も招く。よって、その上限を夫々0.1%とした。尚、これらの元素の含有量の好ましい下限は、夫々0.02%であり、より好ましくは0.03%以上とするのが良い。また、含有量の好ましい上限は夫々0.08%であり、より好ましくは0.06%以下とするのが良い。
[One or more selected from the group consisting of Nb: 0.01 to 0.1% and V: 0.01 to 0.1%]
Nb and V are effective elements for refining crystal grains and improving delayed fracture resistance. In order to exert such an effect, the content of these elements is preferably set to 0.01% or more. However, when these elements are contained excessively, the strength of the hot rolled material becomes higher than necessary. Moreover, the steel material cost also increases. Therefore, the upper limit was made 0.1% respectively. In addition, the minimum with preferable content of these elements is 0.02%, respectively, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable content is 0.08%, respectively, More preferably, it is good to set it as 0.06% or less.
 上記化学成分組成を有するボロン添加高強度ボルト用鋼は、圧延後の組織が基本的にフェライトとパーライトの複合組織(「フェライト・パーライト」と表示)となる。この鋼材を用い、必要により球状化処理を実施し或は実施せずに、ボルト形状に成形加工し、その後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとすることによって、所定の引張強さを確保できると共に、優れた耐遅れ破壊性を有するボルトが得られる。このときの焼入れおよび焼戻し処理の適正な条件は、下記の通りである。 In the steel for boron-added high-strength bolts having the above chemical composition, the structure after rolling is basically a composite structure of ferrite and pearlite (indicated as “ferrite / pearlite”). Using this steel material, it is formed into a bolt shape with or without spheroidizing treatment if necessary, and then subjected to quenching and tempering treatment to make the structure tempered martensite, thereby obtaining a predetermined tensile strength. Thus, a bolt having excellent delayed fracture resistance can be obtained. Appropriate conditions for quenching and tempering at this time are as follows.
 焼入れ時の加熱では、安定的にオーステナイト化処理するために、850℃以上の加熱が必要である。しかしながら、960℃を超えるような高温に加熱すると、結晶粒が粗大化し、遅れ破壊特性を却って劣化させる原因となる。従って、結晶粒粗大化を防止するため、960℃以下に加熱して焼入れすることが有用である。 In the heating at the time of quenching, heating at 850 ° C. or higher is necessary for stable austenitization treatment. However, when heated to a high temperature exceeding 960 ° C., the crystal grains become coarse, which causes deterioration in delayed fracture characteristics. Therefore, in order to prevent coarsening of crystal grains, it is useful to heat and quench at 960 ° C. or lower.
 焼入れしたままのボルトは、靭性および延性が低く、そのままの状態ではボルト製品にならないので焼戻し処理を施す必要がある。そのためには、少なくとも200℃以上の温度で焼戻し処理することが有効である。一方、焼戻し温度が600℃を超えると、上記化学成分組成の鋼材では1100MPa以上の引張強さを確保することができなくなる。また、旧オーステナイト結晶粒径が微細化するほど耐遅れ破壊性は向上する。こうした効果を発揮させるには、結晶粒度番号(JIS G 0551)が8以上の組織とすることが好ましい。 The as-quenched bolts have low toughness and ductility and do not become bolt products as they are, so they need to be tempered. For this purpose, it is effective to perform a tempering treatment at a temperature of at least 200 ° C. On the other hand, when the tempering temperature exceeds 600 ° C., the steel material having the above chemical composition cannot secure a tensile strength of 1100 MPa or more. Moreover, the delayed fracture resistance improves as the prior austenite crystal grain size becomes finer. In order to exert such an effect, it is preferable that the grain size number (JIS G 0551) has a structure of 8 or more.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
 下記表1に示す化学成分組成の鋼材(試験No.1~24)を溶製した後、圧延を行って、直径:12mmφの線材とした。各線材の圧延後の組織を表1に併記する。その後、870℃から焼入れを行い、引張強さが1100MPa以上を確保できる範囲で焼戻しを行った後、引張試験を実施した。また、図1に示す切り欠き付き試験片を用いて耐食性と耐遅れ破壊性を評価した。尚、引張試験では、軸部の切り欠きがないものを用いたが、遅れ破壊試験においては、ねじ部の応力集中を模擬できるように、上述の通り切り欠き付きの試験片を用いた。また遅れ破壊試験では、更に、図1の試験片の切り欠きのないものを用いても評価した。 The steel materials (test Nos. 1 to 24) having the chemical composition shown in Table 1 below were melted and then rolled into a wire having a diameter of 12 mmφ. Table 1 shows the structure of each wire after rolling. Thereafter, quenching was performed from 870 ° C., and tempering was performed within a range in which a tensile strength of 1100 MPa or more could be secured, and then a tensile test was performed. Moreover, corrosion resistance and delayed fracture resistance were evaluated using the test piece with a notch shown in FIG. In the tensile test, the one having no notch in the shaft portion was used, but in the delayed fracture test, the test piece with the notch was used as described above so as to simulate the stress concentration of the screw portion. Further, in the delayed fracture test, the test piece of FIG. 1 having no notch was also evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 耐食性は、15%HClに試験片を30分浸漬した際の浸漬前後の腐食減量によって評価した。また、耐遅れ破壊性は、15%HClに試験片を30分浸漬し、水洗および乾燥した後、一定荷重を負荷し、100時間以上破断しない荷重を比較することで実施した。このとき、酸浸漬後に100時間以上破断しない荷重を、酸浸漬なしで引張試験した際の最大荷重で除した値を遅れ破壊強度比として定義し、この値(遅れ破壊強度比)が0.70以上のものを合格と判断した。それらの結果を、焼入れおよび焼戻し後の組織と共に、下記表2に示す。表2において、「遅れ破壊強度比1」は、切り欠きのない試験片を用いて耐遅れ破壊性を評価した結果を示しており、「遅れ破壊強度比2」は、切り欠き付き試験片を用いて耐遅れ破壊性を評価した結果を示している。尚、所定の引張強さ(1100MPa以上の引張強さ)が得られなかった例については、耐食性および耐遅れ破壊性の試験を実施していない。また、これらの結果に基づき、比([Si]/[C])の値と遅れ破壊強度比2との関係を図2に示す。 Corrosion resistance was evaluated by corrosion weight loss before and after immersion when the test piece was immersed in 15% HCl for 30 minutes. Delayed fracture resistance was implemented by immersing the test piece in 15% HCl for 30 minutes, washing with water and drying, then applying a constant load, and comparing the load that did not break for more than 100 hours. At this time, a value obtained by dividing the load that does not break for 100 hours or more after acid immersion by the maximum load when the tensile test is performed without acid immersion is defined as a delayed fracture strength ratio, and this value (delayed fracture strength ratio) is 0.70. The above was judged as acceptable. The results are shown in Table 2 below together with the structures after quenching and tempering. In Table 2, “Delayed Fracture Strength Ratio 1” indicates the result of evaluation of delayed fracture resistance using a test piece without a notch, and “Delayed Fracture Strength Ratio 2” indicates a test piece with a notch. It shows the results of evaluating delayed fracture resistance. In addition, about the example where predetermined | prescribed tensile strength (tensile strength of 1100 Mpa or more) was not acquired, the test of corrosion resistance and delayed fracture resistance was not implemented. Further, based on these results, the relationship between the value of the ratio ([Si] / [C]) and the delayed fracture strength ratio 2 is shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの結果から、次の様に考察できる。試験No.1~14は、本発明で規定する要件[化学成分組成および比([Si]/[C])]を満足する例(本発明鋼)であり、高い強度と共に、優れた耐遅れ破壊性を発揮していることが分かる。 From these results, we can consider as follows. Test No. 1 to 14 are examples (the steel of the present invention) that satisfy the requirements [chemical composition and ratio ([Si] / [C])] defined in the present invention, and exhibit excellent delayed fracture resistance along with high strength. You can see that it is demonstrating.
 これに対し、試験No.15は、C含有量が不足しているので、通常の熱処理では1100MPa以上の引張強さを確保できない。 In contrast, test no. No. 15 has insufficient C content, so that it cannot secure a tensile strength of 1100 MPa or more by ordinary heat treatment.
 試験No.16は、C含有量が過剰であるので、延性低下により遅れ破壊強度比が低下している(切り欠きのない試験片を用いた場合は、耐遅れ破壊性に優れた結果が得られているが、切り欠き付き試験片を用いた場合は、耐遅れ破壊性が著しく劣っている)。 Test No. No. 16, since the C content is excessive, the ratio of delayed fracture strength is reduced due to a decrease in ductility (when using a test piece without a notch, a result excellent in delayed fracture resistance is obtained. However, when a notched specimen is used, the delayed fracture resistance is remarkably inferior).
 試験No.17は、Si含有量が不足しているため、[Si]/[C]の比が1.0未満であり、通常の熱処理では1100MPa以上の引張強さを確保できていない。 Test No. In No. 17, since the Si content is insufficient, the ratio of [Si] / [C] is less than 1.0, and a tensile strength of 1100 MPa or more cannot be secured by ordinary heat treatment.
 試験No.18は、個々の元素の含有量は満足しているものの、[Si]/[C]の比が1.0未満のため、鋼材の耐食性が悪化して遅れ破壊強度比(特に遅れ破壊強度比2)が低下している。 Test No. No. 18, although the content of each element is satisfactory, since the ratio of [Si] / [C] is less than 1.0, the corrosion resistance of the steel material deteriorates and the delayed fracture strength ratio (particularly the delayed fracture strength ratio) 2) has fallen.
 試験No.19は、Mn含有量が不足しており、通常の熱処理条件では1100MPa以上の引張強さを確保できていない。 Test No. No. 19 has an insufficient Mn content, and a tensile strength of 1100 MPa or more cannot be secured under normal heat treatment conditions.
 試験No.20は、Mn含有量が過剰になっているので、偏析によって粒界強度が低下し、耐遅れ破壊性が悪くなっている(遅れ破壊強度比2が0.32)。 Test No. In No. 20, since the Mn content is excessive, the grain boundary strength is reduced due to segregation, and the delayed fracture resistance is deteriorated (delayed fracture strength ratio 2 is 0.32).
 試験No.21は、Niが含まれていないため、耐食性が悪化し、耐遅れ破壊性が低くなっている(遅れ破壊強度比1が0.64で、遅れ破壊強度比2が0.33)。 Test No. Since No. 21 does not contain Ni, the corrosion resistance is deteriorated and the delayed fracture resistance is low (the delayed fracture strength ratio 1 is 0.64 and the delayed fracture strength ratio 2 is 0.33).
 試験No.22は、必須であるNiとCrを含んでおらず、そのため耐食性が悪化し、耐遅れ破壊性が低くなっている(遅れ破壊強度比1が0.62で、遅れ破壊強度比2が0.39)。 Test No. No. 22 does not contain essential Ni and Cr, and therefore corrosion resistance deteriorates and delayed fracture resistance is low (delayed fracture strength ratio 1 is 0.62, delayed fracture strength ratio 2 is 0.2. 39).
 試験No.23は、必須であるCrを含んでいないため、耐食性が悪化し、耐遅れ破壊性が低くなっている(遅れ破壊強度比2が0.41)。 Test No. Since No. 23 does not contain essential Cr, corrosion resistance deteriorates and delayed fracture resistance is low (delayed fracture strength ratio 2 is 0.41).
 試験No.24は、Cu、NiおよびCrの合計含有量が0.10%未満であるため、耐食性が十分でなく、耐遅れ破壊性が低くなっている(遅れ破壊強度比2が0.62)。 Test No. In No. 24, since the total content of Cu, Ni and Cr is less than 0.10%, the corrosion resistance is not sufficient, and the delayed fracture resistance is low (the delayed fracture strength ratio 2 is 0.62).
 また表2の試験No.15~24のうち、耐遅れ破壊性を評価したものについて、遅れ破壊強度比1は0.70以上であるが、遅れ破壊強度比2は0.70に満たない例が多くみられる。このことから、特許文献6のように耐遅れ破壊性の評価に切り欠きのない試験片を用いた場合には耐遅れ破壊性に優れている、と評価される場合であっても、本発明のようにボルトを想定して切り欠きを有する試験片を用いた場合には、耐遅れ破壊性に劣る場合があるといえる。つまり、本発明のボルト用鋼の耐遅れ破壊性は、より厳しい条件で評価しているといえる。 Also, test No. in Table 2 Among 15 to 24, the delayed fracture strength ratio 1 of those evaluated for delayed fracture resistance is 0.70 or more, but the delayed fracture strength ratio 2 is often less than 0.70. From this, even when it is evaluated that it is excellent in delayed fracture resistance when a test piece without a notch is used for evaluation of delayed fracture resistance as in Patent Document 6, the present invention Thus, when a test piece having a notch is used assuming a bolt, it can be said that the delayed fracture resistance may be inferior. That is, it can be said that the delayed fracture resistance of the bolt steel of the present invention is evaluated under more severe conditions.
 図3は、試験No.1~14(本発明例)と、試験No.15~24のうち耐食性および耐遅れ破壊性の試験を実施した例(比較例)での、腐食減量と遅れ破壊強度比2の値をグラフ化したものである。この図3から、本発明例は比較例と比べて、腐食減量が小さく、切り欠き付き試験片を用いて測定した遅れ破壊強度比2が高い、即ち、耐遅れ破壊性に優れていることがわかる。 Fig. 3 shows test no. 1 to 14 (examples of the present invention) and Test No. 15 is a graph showing the values of corrosion weight loss and delayed fracture strength ratio 2 in an example (comparative example) in which corrosion resistance and delayed fracture resistance tests were carried out among 15-24. From FIG. 3, it can be seen that the inventive example has a smaller corrosion weight loss than the comparative example and has a high delayed fracture strength ratio 2 measured using a notched test piece, that is, excellent delayed fracture resistance. Recognize.

Claims (8)

  1.  C:0.20~0.40%未満(%は質量%の意味、以下同じ)、Si:0.20~1.50%、Mn:0.30~2.0%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.05~1.0%、Cr:0.01~1.50%、Cu:1.0%以下(0%を含む)、Al:0.01~0.10%、Ti:0.01~0.1%、B:0.0003~0.0050%およびN:0.002~0.010%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.10~3.0%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、組織が、フェライトとパーライトの複合組織であることを特徴とする耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼。 C: 0.20 to less than 0.40% (% means mass%, the same shall apply hereinafter), Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03 % Or less (excluding 0%), S: 0.03% or less (not including 0%), Ni: 0.05 to 1.0%, Cr: 0.01 to 1.50%, Cu: 1 0.0% or less (including 0%), Al: 0.01 to 0.10%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.0050%, and N: 0.002 to In addition to each containing 0.010%, one or more selected from the group consisting of Cu, Ni and Cr is contained in a total of 0.10 to 3.0%, the balance being iron and inevitable impurities, and Si The ratio of [Si] to C content [C] ([Si] / [C]) is 1.0 or more, and the structure is a composite of ferrite and pearlite. Delayed fracture resistance excellent boron-added high-strength bolts for steel, which is a tissue.
  2.  更に、Nb:0.01~0.1%およびV:0.01~0.1%よりなる群から選択される1種以上を含有するものである請求項1に記載のボロン添加高強度ボルト用鋼。 The boron-added high-strength bolt according to claim 1, further comprising at least one selected from the group consisting of Nb: 0.01 to 0.1% and V: 0.01 to 0.1%. Steel.
  3.  C:0.20~0.40%未満、Si:0.20~1.50%、Mn:0.30~2.0%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.10~0.50%、Cr:0.03~0.80%、Cu:0.50%以下(0%を含む)、Al:0.01~0.10%、Ti:0.01~0.1%、B:0.0003~0.0050%およびN:0.002~0.010%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.15~1.5%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、組織が、フェライトとパーライトの複合組織であることを特徴とする耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼。 C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 2.0%, P: 0.03% or less (excluding 0%), S : 0.03% or less (excluding 0%), Ni: 0.10 to 0.50%, Cr: 0.03 to 0.80%, Cu: 0.50% or less (including 0%), Al: 0.01 to 0.10%, Ti: 0.01 to 0.1%, B: 0.0003 to 0.0050%, and N: 0.002 to 0.010%, respectively, Cu , Ni and Cr are contained in a total of 0.15 to 1.5%, the balance is composed of iron and inevitable impurities, and the Si content [Si] and the C content The ratio of [C] ([Si] / [C]) is 1.0 or more, and the structure is a composite structure of ferrite and pearlite. Delayed fracture resistance excellent boron-added high-strength bolts for steel.
  4.  更に、Nb:0.01~0.1%およびV:0.01~0.1%よりなる群から選択される1種以上を含有するものである請求項3に記載のボロン添加高強度ボルト用鋼。 The boron-added high-strength bolt according to claim 3, further comprising at least one selected from the group consisting of Nb: 0.01 to 0.1% and V: 0.01 to 0.1%. Steel.
  5.  C:0.20~0.40%未満、Si:0.20~1.50%、Mn:0.30~1.5%、P:0.03%以下(0%を含まない)、S:0.03%以下(0%を含まない)、Ni:0.10~0.50%、Cr:0.03~0.80%、Cu:0.50%以下(0%を含む)、Al:0.02~0.05%、Ti:0.02~0.06%、B:0.0010~0.003%およびN:0.003~0.006%を夫々含有する他、Cu,NiおよびCrよりなる群から選ばれる1種以上を合計で0.15~1.5%含有し、残部が鉄および不可避的不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、組織が、フェライトとパーライトの複合組織であることを特徴とする耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼。 C: 0.20 to less than 0.40%, Si: 0.20 to 1.50%, Mn: 0.30 to 1.5%, P: 0.03% or less (excluding 0%), S : 0.03% or less (excluding 0%), Ni: 0.10 to 0.50%, Cr: 0.03 to 0.80%, Cu: 0.50% or less (including 0%), In addition to containing Al: 0.02-0.05%, Ti: 0.02-0.06%, B: 0.0010-0.003% and N: 0.003-0.006%, respectively, Cu , Ni and Cr are contained in a total of 0.15 to 1.5%, the balance is composed of iron and inevitable impurities, and the Si content [Si] and the C content The ratio of [C] ([Si] / [C]) is 1.0 or more, and the structure is a composite structure of ferrite and pearlite. Delayed fracture resistance excellent boron-added high-strength bolts for steel.
  6.  更に、Nb:0.01~0.1%およびV:0.01~0.1%よりなる群から選択される1種以上を含有するものである請求項5に記載のボロン添加高強度ボルト用鋼。 The boron-added high-strength bolt according to claim 5, further comprising at least one selected from the group consisting of Nb: 0.01 to 0.1% and V: 0.01 to 0.1%. Steel.
  7.  前記Siの含有量[Si]とCの含有量[C]の比([Si]/[C])は、
    (a)C量が0.20%以上0.25%未満のときは、2.0以上であり、
    (b)C量が0.25%以上0.29%未満のときは、1.5以上であり、
    (c)C量が0.29%以上0.40%未満のときは、1.0以上である請求項1~6のいずれかに記載のボロン添加高強度ボルト用鋼。
    The ratio ([Si] / [C]) of the Si content [Si] and the C content [C] is:
    (A) When the amount of C is 0.20% or more and less than 0.25%, it is 2.0 or more,
    (B) When the amount of C is 0.25% or more and less than 0.29%, it is 1.5 or more,
    (C) The boron-added high-strength bolt steel according to any one of claims 1 to 6, which is 1.0 or more when the C content is 0.29% or more and less than 0.40%.
  8.  請求項1~6のいずれかに記載のボロン添加高強度ボルト用鋼を使用し、ボルト形状に成形加工した後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとした際の引張強さが1100MPa以上であることを特徴とする耐遅れ破壊性に優れた高強度ボルト。 Using the boron-added high-strength bolt steel according to any one of claims 1 to 6, after forming into a bolt shape, quenching and tempering treatment are performed, and the tensile strength when the structure is tempered martensite is high. A high-strength bolt excellent in delayed fracture resistance, characterized by being 1100 MPa or more.
PCT/JP2012/050157 2011-01-18 2012-01-06 Delayed-fracture-resistant boron-containing steel for high-strength bolts, and high-strength bolts WO2012098938A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-008234 2011-01-18
JP2011008234 2011-01-18

Publications (1)

Publication Number Publication Date
WO2012098938A1 true WO2012098938A1 (en) 2012-07-26

Family

ID=46515569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050157 WO2012098938A1 (en) 2011-01-18 2012-01-06 Delayed-fracture-resistant boron-containing steel for high-strength bolts, and high-strength bolts

Country Status (2)

Country Link
JP (1) JP5608145B2 (en)
WO (1) WO2012098938A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105344A1 (en) * 2012-01-11 2013-07-18 株式会社神戸製鋼所 Steel for bolts, bolt, and method for producing bolt
CN104718151A (en) * 2012-11-16 2015-06-17 大日本印刷株式会社 Method for cleaning beverage bottling apparatus
CN107058868A (en) * 2017-03-29 2017-08-18 苏州浩焱精密模具有限公司 A kind of accurate engraving knife die of high rigidity

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131954A (en) * 2013-02-04 2013-06-05 繁昌县琪鑫铸造有限公司 Preparation method of fracture-resistant steel rope bolt
JP6031022B2 (en) * 2013-12-02 2016-11-24 株式会社神戸製鋼所 Steel wire for bolt excellent in delayed fracture resistance, high-strength bolt, and method for producing them
JP6190298B2 (en) * 2014-03-25 2017-08-30 株式会社神戸製鋼所 High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP6267618B2 (en) * 2014-09-30 2018-01-24 株式会社神戸製鋼所 Bolt steel and bolts
KR102062733B1 (en) 2015-06-29 2020-01-06 닛폰세이테츠 가부시키가이샤 volt
US20180347019A1 (en) 2015-12-04 2018-12-06 Nippon Steel & Sumitomo Metal Corporation Rolled Rod for Cold-Forged Thermally Refined Article
CN108291284A (en) 2015-12-04 2018-07-17 新日铁住金株式会社 High-strength bolt
JP6551224B2 (en) * 2015-12-25 2019-07-31 日本製鉄株式会社 Steel pipe manufacturing method
CN112695241A (en) * 2020-11-25 2021-04-23 南京钢铁股份有限公司 12.9-grade anti-delayed fracture weather-resistant bolt steel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591935A (en) * 1978-12-28 1980-07-11 Nippon Steel Corp Preparation of high tension, high ductility wire rod and steel bar for high strength bolt
JPS596358A (en) * 1982-06-30 1984-01-13 Daido Steel Co Ltd High strength bolt
JPH0770695A (en) * 1993-08-31 1995-03-14 Sumitomo Metal Ind Ltd Steel for machine structure excellent in delayed fracture resistance
JPH11124623A (en) * 1997-10-21 1999-05-11 Sumitomo Metal Ind Ltd Manufacture of boron-containing steel for cold forging
JP2000212696A (en) * 1998-11-19 2000-08-02 Kobe Steel Ltd Steel for bolt and production of bolt
JP2004307932A (en) * 2003-04-07 2004-11-04 Daido Steel Co Ltd Steel for bolt having excellent delayed fracture resistance, and method of producing bolt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591935A (en) * 1978-12-28 1980-07-11 Nippon Steel Corp Preparation of high tension, high ductility wire rod and steel bar for high strength bolt
JPS596358A (en) * 1982-06-30 1984-01-13 Daido Steel Co Ltd High strength bolt
JPH0770695A (en) * 1993-08-31 1995-03-14 Sumitomo Metal Ind Ltd Steel for machine structure excellent in delayed fracture resistance
JPH11124623A (en) * 1997-10-21 1999-05-11 Sumitomo Metal Ind Ltd Manufacture of boron-containing steel for cold forging
JP2000212696A (en) * 1998-11-19 2000-08-02 Kobe Steel Ltd Steel for bolt and production of bolt
JP2004307932A (en) * 2003-04-07 2004-11-04 Daido Steel Co Ltd Steel for bolt having excellent delayed fracture resistance, and method of producing bolt

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105344A1 (en) * 2012-01-11 2013-07-18 株式会社神戸製鋼所 Steel for bolts, bolt, and method for producing bolt
US9695488B2 (en) 2012-01-11 2017-07-04 Kobe Steel, Ltd. Steel for bolt use, bolt, and method for manufacturing bolt
CN104718151A (en) * 2012-11-16 2015-06-17 大日本印刷株式会社 Method for cleaning beverage bottling apparatus
CN107058868A (en) * 2017-03-29 2017-08-18 苏州浩焱精密模具有限公司 A kind of accurate engraving knife die of high rigidity
CN107058868B (en) * 2017-03-29 2018-08-03 苏州浩焱精密模具有限公司 A kind of high rigidity precision engraving knife die
WO2018176904A1 (en) * 2017-03-29 2018-10-04 刘浩 High-hardness precision carving knife mold

Also Published As

Publication number Publication date
JP5608145B2 (en) 2014-10-15
JP2012162798A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP6034632B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP5973903B2 (en) High strength spring steel wire excellent in hydrogen embrittlement resistance, method for producing the same, and high strength spring
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP2013104070A (en) High-strength steel excellent in delayed breakage resistance, and high-strength bolt
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP6034605B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
CN109790602B (en) Steel
US10060015B2 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP7223997B2 (en) Steel with high hardness and excellent toughness
KR101446135B1 (en) Steel for suspension spring with high strength and excellent fatigue and method producing the same
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP6390685B2 (en) Non-tempered steel and method for producing the same
KR101795278B1 (en) Ultra high strength spring steel
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
KR101745196B1 (en) Ultra high strength spring steel
KR101776491B1 (en) High strength spring steel having excellent corrosion resistance
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP3861137B2 (en) High-strength mechanical structural steel and its manufacturing method
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JP5125658B2 (en) Induction hardening steel with excellent workability and strength characteristics after induction hardening and induction hardening parts with excellent strength characteristics
JPH0559431A (en) Production of spring with high stress excellent in delayed fracture resistance
JP2017125246A (en) High strength steel
JP2022095157A (en) Steel for bolts and bolt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736928

Country of ref document: EP

Kind code of ref document: A1