JPH0559431A - Production of spring with high stress excellent in delayed fracture resistance - Google Patents

Production of spring with high stress excellent in delayed fracture resistance

Info

Publication number
JPH0559431A
JPH0559431A JP6498291A JP6498291A JPH0559431A JP H0559431 A JPH0559431 A JP H0559431A JP 6498291 A JP6498291 A JP 6498291A JP 6498291 A JP6498291 A JP 6498291A JP H0559431 A JPH0559431 A JP H0559431A
Authority
JP
Japan
Prior art keywords
steel
spring
delayed fracture
fracture resistance
durability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6498291A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
武史 佐藤
Yutaka Ogawa
裕 小川
Fukukazu Nakazato
福和 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6498291A priority Critical patent/JPH0559431A/en
Publication of JPH0559431A publication Critical patent/JPH0559431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain the spring with high stress excellent in durability by reducing the contents of P and S as impurities in a steel with specific composition, regulating Mn content to a proper value, adding specific amounts of Mo and further Nb, V, Al, and N, and performing hardening after recrystallization. CONSTITUTION:A steel having a composition which con: of, by weight, 0.45-0.80% C, <=0.50% Si, 0.20-O.50% Mn, 0.10-2.0% Cr, 0.05-0.80% Mo, and the balance Fe with inevitable impurities and further contains one or more kinds among 0.005-0.200% Nb, 0.05-0.50% V, 0.005-0.100% Al, and 0.003-0.030% N and in which the contents of P and S among the impurities are regulated to <=0.015% and <=0.010%, respectively, is used as a stock. This stock is heated up to 800-1000 deg.C at the time of working into a spring and hot-worked at =10% reduction of area, and, after recrystallization, hardening and tempering are done. By regulating the contents of P, S, Mn, and Mo to the above-mentioned values, respectively, the segregation of P and S in the grain boundaries to be the factors for promoting delayed fracture can be remarkably reduced. Moreover, by using one or more elements among Nb, V, Al, and N, crystalline grains can be refined and durability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車等の車両や建
設機械等に使用される高応力ばね、特に、耐遅れ破壊性
と耐久性に優れた高応力ばねの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high stress spring used in vehicles such as automobiles and construction machinery, and more particularly to a method for manufacturing a high stress spring which is excellent in delayed fracture resistance and durability.

【0002】[0002]

【従来の技術】近年、エネルギー節減と環境汚染防止の
観点から乗用車、トラック等の軽量化の要求が強くな
り、その手段として構造物品の一つである「ばね」につ
いても軽量化のための高応力設計が検討されている。そ
のためには、ばねの高強度化が必要であり、具体的には
従来の引張り強さ 130〜140 kgf/mm2 級から最近では17
0kgf/mm2 以上の強度を有するばねが要求されている。
2. Description of the Related Art In recent years, from the viewpoint of energy saving and prevention of environmental pollution, there has been a strong demand for weight reduction of passenger cars, trucks, and the like. Stress design is being considered. For that purpose, it is necessary to increase the strength of the spring. Specifically, from the conventional tensile strength of 130 to 140 kgf / mm 2 class to the recent 17
A spring having a strength of 0 kgf / mm 2 or more is required.

【0003】このような高応力化の要求に対して、従来
のJIS G 4801のSUP 9 あるいは SUP11A を用い、焼戻し
温度を低くして引張り強さを増すという対策があるが、
それだけでは靱性が低く、疲れ強さが伴わないため耐久
性が悪くなるという問題がある。そこで、最近、焼入れ
性に優れ高強度化が可能な JIS G4801のSUP 10を用い、
高応力ばねが開発されたが、高強度化に伴って遅れ破壊
が新たな問題として提起されている。
In order to meet such a demand for higher stress, there is a measure of using conventional SUP 9 or SUP 11A of JIS G 4801 to lower the tempering temperature and increase the tensile strength.
There is a problem that durability is deteriorated because the toughness is low and fatigue strength is not accompanied by that alone. Therefore, recently, using SUP 10 of JIS G 4801, which has excellent hardenability and can increase strength,
High-stress springs were developed, but delayed fracture has been raised as a new problem with the increase in strength.

【0004】遅れ破壊とは静荷重下に置かれた鋼がある
時間経過後、突然脆性的に破壊する現象であり、外部環
境から鋼中に侵入した水素による水素脆性が原因とされ
ている。その破壊形態は旧オーステナイト粒界に沿った
粒界破壊である。この遅れ破壊の防止は、ボルト用鋼、
PC鋼棒等の高強度鋼では従来から検討されており、粒
界に偏析、または析出して粒界の強度低下の原因となる
P、Sなどの不純物元素の低減という対策が採られてい
る。しかし、ボルト用鋼は、引張り強さが高々150 kgf/
mm2 程度であるのに対し、ばね用鋼は、前述のとおり 1
70 kgf/mm2以上と極めて高強度が要求され、更に、ばね
には使用中に繰り返し応力が加わるなどボルト用鋼やP
C鋼棒とは使用条件が異なり、一層過酷である。従っ
て、上記P、Sなどの不純物低減のみでは需要家の要求
に応える耐遅れ破壊性を備えた高強度のばね用鋼は得ら
れない。
Delayed fracture is a phenomenon in which steel placed under a static load suddenly becomes brittle after a certain period of time, and is attributed to hydrogen embrittlement due to hydrogen invading the steel from the external environment. The fracture mode is grain boundary fracture along the former austenite grain boundary. To prevent this delayed fracture, bolt steel,
High-strength steels such as PC steel rods have been studied in the past, and measures have been taken to reduce impurity elements such as P and S that segregate or precipitate at grain boundaries and cause a decrease in grain boundary strength. .. However, bolt steel has a tensile strength of at most 150 kgf /
While it is about mm 2 , the spring steel has 1
Extremely high strength of 70 kgf / mm 2 or more is required. In addition, springs are repeatedly stressed during use, such as bolt steel and P
The usage conditions are different from those of C steel bar, and it is more severe. Therefore, only by reducing the impurities such as P and S as described above, a high-strength spring steel having delayed fracture resistance that meets the demand of customers cannot be obtained.

【0005】特開昭57−169062号公報には耐遅れ破壊性
に優れた高応力ばね鋼が開示されている。しかし、この
鋼はSiが 1.0〜2.5 %と高いため疲労特性が劣り耐久性
が不十分である。また、特開昭63−274739号公報には焼
入性、耐久性の優れたばね用鋼が提案されているが、こ
の鋼は、P、Sといった不純物についての配慮がなく、
またMnが0.90〜1.50%と高いため耐遅れ破壊性の面で問
題が残されている。
Japanese Unexamined Patent Publication No. 57-169062 discloses a high stress spring steel excellent in delayed fracture resistance. However, since this steel has a high Si content of 1.0 to 2.5%, it has poor fatigue properties and insufficient durability. Further, Japanese Patent Laid-Open No. 63-274739 proposes a spring steel having excellent hardenability and durability, but this steel does not consider impurities such as P and S,
Further, since Mn is as high as 0.90 to 1.50%, a problem remains in terms of delayed fracture resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明は、 170 kgf/m
m2以上の引張り強さを有しながら、耐遅れ破壊性および
耐久性にも優れたばねの製造方法を提供することを課題
としてなされたものであり、具体的には素材となるばね
用鋼の化学組成と、ばね加工の際の加工、熱処理条件を
最適に選んだばねの製造方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention is 170 kgf / m
It is an object of the present invention to provide a method for manufacturing a spring that has a tensile strength of m 2 or more and is also excellent in delayed fracture resistance and durability. An object of the present invention is to provide a spring manufacturing method in which the chemical composition, the processing during spring processing, and the heat treatment conditions are optimally selected.

【0007】[0007]

【課題を解決するための手段】本発明は、下記 (イ)の化
学組成を持つ鋼を素材とし、ばね加工の際に下記(ロ)の
工程で加工、熱処理することを特徴とする 170 kgf/mm2
以上の引張り強さを有する耐遅れ破壊性に優れた高応力
ばねの製造方法を要旨とする。
[Means for Solving the Problems] The present invention is characterized by using a steel having the following chemical composition (a) as a raw material and processing and heat treating in the following step (b) during spring processing: 170 kgf / mm 2
The gist is a method of manufacturing a high stress spring having the above tensile strength and excellent delayed fracture resistance.

【0008】(イ) 重量%で、C: 0.45〜0.80%、Si: 0.
50%以下、Mn: 0.20〜0.50%、Cr:0.10〜2.00%、Mo:
0.05〜0.80%、さらにNb:0.005〜0.200 %、V: 0.05〜
0.50%、Al:0.005〜0.100 %、N:0.003〜0.030 %の中
の1種以上を含有し、残部はFeおよび不可避的不純物か
らなり、不純物のPが 0.015%以下、Sが0.010 %以下
である鋼を素材として、(ロ) ばね加工の際に 800〜1000
℃に加熱し、圧下率10%以上で熱間加工し、再結晶させ
た後、焼入れ、焼戻しを施す。
(A) C: 0.45 to 0.80%, Si: 0.1% by weight.
50% or less, Mn: 0.20 to 0.50%, Cr: 0.10 to 2.00%, Mo:
0.05 to 0.80%, Nb: 0.005 to 0.200%, V: 0.05 to
0.50%, Al: 0.005 to 0.100%, N: 0.003 to 0.030%, at least one of which is composed of Fe and inevitable impurities. When P of impurities is 0.015% or less and S is 0.010% or less. (B) Using a certain steel as a material, 800-1000 during spring processing
It is heated to ℃, hot worked at a reduction of 10% or more, recrystallized, and then quenched and tempered.

【0009】本発明は、素材鋼の合金成分の種類とそれ
らの含有量を上記のように選定したこと、およびその鋼
を使用してばね加工を行う際の加工、熱処理の最適条件
を定めたことの総合的な効果として後述の優れた効果を
奏するのであるが、本発明の基礎となった主な知見を述
べれば次のとおりである。
According to the present invention, the kinds of alloying components of the material steel and their contents are selected as described above, and the optimum conditions of working and heat treatment when performing spring working using the steel are determined. The above-mentioned excellent effects will be obtained as the overall effects of the present invention. The main findings on which the present invention is based are as follows.

【0010】 不純物のPおよびSを低く抑え、かつ
Mn含有量を適正範囲に調整した上、Moを添加することに
より、遅れ破壊の助長要因となる粒界へのP、Sの偏析
は著しく軽減される。
Impurities P and S are kept low, and
By adjusting the Mn content to an appropriate range and adding Mo, the segregation of P and S at the grain boundaries, which is a factor promoting delayed fracture, is significantly reduced.

【0011】 Nb、V、Alおよび、Nの中の1種以上
を添加することにより結晶粒が微細化し、耐久性が向上
する。
By adding one or more of Nb, V, Al and N, the crystal grains become finer and the durability is improved.

【0012】 最近、ばねの高強度化のために、ばね
の加工工程に改良オースフォーム処理、即ち、安定オー
ステナイト域で熱間加工し、その加工の影響が消えない
うちに(再結晶しないうちに)焼入れを施し、その後焼
戻しを行う加工方法が採り入れられている。この方法で
製造した鋼材は、強度は高いが靱性あるいは耐遅れ破壊
性が不十分である。ところが、安定オーステナイト域で
熱間加工の後、再結晶させてから焼入れ、焼戻しの処理
を行えば、結晶粒界へのP、Sの偏析が軽減され、強度
が高く、しかも耐遅れ破壊性および耐久性にも優れたば
ねが得られる。
Recently, in order to increase the strength of springs, an improved ausform treatment is performed in the spring working process, that is, hot working is performed in a stable austenite region, and before the influence of the working disappears (before recrystallization occurs, ) A processing method of quenching and then tempering is adopted. The steel material produced by this method has high strength but insufficient toughness or delayed fracture resistance. However, if hot-working in the stable austenite region is followed by recrystallization followed by quenching and tempering, segregation of P and S at the grain boundaries is reduced, the strength is high, and delayed fracture resistance and A spring with excellent durability can be obtained.

【0013】[0013]

【作用】まず本発明方法の素材となる鋼の合金成分の作
用とそれらの含有量の限定理由を説明する。なお、合金
成分の含有量に関する%は、すべて重量%である。
First, the function of the alloying components of the steel used as the raw material of the method of the present invention and the reasons for limiting their contents will be described. All% related to the content of alloy components are% by weight.

【0014】C: 0.45〜0.80% Cは鋼の強度を確保するために必須の成分であり、しか
も結晶粒の微細化にも有効な成分である。その含有量が
0.45%未満では高応力ばねとしての強度が得らない。一
方、Cが0.80%を超えると基地に固溶するC量が飽和し
て強度増加には付与せず、粗大な炭化物が生成し、靱性
劣化を招く。
C: 0.45 to 0.80% C is an essential component for ensuring the strength of steel, and is also an effective component for refining crystal grains. Its content is
If it is less than 0.45%, the strength as a high stress spring cannot be obtained. On the other hand, if C exceeds 0.80%, the amount of C that forms a solid solution in the matrix is saturated and does not contribute to the increase in strength, and coarse carbides are generated, leading to deterioration in toughness.

【0015】Si: 0.50%以下 Siは鋼の脱酸剤として添加される。しかし、過剰のSiは
鋼の靱性を劣化させ、耐久性を著しく低下させるから、
Siは0.50%までにとどめるのがよい。
Si: 0.50% or less Si is added as a deoxidizing agent for steel. However, excessive Si deteriorates the toughness of steel and significantly reduces durability.
It is better to keep Si up to 0.50%.

【0016】Mn: 0.20〜0.50% Mnは鋼の焼入れ性を向上させ、強度、靱性を確保するの
に有効な元素である。
Mn: 0.20 to 0.50% Mn is an element effective for improving the hardenability of steel and ensuring strength and toughness.

【0017】その含有量が0.20%未満では所望の強度、
靱性を確保することができない。一方、MnはSと結合
し、粒界に微細析出し、粒界強度を低下させる。後述す
るようにS、Pを低く抑えてもMn含有量が0.50%を超え
ると170 kgf/mm2 以上の高強度を有するばねでは優れた
耐遅れ破壊性が得られない。従って、Mn含有量の適正範
囲は0.20〜0.50%である。
If the content is less than 0.20%, the desired strength,
Toughness cannot be secured. On the other hand, Mn is combined with S and finely precipitates at the grain boundaries to reduce the grain boundary strength. As will be described later, even if S and P are suppressed low, if the Mn content exceeds 0.50%, a spring having a high strength of 170 kgf / mm 2 or more cannot obtain excellent delayed fracture resistance. Therefore, the proper range of Mn content is 0.20 to 0.50%.

【0018】Cr: 0.10〜2.0 % Crは鋼の焼入性を向上させ、焼戻し軟化抵抗を付与して
170 kgf/mm2以上の引張り強さを得るのに有効な元素で
ある。また、鋼の表面に耐食性に優れた皮膜を形成する
ことにより、外部から鋼中への水素侵入を抑制すること
で耐遅れ破壊性を向上させる。しかし、その含有量が0.
10%未満では前述した外部から鋼中への水素侵入を抑制
することができず、一方、Cr含有量が 2.0%を超えると
炭化物の増加により靱性の劣化をきたすから、その含有
量を0.10〜2.0 %とした。
Cr: 0.10-2.0% Cr improves the hardenability of steel and imparts temper softening resistance.
It is an element effective for obtaining a tensile strength of 170 kgf / mm 2 or more. Further, by forming a film having excellent corrosion resistance on the surface of the steel, the delayed fracture resistance is improved by suppressing hydrogen intrusion into the steel from the outside. However, its content is 0.
If it is less than 10%, it is not possible to suppress the above-mentioned hydrogen invasion into the steel from the outside. On the other hand, if the Cr content exceeds 2.0%, the toughness deteriorates due to the increase of carbides, so the content of 0.10- It was set to 2.0%.

【0019】Mo: 0.05〜0.80% MoはCrと同様に鋼の焼入れ性を向上させ、かつ焼戻し軟
化抵抗を高める。また、耐食性を向上させる。更にPの
粒界偏析を抑制する作用をもち、耐遅れ破壊性を向上さ
せるが、その含有量が0.05%未満ではPの粒界偏析を抑
制する効果が乏しい。一方、0.80%を超えて含有させて
も効果は飽和し、材料コストが上昇するだけであるた
め、その含有量の範囲を0.05〜0.80%とした。
Mo: 0.05 to 0.80% Mo improves the hardenability of steel similarly to Cr, and also increases the temper softening resistance. It also improves corrosion resistance. Further, it has the effect of suppressing the grain boundary segregation of P and improves the delayed fracture resistance, but if the content is less than 0.05%, the effect of suppressing the grain boundary segregation of P is poor. On the other hand, if the content exceeds 0.80%, the effect is saturated and the material cost only rises, so the content range was made 0.05 to 0.80%.

【0020】上記の基本成分に加えて、Nb、V、Alおよ
びNの1種以上を含むのが本発明素材鋼の特徴の一つで
ある。
One of the characteristics of the material steel of the present invention is that it contains one or more of Nb, V, Al and N in addition to the above basic components.

【0021】Nb: 0.005〜0.20% Nbは鋼の強度、靱性の向上と、結晶粒微細化の効果を有
し、特に低P、低Sおよび低Mnの清浄鋼においては耐遅
れ破壊性を著しく改善する。その効果を確保するために
は、Nb含有量は 0.005%以上となるよう添加する必要が
ある。一方、含有量が0.20%を超えてもその効果は飽和
し、コスト高を招くだけである。
Nb: 0.005 to 0.20% Nb has the effect of improving the strength and toughness of the steel and the refinement of crystal grains. Particularly, in the case of low P, low S and low Mn clean steel, the delayed fracture resistance is remarkable. Improve. In order to secure the effect, it is necessary to add Nb in an amount of 0.005% or more. On the other hand, even if the content exceeds 0.20%, the effect is saturated and the cost is increased.

【0022】V: 0.05〜0.50% Vは鋼を細粒化し、あるいは析出硬化によって鋼の強度
を向上させる作用があるので、より高い強度が要求され
る場合に必要に応じて添加すればよい。その含有量が0.
05%未満では高強度化の効果は得られず、一方、0.50%
を超えて含有させてもその効果は飽和してしまう。
V: 0.05 to 0.50% V has the effect of making the steel finer or improving the strength of the steel by precipitation hardening. Therefore, when higher strength is required, it may be added as necessary. Its content is 0.
If it is less than 05%, the effect of strengthening cannot be obtained, while 0.50%
If it is contained in excess of the above, the effect will be saturated.

【0023】Al: 0.005〜0.100 % Alは鋼の結晶粒の粗大化を抑制する効果がある。0.005
%未満の含有量ではそのその作用は不十分であるが、0.
100 %を超えるとその効果は飽和する。
Al: 0.005 to 0.100% Al has an effect of suppressing coarsening of crystal grains of steel. 0.005
Its content is less than%, its action is insufficient, but 0.
If it exceeds 100%, the effect is saturated.

【0024】N: 0.003〜0.030 % Nも 0.003%以上の含有量でAlと同様に鋼の結晶粒度の
粗大化を抑制する効果をもつが、その含有量が 0.030%
を超えるとその効果は飽和する。
N: 0.003 to 0.030% N also has the effect of suppressing coarsening of the grain size of steel in the same manner as Al at a content of 0.003% or more, but the content is 0.030%.
If it exceeds, the effect will be saturated.

【0025】前述のとおり、不純物としてのPおよびS
を低く抑えることも本発明の素材鋼の大きな特徴であ
る。
As described above, P and S as impurities
It is also a great feature of the raw material steel of the present invention to keep the value low.

【0026】P: 0.015 %以下 Pは粒界に偏析し、粒界強度を低下させる。引張り強さ
170 kgf/mm2 以上の高強度材での耐遅れ破壊性向上のた
めには、MnとSを下げるだけでなくPを0.015%以下に
抑えることが必要である。好ましいのは 0.009%以下で
ある。
P: 0.015% or less P segregates at the grain boundaries and reduces the grain boundary strength. Tensile strength
In order to improve delayed fracture resistance in a high strength material of 170 kgf / mm 2 or more, it is necessary not only to reduce Mn and S but also to suppress P to 0.015% or less. 0.009% or less is preferable.

【0027】S: 0.010 %以下 SはMnと結合し、粒界に微細析出し、粒界強度を低下さ
せる。特に、170 kgf/mm2 以上の高強度材の場合、Pの
低減と同時にSを0.010 %以下に抑え、粒界への微細析
出を抑制することが必要である。0.007 %以下に抑える
のが一層望ましい。
S: 0.010% or less S is combined with Mn and finely precipitates at the grain boundaries to reduce the grain boundary strength. In particular, in the case of a high strength material of 170 kgf / mm 2 or more, it is necessary to suppress P and simultaneously suppress S to 0.010% or less to suppress fine precipitation at grain boundaries. It is more desirable to keep it below 0.007%.

【0028】次に、ばね加工工程における加工、熱処理
方法について説明する。
Next, the processing and heat treatment method in the spring processing step will be described.

【0029】従来のばね製造方法では、素材となる低合
金鋼の熱延材を加熱して焼入れし、焼戻しするという工
程を採る。先に述べたように、安定オーステナイト域で
熱間加工し、その加工の影響が消えないうちに(再結晶
しないうちに)焼入れを施し、その後焼戻しを行う加工
方法 (改良オースフォーム処理)もあるが、これらの製
造方法では結晶粒界へのP、Sの偏析やフィルム状炭化
物の析出が避けられず、耐遅れ破壊性の劣るものにな
る。
In the conventional spring manufacturing method, a step of heating, quenching and tempering a hot-rolled material of a low alloy steel as a raw material is adopted. As mentioned above, there is also a processing method (improved ausform processing) in which hot working is performed in the stable austenite region, quenching is performed before the effect of the working disappears (before recrystallization), and then tempering is performed. However, in these manufacturing methods, segregation of P and S and precipitation of film-like carbides at the crystal grain boundaries cannot be avoided, resulting in poor delayed fracture resistance.

【0030】本発明では、これまでに述べた化学組成を
有する鋼をばね加工の際に加熱、熱間加工、再結
晶、焼入れ、焼戻しの工程で処理する。この工程を採
ることによって粒界へのP、Sの偏析とフィルム状炭化
物の析出が抑制され、均一かつ微細な析出状態となり耐
遅れ破壊性および耐久性が著しく向上する。これらの工
程における処理の諸条件は以下に述べるとおりである。
In the present invention, the steel having the chemical composition described above is processed in the steps of heating, hot working, recrystallization, quenching and tempering during spring processing. By adopting this step, segregation of P and S at the grain boundaries and precipitation of film-like carbide are suppressed, resulting in a uniform and fine precipitation state, and the delayed fracture resistance and durability are remarkably improved. The conditions of the treatment in these steps are as described below.

【0031】加熱温度: 800〜1000℃ 加工前の加熱温度が1000℃を超えると、結晶粒が粗大化
し、耐遅れ破壊性が低下し、かつ脱炭が顕著となる。ま
た、加熱温度が 800℃より低いと熱間加工終了の温度が
低くなり、必要な焼入れ温度が確保できないため十分な
強さが得られない。
Heating temperature: 800 to 1000 ° C. If the heating temperature before processing exceeds 1000 ° C., the crystal grains become coarse, the delayed fracture resistance decreases, and decarburization becomes remarkable. If the heating temperature is lower than 800 ° C, the temperature at the end of hot working will be low, and the necessary quenching temperature cannot be secured, so sufficient strength cannot be obtained.

【0032】熱間加工:圧下率 10 %以上 熱間加工は、所定の製品サイズに加工することと同時
に、結晶粒を微細化して耐遅れ破壊性と耐久性を向上さ
せるために行う。圧下率が10%未満であると加工の効果
が不十分で結晶粒が十分に微細化せず、耐遅れ破壊性お
よび耐久性向上の効果が得られない。なお、圧下率の上
限は素材鋼と製品のサイズとによって定めればよい。
Hot-working: Reduction of 10% or more Hot-working is carried out in order to improve the delayed fracture resistance and the durability by processing the product into a predetermined product size and, at the same time, refining the crystal grains. If the rolling reduction is less than 10%, the effect of working is insufficient, the crystal grains are not sufficiently refined, and the effects of delayed fracture resistance and durability improvement cannot be obtained. The upper limit of the rolling reduction may be determined depending on the material steel and the size of the product.

【0033】再結晶 熱間加工後は、十分に再結晶させてから次の焼入れ−焼
戻しの熱処理を行うことが重要である。前記の素材の化
学組成および上記との条件を満足する場合には、例
えば、熱間加工終了後に10秒程度放置 (放冷) すること
によって再結晶させることができる。
Recrystallization After hot working, it is important to recrystallize sufficiently and then perform the subsequent heat treatment of quenching and tempering. When the chemical composition of the above-mentioned material and the conditions described above are satisfied, recrystallization can be performed by, for example, leaving it to stand (cooling) for about 10 seconds after completion of hot working.

【0034】焼入れ、焼戻し 上記のように再結晶させた後、焼入れ、焼戻しの熱処理
を施す。焼入れは 700〜850 ℃の範囲から油焼入れとす
るのが望ましい。焼戻しは 300〜450 ℃で行えばよい。
これによって 170kgf/mm2 以上の強度が確保できる。
Quenching and tempering After recrystallization as described above, heat treatment of quenching and tempering is performed. Quenching is preferably in the range of 700 to 850 ℃ and oil quenching. Tempering may be performed at 300 to 450 ° C.
As a result, a strength of 170 kgf / mm 2 or more can be secured.

【0035】[0035]

【実施例】表1の1および2に示す化学組成の鋼を転炉
で溶製し、通常の連続鋳造または造塊と熱間圧延工程に
より板ばね用素材を作製した。表1の1の鋼 No.1〜14
は本発明で定める組成範囲の鋼であり、表1の2の No.
15〜21は、* を付した合金成分の含有量が本発明で定め
る範囲を外れているものである。
EXAMPLE Steels having the chemical compositions shown in Tables 1 and 2 were melted in a converter, and a material for leaf springs was manufactured by ordinary continuous casting or ingot casting and hot rolling. Steel Nos. 1 to 14 in Table 1
Is a steel having a composition range defined by the present invention, and No. 2 in Table 1
In Nos. 15 to 21, the contents of the alloy components marked with * are out of the range defined by the present invention.

【0036】上記の素材を表2に示すA〜Jの条件で加
工し熱処理した。表2の条件A〜Fは本発明の条件であ
り、G〜Fは本発明の範囲にない比較のための条件であ
る。
The above materials were processed and heat-treated under the conditions A to J shown in Table 2. Conditions A to F in Table 2 are the conditions of the present invention, and G to F are the conditions for comparison not within the scope of the present invention.

【0037】いずれも熱処理としては、前記の温度範囲
内で引張り強さが 180〜190 kgf/mm2 となるように調整
して焼入れおよび焼戻しを行った。
In each case, as heat treatment, quenching and tempering were carried out by adjusting the tensile strength to be 180 to 190 kgf / mm 2 within the above temperature range.

【0038】表1の1および2の鋼種と表2の条件を表
3に示すように組合せて製造したばねの引張り強さと、
耐遅れ破壊性および耐久性を調査した。表3にその結果
を併記する。なお、耐遅れ破壊性、および耐久性は実体
ばねを作製して試験に用いた。耐遅れ破壊性はアクスル
シャフトに組み込んだ状態で1ケ月間放置した後の破損
確率で評価した。耐久性は平均応力 75kgf/mm2、応力振
幅 45kgf/mm2、1Hzで疲労試験を行って疲労寿命で評価
し、100 万回を超えるものを耐久性に優れたものと評価
した。それは、従来からの多数の実験で疲労寿命が 100
万回を超える場合には疲労破壊問題が生じていないから
である。
The tensile strength of the spring produced by combining the steel types 1 and 2 of Table 1 and the conditions of Table 2 as shown in Table 3, and
The delayed fracture resistance and durability were investigated. The results are also shown in Table 3. For the delayed fracture resistance and durability, a body spring was prepared and used for the test. The delayed fracture resistance was evaluated by the damage probability after leaving it for 1 month in the state of being incorporated in the axle shaft. Durability was evaluated by fatigue life by performing a fatigue test at an average stress of 75 kgf / mm 2 , stress amplitude of 45 kgf / mm 2 , and 1 Hz, and those exceeding 1 million cycles were evaluated as having excellent durability. It has a fatigue life of 100 in many previous experiments.
This is because the fatigue fracture problem does not occur when it exceeds 10,000 times.

【0039】表3の試験 No.1〜14は、本発明で定めた
素材鋼と加工、熱処理の条件を満たす実施例である。 N
o.15〜25は、素材または加工、熱処理のいずれかが本発
明の条件を満たさない比較例である。前者はいずれも破
損確率は0%で疲労寿命も 100万回を超えている。即
ち、耐遅れ破壊性も耐久性も共に優れている。
Test Nos. 1 to 14 in Table 3 are examples in which the material steel defined in the present invention and the conditions of working and heat treatment are satisfied. N
o.15 to 25 are comparative examples in which any of the materials, processing, and heat treatment do not satisfy the conditions of the present invention. The former have a 0% failure probability and a fatigue life of more than 1 million cycles. That is, both delayed fracture resistance and durability are excellent.

【0040】これに対して比較例には、耐遅れ破壊性、
耐久性の両方が劣るものが多い。例えば、No.16 のよう
に耐久性が優れているものもあるが、それは耐遅れ破壊
性に劣る。逆に、No.18 、20は耐遅れ破壊性は優れる
が、耐久性に乏しい。即ち、高い強度を持ちながら耐遅
れ破壊性と耐久性の両方が優れたばねは得られていな
い。
On the other hand, in the comparative example, delayed fracture resistance,
Many have poor durability. For example, some of them have excellent durability such as No. 16, but they have poor delayed fracture resistance. On the contrary, Nos. 18 and 20 are excellent in delayed fracture resistance but poor in durability. That is, a spring having high strength but excellent in both delayed fracture resistance and durability has not been obtained.

【0041】[0041]

【表1の1】 [1 in Table 1]

【0042】[0042]

【表1の2】 [Table 1-2]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】[0045]

【発明の効果】本発明方法によれば、引張り強さが 170
kgf/mm2以上で、しかも耐遅れ破壊性および耐久性にも
優れたばねが製造できる。このようなばねは、特に軽量
化を指向する自動車用等の高応力ばねとして極めて有用
である。
According to the method of the present invention, the tensile strength is 170
It is possible to manufacture springs with a kgf / mm 2 or higher and excellent delayed fracture resistance and durability. Such a spring is extremely useful as a high-stress spring for automobiles, etc., which is particularly aimed at weight reduction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C: 0.45〜0.80%、Si: 0.50%
以下、Mn: 0.20〜0.50%、Cr: 0.10〜2.0 %、Mo: 0.05
〜0.80%、さらにNb:0.005〜0.200 %、V: 0.05〜0.50
%、Al:0.005〜0.100 %、N:0.003〜0.030 %の中の1
種以上を含有し、残部はFeおよび不可避的不純物からな
り、不純物のPが 0.015%以下、Sが 0.010%以下であ
る鋼を素材として、ばね加工の際に 800〜1000℃に加熱
し、圧下率10%以上で熱間加工し、再結晶させた後、焼
入れ、焼戻しを施すことを特徴とする 170 kgf/mm2以上
の引張り強さを有する耐遅れ破壊性に優れた高応力ばね
の製造方法。
1. By weight%, C: 0.45 to 0.80%, Si: 0.50%
Below, Mn: 0.20 to 0.50%, Cr: 0.10 to 2.0%, Mo: 0.05
~ 0.80%, Nb: 0.005 ~ 0.200%, V: 0.05 ~ 0.50
%, Al: 0.005 to 0.100%, N: 0.003 to 0.030% of 1
A steel containing at least one species and the balance consisting of Fe and unavoidable impurities, with P of impurities of 0.015% or less and S of 0.010% or less is used as a material and heated to 800 to 1000 ° C during spring processing and rolled down. Manufacture of high stress springs with a tensile fracture strength of 170 kgf / mm 2 or more and excellent delayed fracture resistance, which is characterized by performing hot working at a rate of 10% or more, recrystallization, and then quenching and tempering. Method.
JP6498291A 1991-03-28 1991-03-28 Production of spring with high stress excellent in delayed fracture resistance Pending JPH0559431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6498291A JPH0559431A (en) 1991-03-28 1991-03-28 Production of spring with high stress excellent in delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6498291A JPH0559431A (en) 1991-03-28 1991-03-28 Production of spring with high stress excellent in delayed fracture resistance

Publications (1)

Publication Number Publication Date
JPH0559431A true JPH0559431A (en) 1993-03-09

Family

ID=13273775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6498291A Pending JPH0559431A (en) 1991-03-28 1991-03-28 Production of spring with high stress excellent in delayed fracture resistance

Country Status (1)

Country Link
JP (1) JPH0559431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458226B1 (en) * 1998-07-20 2002-10-01 Muhr Und Bender Process for the thermomechanical treatment of steel
WO2006088390A1 (en) * 2005-01-25 2006-08-24 Starchenkov Nikolay Nikolaevic Method for on-line monitoring and controlling moving objects
CN102151693A (en) * 2010-12-02 2011-08-17 大冶特殊钢股份有限公司 Method for rolling low-hardness small-sized spring steel
CN102925812A (en) * 2012-11-16 2013-02-13 武汉钢铁(集团)公司 Hot rolling diaphragm spring steel for automobile and production method of hot rolling diaphragm spring

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458226B1 (en) * 1998-07-20 2002-10-01 Muhr Und Bender Process for the thermomechanical treatment of steel
US6939418B2 (en) 1998-07-20 2005-09-06 Muhr Und Bender Process for the thermomechanical treatment of steel
WO2006088390A1 (en) * 2005-01-25 2006-08-24 Starchenkov Nikolay Nikolaevic Method for on-line monitoring and controlling moving objects
CN102151693A (en) * 2010-12-02 2011-08-17 大冶特殊钢股份有限公司 Method for rolling low-hardness small-sized spring steel
CN102925812A (en) * 2012-11-16 2013-02-13 武汉钢铁(集团)公司 Hot rolling diaphragm spring steel for automobile and production method of hot rolling diaphragm spring

Similar Documents

Publication Publication Date Title
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
WO2013145868A1 (en) Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt
EP2746420B1 (en) Spring steel and spring
JP2007520633A (en) Use of steel and the above types of steel to produce high strength parts with excellent low temperature toughness
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JPH0545660B2 (en)
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
CN109790602B (en) Steel
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH09256102A (en) Carburized parts excellent in bending strength and impact characteristic
JP3490293B2 (en) Cold forging steel excellent in crystal grain coarsening prevention property and delayed fracture resistance, and its manufacturing method
JP3814710B2 (en) Manufacturing method of steel material for high strength cold forming non-tempered buffer / restoration mechanism member
JP6390685B2 (en) Non-tempered steel and method for producing the same
JPH0559431A (en) Production of spring with high stress excellent in delayed fracture resistance
JPH036352A (en) Steel for high strength bolt provided with delayed breakdown resistance and cold forging suitability
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPH0314898B2 (en)
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JPH05148581A (en) Steel for high strength spring and production thereof
JPH1143737A (en) Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP3064672B2 (en) High strength spring steel
JPH07126799A (en) Manufacture of high strength bolt excellent in delayed breakdown resistance
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel