JPH07100820B2 - Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy. - Google Patents

Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.

Info

Publication number
JPH07100820B2
JPH07100820B2 JP31195986A JP31195986A JPH07100820B2 JP H07100820 B2 JPH07100820 B2 JP H07100820B2 JP 31195986 A JP31195986 A JP 31195986A JP 31195986 A JP31195986 A JP 31195986A JP H07100820 B2 JPH07100820 B2 JP H07100820B2
Authority
JP
Japan
Prior art keywords
less
heat treatment
steel strip
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31195986A
Other languages
Japanese (ja)
Other versions
JPS63169332A (en
Inventor
照夫 田中
克久 宮楠
廣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP31195986A priority Critical patent/JPH07100820B2/en
Priority to CA000553958A priority patent/CA1305911C/en
Priority to EP87118421A priority patent/EP0273278B1/en
Priority to DE87118421T priority patent/DE3787633T2/en
Priority to ES87118421T priority patent/ES2043637T3/en
Priority to US07134874 priority patent/US4812176B1/en
Priority to CN87105993A priority patent/CN1010856B/en
Priority to BR8707111A priority patent/BR8707111A/en
Priority to KR1019870015472A priority patent/KR950013187B1/en
Publication of JPS63169332A publication Critical patent/JPS63169332A/en
Publication of JPH07100820B2 publication Critical patent/JPH07100820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,延性に優れ強度および延性の面内異方性の小
さい高強度複相組織クロムステンレス鋼帯の新規な工業
的製造法に関し,高強度が必要とされ且つプレス成形な
どの加工が施される成形用素材としての高強度高延性ス
テンレス鋼帯の製造法を提供するものである。
TECHNICAL FIELD The present invention relates to a novel industrial production method of a high-strength dual-phase chromium stainless steel strip having excellent ductility and strength and ductility with small in-plane anisotropy, It is intended to provide a method for producing a high-strength and high-ductility stainless steel strip as a forming material which requires high strength and is subjected to processing such as press forming.

〔この分野の背景〕[Background of this field]

クロムを主合金成分として含有するクロムステンレス鋼
にはマルテンサイト系ステンレス鋼とフエライト系ステ
ンレス鋼とがある。いずれも,クロムおよびニッケルを
主合金成分として含有するオーステナイト系ステンレス
鋼に比べて安価であり,そして強磁性を有し熱膨脹係数
が小さいなどの物性面でオーステナイト系ステンレス鋼
には見られない特徴を有するので,単に経済的な理由の
みならず特性面からクロムステンレス鋼に限定される用
途も多い。特に近年の電子機器や精密機械部品などの分
野では,その需要拡大にともなってクロムステンレス鋼
板を使用する用途において加工成品の高機能化,小型
化,一体化,高精度化並びに加工工程の簡略化に対する
要求が益々厳しくなってきている。このために,ステン
レス鋼本来の耐食性や上述のクロムステンレス鋼の特質
に加えて,クロムステンレス鋼板の素材面では,一層の
強度,加工性や精度が必要とされる。したがって,高強
度と高延性という相反する特性を兼備したもの,素材鋼
板時点での形状や板厚精度に優れたもの,加工後の形状
精度に優れるといった諸特性を合わせもつクロムステン
レス鋼板素材の出現が待たれている。
The chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferrite stainless steel. All of them are less expensive than austenitic stainless steels containing chromium and nickel as main alloying components, and have characteristics not found in austenitic stainless steels in terms of physical properties such as ferromagnetism and small thermal expansion coefficient. As a result, there are many applications that are limited to chrome stainless steel not only for economic reasons but also for their characteristics. Especially in the fields of electronic devices and precision machine parts in recent years, the demand for chrome stainless steel sheets has increased, and the processing products have become highly functional, compact, integrated, highly accurate, and simplified. The demand for is becoming more and more severe. For this reason, in addition to the original corrosion resistance of stainless steel and the above-mentioned characteristics of chrome stainless steel, further strength, workability and precision are required in terms of the material surface of chrome stainless steel. Therefore, the advent of a chrome stainless steel sheet material that has various characteristics such as high strength and high ductility, which are contradictory characteristics, excellent shape and thickness accuracy at the time of material steel sheet, and excellent shape accuracy after processing. Is waiting.

〔従来の技術〕[Conventional technology]

従来のクロムステンレス鋼板素材について,強度の観点
から見ると,先ずマルテンサイト系ステンレス鋼が高強
度を有するクロムステンレス鋼として良く知られてい
る。例えばJIS G 4305の冷間圧延ステンレス鋼板にはマ
ルテンサイト系ステンレス鋼として7種の鋼が規定され
ている。これらのマルテンサイト系ステンレス鋼は,Cが
0.08%以下(SUS410S)から0.60〜0.75%(SUS440A)で
あり,フェライト系ステンレス鋼に比べて同一Cr量レ
ベルで見ると,高いCを含有し,焼入れ処理または焼入
れ焼もどし処理により高強度を付与することができる。
例えば,このJIS G 4305において,0.26〜0.40%のCお
よび12.00〜14.00%のCrを含有するSUS420J2では,980
〜1040℃からの急冷による焼入れ後,150〜400℃空冷の
焼もどしによりHRC40以上の硬さが得られることが,そ
して,0.60〜0.75%のCおよび16.00〜18.00%のCrを含
有するSUS440Aでは,1010〜1070℃からの急冷による焼入
れ後,150〜400℃空冷の焼もどしにより,同じくHRC40以
上の硬さが得られることが示されている。
Regarding the conventional chromium stainless steel sheet material, from the viewpoint of strength, first, martensitic stainless steel is well known as chromium stainless steel having high strength. For example, JIS G 4305 cold-rolled stainless steel sheet defines seven types of steel as martensitic stainless steel. These martensitic stainless steels have C
It is 0.08% or less (SUS410S) to 0.60 to 0.75% (SUS440A), and when viewed at the same Cr content level compared to ferritic stainless steel, it contains high C, and high strength is given by quenching or quenching and tempering. can do.
For example, in JIS G 4305, SUS420J2, which contains 0.26 to 0.40% C and 12.00 to 14.00% Cr, is 980
After quenching by quenching from 〜1040 ℃, tempering with air cooling at 150〜400 ℃ can obtain hardness of HRC40 or more, and in SUS440A containing 0.60〜0.75% C and 16.00〜18.00% Cr. It has been shown that a hardness of HRC 40 or higher can be obtained by quenching by quenching from 1010 to 1070 ° C and then tempering with air cooling from 150 to 400 ° C.

一方,クロムステンレス鋼であるフェライト系ステンレ
ス鋼板では熱処理による硬化があまり期待できないの
で,強度を上昇させる方法としては焼なまし後,さらに
冷間で調質圧延を行って加工硬化による強度上昇を図る
ことが行われている。しかし,フェライト系ステンレス
鋼は元来が高強度を必要とする用途にあまり供されては
いないのが実状である。
On the other hand, in ferritic stainless steel sheets, which are chrome stainless steels, hardening due to heat treatment cannot be expected so much. Therefore, as a method of increasing strength, after annealing, temper rolling is further performed to increase strength by work hardening. Is being done. However, the fact is that ferritic stainless steel has not been used much for applications that originally require high strength.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

マルテンサイト系ステンレス鋼板では,焼入れまたは焼
入れ−焼もどし処理後の組織はその名称のごとく基本的
にはマルテンサイト組織であり,非常に高い強度および
硬さが得られる反面,伸びは非常に低い。そのため,焼
入れまたは焼入れ焼もどし処理を施したのではその後の
加工が困難となる。特にプレス成形などの加工は焼入れ
または焼入れ焼もどし後では不可能である。したがって
加工が施される場合には焼入れまたは焼入れ焼もどし前
に施される。すなわち,素材メーカーからは焼なました
状態,つまり,JIS G 4305の表16にも示されるように強
度および硬さの低い軟質な状態で出荷され,加工メーカ
ーにおいて最終成品にほぼ近い形状に加工された後,焼
入れまたは焼入れ焼もどし処理を施すのが通常である。
この焼入れまたは焼入れ焼もどし処理を施すことにより
生成する表面の酸化皮膜(スケール)は表面の美麗さが
重要視されるステンレス鋼では好ましくない場合が多
く,その対策として真空もしくは不活性ガス雰囲気によ
る熱処理を施したり,熱処理後に研磨などによりスケー
ルを除去するなどの工程が必要となる。いずれにして
も,マルテンサイト系ステンレス鋼板では高強度を得る
ためには加工メーカーでの熱処理工程が不可欠であると
いう加工メーカー側での負担増があり,またこのために
最終製品のコストアップは避けられないという問題があ
った。
In the martensitic stainless steel sheet, the structure after quenching or quenching-tempering is basically a martensitic structure as its name suggests, and although very high strength and hardness can be obtained, the elongation is very low. Therefore, the subsequent processing becomes difficult if the quenching or quenching and tempering treatment is performed. In particular, processing such as press molding is impossible after quenching or quenching and tempering. Therefore, when it is processed, it is applied before quenching or quenching and tempering. That is, the material manufacturer shipped in an annealed state, that is, in a soft state with low strength and hardness as shown in Table 16 of JIS G 4305, and processed into a shape close to the final product by the processing manufacturer. After that, it is usual to carry out quenching or quenching and tempering.
The surface oxide film (scale) generated by this quenching or quenching and tempering treatment is often not preferable in stainless steel where surface beauty is important, and as a countermeasure, heat treatment in a vacuum or an inert gas atmosphere It is necessary to perform steps such as applying heat treatment and removing scale by polishing after heat treatment. In any case, in order to obtain high strength with martensitic stainless steel sheets, the heat treatment process at the processing manufacturer is indispensable, which increases the burden on the processing manufacturer. Therefore, the cost increase of the final product is avoided. There was a problem that I could not.

一方,フェライト系ステンレス鋼板を調質圧延により強
度を上昇させた場合には,伸びの低下が著しくなって強
度−延性バランスが悪くなる結果,加工性に劣ることに
なる。そして,調質圧延による強度上昇の程度は引張強
さよりも耐力の方が著しく高い。このために高圧延率に
なると耐力と引張強さの差が小さくなり,降伏比(=耐
力/引張強さ)が1に近くなって材料の塑性加工域が非
常に狭くなると共に,耐力が高いとスプリングバックが
大きくなってプレス加工などの後の形状性が悪くなる。
さらに調質圧延材は強度および伸びの面内異方性が非常
に大きく,軽度のプレス加工などでも加工後の形状が悪
くなる。また,圧延による加工歪みは板の表面に近いほ
ど大きいという特徴があるため,調質圧延材では板厚方
向のひずみ分布が不均一になることが避けられない。こ
れは残留応力の板厚方向の不均一分布をもたらし,特に
極薄鋼板では打抜き加工やフオトエッチング処理による
穴あけ加工後に板の反りなどの形状変化を生ずる場合が
あり,電子部品などの高精度が必要とされる用途では大
きな問題となる。以上の材質特性面での問題のみなら
ず,調質圧延材はその製造性においても多くの問題を抱
えている。先ず強度の制御について見ると,調質圧延は
冷間圧延による加工硬化を利用しているため圧延率が強
度を決定する最も重要な因子である。したがって,成品
として板厚精度に優れ且つ目標の強度レベルを精度よく
安定して得るためには,圧延率の厳密な制御,具体的に
は調質圧延前の初期板厚の厳密な管理が非常に重要であ
ることに加えて,調質圧延前の素材の強度レベルの管理
が必要となる。また形状制御の面では,いわゆるスキン
パス圧延やテンパーローリングと呼ばれる形状修正を目
的とした高々2〜3%の軽圧延率の調質圧延とは異な
り,高強度化を目的とする調質圧延では圧延率が数十パ
ーセントにもおよぶ実質的な冷間圧延であるため,冷延
ままで形状性に優れた鋼帯を得ることは困難である。こ
のため,形状修正を目的として材料の回復・再結晶温度
域よりも低く軟化しない温度域に加熱し,応力除去処理
を必要とする場合がある。このように調質圧延材は製造
性においても数々の問題がある。
On the other hand, when the strength of a ferritic stainless steel sheet is increased by temper rolling, the elongation decreases significantly and the balance between strength and ductility deteriorates, resulting in poor workability. The degree of strength increase due to temper rolling is significantly higher in proof stress than in tensile strength. For this reason, when the rolling ratio is high, the difference between the yield strength and the tensile strength becomes small, the yield ratio (= yield strength / tensile strength) approaches 1, and the plastic working area of the material becomes extremely narrow and the yield strength is high. And the spring back becomes large and the formability after pressing etc. deteriorates.
Furthermore, the temper-rolled material has a very large in-plane anisotropy of strength and elongation, and the shape after processing deteriorates even with mild press working. In addition, since the processing strain due to rolling increases as it approaches the surface of the plate, it is unavoidable that strain distribution in the plate thickness direction becomes uneven in temper-rolled material. This causes a non-uniform distribution of residual stress in the plate thickness direction, and especially for ultra-thin steel plates, shape changes such as plate warpage may occur after punching or hole-punching by photo-etching, which makes high precision of electronic components and the like difficult. It is a big problem in the required application. In addition to the above problems in terms of material properties, temper rolled materials have many problems in terms of manufacturability. Looking first at the strength control, temper rolling is the most important factor that determines strength, because it uses work hardening by cold rolling. Therefore, strict control of the rolling rate, specifically, strict control of the initial plate thickness before temper rolling is extremely important for obtaining a product with excellent plate thickness accuracy and stable and accurate target strength level. It is important to control the strength level of the material before temper rolling. In terms of shape control, unlike temper rolling with a light rolling rate of at most 2 to 3% for the purpose of shape correction called so-called skin pass rolling or temper rolling, temper rolling for the purpose of increasing strength requires rolling. Since it is a substantial cold rolling with a rate of several tens of percent, it is difficult to obtain a steel strip with excellent shape as cold rolled. Therefore, in order to correct the shape, the stress relieving process may be required by heating the material to a temperature range lower than the material recovery / recrystallization temperature range and not softening. As described above, the temper rolled material has various problems in terms of manufacturability.

以上の調質圧延に起因する問題のみならず,フェライト
系ステンレス鋼板では本質的な欠点とも言えるリジング
の問題がある。リジングは通常,フェライト系ステンレ
ス鋼の冷延焼鈍板にプレス成形などの加工を施した際に
生ずる表面欠陥の一種であるが,冷間圧延後においても
一般に冷延リジングと呼ばれるリジングを発生する場合
があり,表面の粗度が重視される用途ではやはり大きな
問題となる。
In addition to the above problems caused by temper rolling, ferritic stainless steel sheets have a problem of ridging, which can be said to be an essential defect. Ridging is usually a type of surface defect that occurs when cold-rolled and annealed ferritic stainless steel plates are subjected to processing such as press forming. However, when ridging that is commonly called cold-rolled ridging occurs even after cold rolling However, this is still a major problem in applications where surface roughness is important.

〔問題点を解決する手段〕[Means for solving problems]

前述のような問題は,適度な高強度を有し且つ所望の形
状に加工し得る良好な延性および加工性を具備し,異方
性が小さくリジング発生のないクロムステンレス鋼材料
が素材メーカー側で鋼板または鋼帯の形で提供できれば
解決し得る。そこで本発明者らはこの解決を目的として
化学成分並びに製造条件に両面からクロムステンレス鋼
について広範な研究を続けて来た。その結果,鋼成分を
適正に制御し,さらに,製造条件として,熱間圧延のあ
と,場合によっては更に熱延板焼鈍を行ったあと,フェ
ライト単相域での中間焼鈍を挟む二回以上の冷間圧延を
行って製品板厚の冷延鋼帯を製造し,この冷延鋼帯を,
従来のフエライト単相域温度での仕上焼鈍つまり鋼板ま
たは鋼帯成品に施す焼なまし処理ではなく,適正なフエ
ライト+オーステナイト二相域への加熱とその後の急冷
処理からなる特定条件下での連続仕上熱処理を施すなら
ば,実質的に軟質なフェライト相と硬質なマルテンサイ
ト相が均一に混在した複相組織とすることができ,前記
の問題点の実質上すべてが解決できるという素晴らしい
成果を得ることができた。
As for the above-mentioned problems, the material manufacturer has a chrome stainless steel material that has moderately high strength, good ductility and workability that can be processed into a desired shape, and has little anisotropy and no ridging. It can be solved if it can be provided in the form of steel plate or strip. Therefore, the present inventors have conducted extensive research on chromium stainless steel from both sides in terms of chemical composition and manufacturing conditions for the purpose of solving this problem. As a result, the steel components were properly controlled, and as a manufacturing condition, after hot rolling and, if necessary, further hot strip annealing, two or more times with intermediate annealing in the ferrite single-phase region sandwiched. Cold rolling is carried out to produce a cold rolled steel strip with the product thickness, and this cold rolled steel strip is
Rather than the conventional finish annealing at the temperature of the ferrite single-phase region, that is, the annealing treatment applied to the steel plate or strip product, continuous heating under the appropriate conditions including heating to the appropriate ferrite + austenite two-phase region and subsequent quenching. If finishing heat treatment is applied, it is possible to form a multi-phase structure in which a substantially soft ferrite phase and a hard martensite phase are uniformly mixed, and it is possible to solve virtually all of the above-mentioned problems, which is an excellent result. I was able to.

かくして本発明は, 重量%において, C:0.10%以下, Si:2.0%以下, Mn:1.0%以下, P:0.040%以下, S:0.030%以下, Ni:0.60%以下, Cr:10.0以上14.0%以下, N:0.08%以下, O:0.02%以下, を含有し,場合によっては,さらに0.20%以下のAl,0.0
050%以下のB,1.0%以下のMo,0.10%以下のREM,0.20%
以下のYの一種または二種以上を含有し,残部がFeお
よび不可避的不純物からなる鋼であって,且つ 0.02%≦C+N≦0.12% の関係を満足する鋼のスラブを製造し,これを熱間圧延
して熱延鋼帯を製造する工程, フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼板を製造する工程,
そして, 得られた冷延鋼帯を連続熱処理炉に通板して,Ac点以
上1100℃以下のフェライト+オーステナイトの二相域温
度に10分以内の保持のあと,最高加熱温度から100℃ま
でを平均冷却速度1℃/sec以上500℃/sec以下で冷却す
る仕上熱処理を施す連続仕上熱処理工程, からなる,且つHV200以上の硬さを有する面内異方性の
小さい高延性高強度の複相組織(実質上フェライトとマ
ルテンサイトからなる組織)のクロムステンレス鋼帯の
製造法を提供するものである。
Thus, in the present invention, in% by weight, C: 0.10% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0.60% or less, Cr: 10.0 or more 14.0. % Or less, N: 0.08% or less, O: 0.02% or less, and in some cases, 0.20% or less of Al, 0.0
B less than 050%, Mo less than 1.0%, REM less than 0.10%, 0.20%
A steel slab containing one or more of the following Ys, the balance of which is Fe and unavoidable impurities, and which satisfies the relationship of 0.02% ≤ C + N ≤ 0.12%, is manufactured and heat-treated. Process of hot rolling to produce hot rolled steel strip, process of producing cold rolled steel sheet of product thickness by two or more cold rolling processes with intermediate annealing of ferrite single phase temperature heating,
Then, the obtained cold-rolled steel strip is passed through a continuous heat treatment furnace, and the two-phase region temperature of ferrite + austenite of Ac 1 point or more and 1100 ° C or less is held for 10 minutes or less, and then 100 ° C from the maximum heating temperature. It has a continuous finishing heat treatment step of performing finishing heat treatment of cooling at an average cooling rate of 1 ° C / sec or more and 500 ° C / sec or less, and has a hardness of HV200 or more and a small in-plane anisotropy and high ductility and high strength. It is intended to provide a method for producing a chromium stainless steel strip having a multiphase structure (structure substantially consisting of ferrite and martensite).

本発明法によれば前述の問題点を実質上すべてが解決さ
れるのみならず,鋼組成または仕上熱処理時の加熱温度
並びに冷却速度を制御することにより強度を自在に且つ
簡単に調整できるという点でクロムステンレス鋼板また
は鋼帯素材の工業的構造にあたっての有利且つ新しい製
造技術を提供するものであり,従来より市場に出荷され
ているマルテンサイト系ステンレス鋼板または鋼帯やフ
ェライト系ステンレス鋼板または鋼帯では有しない延性
と強度の両特性を兼備し且つ延性と強度の面内異方性の
少ない新規クロムステンレス鋼材料を市場に提供するも
のである。なお,本発明法によれば,最終の連続仕上熱
処理工程を経た成品は鋼帯の形態で工業的に製造される
ものであり,これが市場に出荷される場合には鋼帯のま
ま(コイル)か或いは鋼板に整形された状態となる。
According to the method of the present invention, not only substantially all the above problems are solved, but also the strength can be freely and easily adjusted by controlling the steel composition or the heating temperature and the cooling rate during the finish heat treatment. It provides an advantageous and new manufacturing technology for the industrial structure of chrome stainless steel sheet or steel strip material, and has been conventionally marketed in the martensitic stainless steel sheet or steel strip or ferritic stainless steel sheet or steel strip. The present invention provides the market with a new chromium stainless steel material having both ductility and strength, which does not exist, and having low in-plane anisotropy of ductility and strength. According to the method of the present invention, the product which has undergone the final continuous finishing heat treatment step is industrially manufactured in the form of a steel strip, and when it is shipped to the market, the steel strip remains a coil (coil). Alternatively, it is in a state of being shaped into a steel plate.

従来より,例えばフェライト系ステンレス鋼の代表鋼種
であるSUS430においても二相域温度に加熱すればオース
テナイトが生成し,このオーステナイトは急冷によって
マルテンサイトに変態してフエライト+マルテンサイト
の二相組織になること自体は知られていた。しかしなが
ら,高温でオーステナイトを生成するフェライト系ステ
ンレス鋼帯の製造においては,冷延後の熱処理はあくま
でもフエライト単相域温度での焼なまし処理であり,マ
ルテンサイトを生成するような高温の熱処理は延性の低
下などの材質上の劣化をもたらすものとして回避するこ
とが常識であり,工業的な鋼帯の実際の製造面では全く
顧みられなかった。
Conventionally, for example, even in SUS430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to the two-phase region temperature, and this austenite is transformed into martensite by quenching and becomes a two-phase structure of ferrite and martensite. The thing itself was known. However, in the production of ferritic stainless steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is merely an annealing treatment at the ferrite single-phase region temperature, and high-temperature heat treatment that produces martensite is not possible. It is common sense to avoid this as causing deterioration of the material such as deterioration of ductility, and it was never neglected in the actual manufacturing of industrial steel strip.

したがって,クロムステンレス鋼の冷延工程後に本発明
のような連続熱処理を想定し且つフェライト+オーステ
ナイト二相域に加熱する仕上熱処理を施した場合の加熱
温度と強度および延性の関係や延性および強度の異方性
などについて詳細に研究がなされた例もない。本発明
は,高強度クロムステンレス鋼帯の工業的製造法として
従来顧みられることのなかった全く新しい製造方法を提
供するものであり,その結果として従来のクロムステン
レス鋼板または鋼帯では有しなかった優れた特性をもつ
新規なクロムステンレス鋼板材料を提供するものであ
る。
Therefore, the relationship between the heating temperature and the strength and the ductility, the ductility and the strength of the ductility and the strength in the case where the continuous heat treatment as in the present invention is assumed after the cold rolling process of the chromium stainless steel and the finishing heat treatment for heating to the ferrite + austenite two-phase region is performed. There are no examples of detailed research on anisotropy. INDUSTRIAL APPLICABILITY The present invention provides a completely new manufacturing method which has never been neglected as an industrial manufacturing method of high strength chromium stainless steel strip, and as a result, does not have the conventional chromium stainless steel sheet or steel strip. It is intended to provide a novel chrome stainless steel plate material having excellent properties.

〔発明の詳述〕[Detailed Description of the Invention]

以下に,本発明で規制する鋼の化学成分値の範囲限定の
理由並びに本発明法で採用する各製造工程の内容を具体
的に詳述する。
The reason for limiting the range of the chemical composition value of steel controlled by the present invention and the content of each manufacturing process adopted in the method of the present invention will be specifically described below.

まず,本発明法を適用するクロムステンレス鋼の成分の
含有量範囲(重量%)の限定理由は次のとおりである。
First, the reasons for limiting the content range (% by weight) of the components of chromium stainless steel to which the method of the present invention is applied are as follows.

CおよびNは,強力なオーステナイト生成元素であると
共にマルテンサイト強化能の大きい元素であるから,連
続仕上熱処理後の強度の制御並びに高強度化に有効な元
素である。したがって,連続仕上熱処理工程後に20%以
上のマルテンサイトを含む複相組織としHv200以上の十
分な強度を得るには(C+N)量として少なくとも0.02
%以上を必要とする。しかし,CとN量があまり高いと連
続仕上熱処理工程後に生成するマルテンサイト量が多く
なり,場合によっては100%マルテンサイトとなると共
にマルテンサイト相そのものの硬さも非常に高くなるの
で高強度は得られるものの延性は低下する。したがっ
て,(C+N)量として0.12%以下とし,0.02%≦C+
N≦0.12%の関係を満足させることが必要であり,また
C量としては0.10%以下とする。
Since C and N are strong austenite-forming elements and have a large martensite strengthening ability, they are elements effective for controlling the strength and increasing the strength after continuous finishing heat treatment. Therefore, in order to obtain a multiphase structure containing 20% or more of martensite after the continuous finishing heat treatment process and to obtain sufficient strength of Hv200 or more, the (C + N) content should be at least 0.02
Need more than%. However, if the C and N contents are too high, the amount of martensite formed after the continuous finishing heat treatment step increases, and in some cases, the martensite phase becomes 100% and the hardness of the martensite phase itself becomes very high. However, the ductility decreases. Therefore, the amount of (C + N) should be 0.12% or less, and 0.02% ≦ C +
It is necessary to satisfy the relationship of N ≦ 0.12%, and the amount of C should be 0.10% or less.

また,Nは溶解度の関係から多量に添加することは困難で
あると共に,多量の添加は表面欠陥の増加を招くため0.
08%以下とする。
Further, it is difficult to add a large amount of N due to its solubility, and addition of a large amount causes an increase in surface defects.
08% or less.

Siはフェライト生成元素であると共にフェライトおよ
びマルテンサイトの両相に対し強力な固溶強化能を有す
る。したがってマルテンサイト量の制御および強度レベ
ルの制御に有効な元素である。しかしながら多量の添加
は熱間加工性や冷間加工性の低下を招くために2.0%を
上限とする。
Si is a ferrite forming element and has a strong solid solution strengthening ability for both the ferrite and martensite phases. Therefore, it is an effective element for controlling the amount of martensite and controlling the strength level. However, addition of a large amount causes deterioration of hot workability and cold workability, so the upper limit is 2.0%.

MnとNiは,オーステナイト生成元素であり,連続仕上
熱処理後のマルテンサイト量並びに強度の制御に有効な
元素である。しかし多量に添加すると製品が高価とな
り,本発明鋼帯の特徴の一つである経済性に影響を与え
る。したがって,通常許容されている限度のMn;1.0%,
Ni;0.6%をそれぞれ上限とする。
Mn and Ni are austenite forming elements, and are elements effective for controlling the amount of martensite and the strength after continuous finishing heat treatment. However, if added in a large amount, the product becomes expensive, which affects the economical efficiency, which is one of the features of the steel strip of the present invention. Therefore, Mn: 1.0% of the normally accepted limit,
Ni; 0.6% is the upper limit.

Sは,高すぎると耐食性や熱間加工性に悪影響をおよぼ
すので低いほうが好ましく,0.030%を上限とする。
If S is too high, it adversely affects corrosion resistance and hot workability, so S is preferably low, and the upper limit is 0.030%.

Pは,固溶強化能の大きい元素であるが,多量の添加は
靭性の低下を招く場合があるため,通常許容されている
程度の0.040%以下とする。
P is an element having a large solid solution strengthening ability, but addition of a large amount may lead to a decrease in toughness, so the content of P is set to 0.040% or less, which is the generally accepted level.

Crは,ステンレス鋼としての耐食性を維持するうえで
少なくとも10.0%は必要最低量として含有させるべきで
あるが,あまりCr量が高いと,マルテンサイト相を生
成させて高強度を得るに必要なオーステナイト生成元素
の量が多くなると共に製品が高価となるので,14.0%を
上限とする。
In order to maintain the corrosion resistance as stainless steel, Cr should be contained as at least 10.0% as a necessary minimum amount, but if the Cr amount is too high, the austenite necessary for forming a martensite phase and obtaining high strength is obtained. Since the amount of produced elements increases and the product becomes expensive, the upper limit is 14.0%.

Oは,酸化物系の非金属介在物を形成し,鋼の清浄度を
低下させるので低い方が望ましく,0.02%以下とする。
O forms an oxide-based non-metallic inclusion and reduces the cleanliness of steel, so O is preferably low, and is made 0.02% or less.

Alは,脱酸に有効な元素であると共にプレス加工性に悪
影響を及ぼすA2系介在物を著減せしめる効果がある。し
かし,0.20%を超えて含有させてもその効果が飽和する
ばかりでなく表面欠陥の増加を招くなどの悪影響をもた
らすのでその上限を0.20%とする。
Al is an effective element for deoxidation and has the effect of significantly reducing A 2 -based inclusions that adversely affect press workability. However, if the content exceeds 0.20%, not only the effect is saturated but also adverse effects such as increase in surface defects are caused, so the upper limit is made 0.20%.

Bは,靭性改善に有効な成分であるが,極く微量でその
効果はもたらされ,0.0050%を超えるとその効果が飽和
するのでその上限を0.0050%とする。
B is a component effective for improving toughness, but its effect is brought about by a very small amount, and when the amount exceeds 0.0050%, the effect is saturated, so the upper limit is made 0.0050%.

Moは,耐食性の向上に有効な元素であるが,多量に添
加すると製品が高価となるために1.0%を上限とする。
Mo is an element effective in improving the corrosion resistance, but if added in a large amount, the product becomes expensive, so the upper limit is 1.0%.

REMおよびYは,熱間加工性の向上に有効な元素であ
る。また,耐酸化性の向上にも有効な元素である。高温
での連続仕上熱処理を施す本発明法においては酸化スケ
ールの発生を抑制してデスケール後に良好な表面肌を得
るのに有効に作用する。しかし,これらの効果は,REMで
は0.10%を超えると,またYでは0.20%を超えると飽和
するので,上限をREMは0.10%,Yは0.20%とする。
REM and Y are effective elements for improving hot workability. It is also an effective element for improving oxidation resistance. In the method of the present invention in which continuous finishing heat treatment is performed at a high temperature, generation of oxide scale is suppressed and it effectively acts to obtain a good surface texture after descaling. However, these effects saturate when the REM exceeds 0.10% and when the Y exceeds 0.20%, so the upper limits are 0.10% for REM and 0.20% for Y.

次に本発明による複相組織鋼帯の各製造工程の内容につ
いて説明する。
Next, the content of each manufacturing process of the multiphase structure steel strip according to the present invention will be described.

本発明法においては,前記のように成分範囲を調整した
クロムステンレス鋼のスラブを通常の製鋼鋳造技術によ
って製造し,このスラブを熱間圧延して熱延鋼帯を製造
する。熱間圧延後は熱延板焼鈍とデスケールを行なうの
がよい。熱延板焼鈍は必ずしも実施する必要はないが,
この焼鈍によって熱延鋼帯を軟質化させて冷延性の向上
を図ったり,熱延鋼帯に残存する変態相(高温でオース
テナイト相であった部分)をフェライト+炭化物に変態
・分解させることができるので,冷間圧延・連続仕上熱
処理後に均一な複相組織をもつ鋼帯とするうえで望まし
い。この熱延板焼鈍は連続焼鈍または箱焼鈍のいずれで
もよい。またデスケール工程は通常の酸洗を行なえばよ
い。ここまでのスラブ製造工程,熱間圧延工程,熱延板
焼鈍工程および脱スケール工程は従来のクロムステンレ
ス鋼帯の製造技術をそのまま本発明法に適用することが
できる。
In the method of the present invention, a slab of chromium stainless steel whose composition range has been adjusted as described above is manufactured by a normal steelmaking casting technique, and this slab is hot rolled to manufacture a hot rolled steel strip. After hot rolling, it is preferable to anneal the hot rolled sheet and descale. Although it is not always necessary to perform hot-rolled sheet annealing,
By this annealing, the hot rolled steel strip can be softened to improve the cold rolling property, and the transformation phase (the portion that was austenite phase at high temperature) remaining in the hot rolled steel strip can be transformed and decomposed into ferrite + carbide. Therefore, it is desirable to obtain a steel strip with a uniform multiphase structure after cold rolling and continuous finishing heat treatment. This hot-rolled sheet annealing may be either continuous annealing or box annealing. In the descaling step, ordinary pickling may be performed. For the slab manufacturing process, hot rolling process, hot rolled sheet annealing process and descaling process up to this point, the conventional chrome stainless steel strip manufacturing technology can be applied to the method of the present invention as it is.

次いで冷間圧延工程と連続仕上熱処理工程を経て複相組
織鋼帯を製造するのであるが,これらの工程は本発明法
において特徴的な工程であるので詳しく説明する。
Next, a cold rolling process and a continuous finishing heat treatment process are carried out to produce a multi-phase steel strip, and these processes are characteristic steps in the method of the present invention and will be described in detail.

「冷間圧延工程」 冷間圧延工程では,熱延鋼帯(必要に応じて熱延板焼鈍
を行った後の熱延鋼帯)をフェライト単相域温度加熱の
中間焼鈍を挟む2回以上の冷間圧延によって製品板厚に
まで圧延する工程である。この冷間圧延の間に挟む中間
焼鈍は連続仕上熱処理工程後の複相組織鋼帯の延性の面
内異方性を少なくする上で重要な役割を果たす。これを
代表的な試験結果に基づいて説明する。
"Cold rolling process" In the cold rolling process, the hot rolled steel strip (hot rolled steel strip after annealing the hot rolled sheet if necessary) is sandwiched by intermediate annealing of ferrite single phase temperature heating at least twice. This is a process of rolling to a product plate thickness by cold rolling. The intermediate annealing sandwiched between the cold rolling plays an important role in reducing the in-plane anisotropy of ductility of the multiphase structure steel strip after the continuous finishing heat treatment step. This will be described based on a representative test result.

第1表に示す化学成分を有する鋼A,BおよびCの鋼を溶
製し,通常の条件の熱間圧延にて板厚3.6mmの熱延板と
し,780℃×6時間加熱,炉冷の焼鈍を施したあと酸洗を
行った。この熱延板を用いて冷間圧延条件と仕上熱処理
条件を変えて試験を行った(第1図および第2図のデー
タもこの試験結果を示したものであるが,その内容につ
いては後述する)。
Steels A, B and C having the chemical composition shown in Table 1 were smelted and hot-rolled under normal conditions to form hot-rolled sheets with a thickness of 3.6 mm, heated at 780 ° C for 6 hours, and cooled at the furnace. After being annealed, it was pickled. Tests were carried out using this hot-rolled sheet under different cold rolling conditions and finish heat treatment conditions (the data in FIGS. 1 and 2 also show the test results, the contents of which will be described later). ).

下記の第2表は,第1表の鋼Bについて, (a).冷間圧延のさいに中間焼鈍を挟む2回冷間圧延
を行なって仕上熱処理を施した複相組織材(以後,2CR材
と呼ぶ), (b).中間焼鈍を行なうことなく1回のみの冷間圧延
を行なって仕上熱処理を施した複相組織材(以後,1CR材
と呼ぶ), (c),1CR材および2CR材と同等の強度を冷間圧延によ
って付与した調質圧延材, の3種の方法により製造した各鋼板の引張強さ(kgf/mm
2)および伸び(%)を圧延方向の値(L),圧延方向
に対して45゜方向の値(D)および圧延方向に対し90゜
方向の値(T)を示したものである。
Table 2 below shows (a) for Steel B in Table 1. A dual-phase structure material (hereinafter referred to as 2CR material) that has been subjected to finishing heat treatment by performing twice cold rolling with intermediate annealing during cold rolling, (b). A multi-phase structure material (hereinafter referred to as 1CR material), which has been subjected to finishing heat treatment by performing only one cold rolling without intermediate annealing, (c), has the same strength as 1CR material and 2CR material. Tensile strength (kgf / mm) of each steel sheet manufactured by three methods: temper-rolled material applied by rolling
2 ) and elongation (%) are shown in the rolling direction (L), in the rolling direction 45 ° (D) and in the rolling direction 90 ° (T).

なお,(a)の2CR材は,前記の熱延板を冷間圧延によ
り板厚1mmとし,800℃×1分加熱,空冷の中間焼鈍を行
った後,さらに冷間圧延により板厚0.3mmの冷間圧延板
とした。そして,この冷間圧延板を980℃の温度で1分
間均熱したあと,その温度から100℃までを平均冷却速
度20℃/secで冷却する仕上熱処理を施した。
The 2CR material in (a) was cold-rolled to a plate thickness of 1 mm, heated at 800 ° C for 1 minute, subjected to intermediate annealing of air cooling, and then cold-rolled to a thickness of 0.3 mm. It was a cold rolled plate. Then, this cold-rolled sheet was soaked at a temperature of 980 ° C for 1 minute and then subjected to a finish heat treatment of cooling from that temperature to 100 ° C at an average cooling rate of 20 ° C / sec.

また(b)の1CR材は,前記の熱延板を中間焼鈍を施す
ことなく冷間圧延にして板厚0.3mmとし,この冷間圧延
板を980℃の温度で1分間均熱したあと,その温度から1
00℃までを平均冷却速度20℃/secで冷却する仕上熱処理
を施した。
The 1CR material in (b) was cold-rolled to a thickness of 0.3 mm without intermediate annealing, and after the cold-rolled sheet was soaked at 980 ° C for 1 minute, 1 from that temperature
Finishing heat treatment for cooling up to 00 ° C at an average cooling rate of 20 ° C / sec was performed.

(c)の調質圧延材については,1CR材および2CR材と同
等の強度が板厚0.3mmの状態で得られるように,焼鈍後
の熱延板を所定の板厚まで冷間圧延し,焼鈍した後,所
定の圧延率で調質圧延した。すなわち,前記鋼Bの熱延
板(焼鈍,酸洗後のもの,3.6mm厚さ)を1.2mmに冷延し,
800℃×1分の焼鈍後0.3mmに調質圧延した(調質圧延率
75%)。
For the temper-rolled material of (c), the annealed hot-rolled sheet was cold-rolled to a predetermined sheet thickness so that the same strength as the 1CR and 2CR sheets could be obtained with a sheet thickness of 0.3 mm. After annealing, temper rolling was performed at a predetermined rolling rate. That is, the hot rolled sheet of Steel B (annealed, pickled, 3.6 mm thick) is cold rolled to 1.2 mm,
After annealing at 800 ° C for 1 minute, it was temper-rolled to 0.3 mm (tempered rolling rate
75%).

第2表から明らかなように,2CR材および1CR材ともに複
相組織材の伸びは,同等の硬さおよび強度レベルの調質
圧延材に比べて著しく優れており,強度−伸びバランス
に優れていることがわかる。また,内面異方性について
見ると,引張強さでは2CR材および1CR材ともに複相組織
材は方向による引張強さの差,つまり面内異方性が小さ
いのに対し,調質圧延材は引張強さの最も低いL方向と
最も高いT方向の引張強さの差は10kgf/mm2以上もあり
面内異方性が大きい。また伸びについては,伸びが高い
複相組織材は伸びが低い調質圧延材よりも面内異方性も
比較的小さく,特に2CR材は1CR材よりも面内異方性が更
に小さいことがわかる。すなわち,中間焼鈍は複相組織
材の伸びの面内異方性を小さくする上で非常に重要であ
ると言える。したがって,第2表の結果から,中間焼鈍
を挟んだ冷間圧延を経て,複相組織とする仕上熱処理を
施した場合には,延性に優れ且つ強度および延性の面内
異方性の小さい複相組織の高強度クロムステンレス鋼板
が得られることが明らかである。
As is clear from Table 2, the elongation of the multi-phase microstructured materials for both 2CR and 1CR is significantly superior to that of temper-rolled materials of equivalent hardness and strength level, and it has an excellent strength-elongation balance. You can see that Regarding the internal surface anisotropy, the difference in tensile strength depending on the direction, that is, the in-plane anisotropy is small in the 2CR and 1CR materials in terms of tensile strength. The difference in tensile strength between the L direction with the lowest tensile strength and the T direction with the highest tensile strength is 10 kgf / mm 2 or more, and the in-plane anisotropy is large. Regarding the elongation, the in-plane anisotropy of the multiphase structure material with high elongation is relatively smaller than that of the temper-rolled material with low elongation, and in particular, 2CR material has even smaller in-plane anisotropy than 1CR material. Recognize. That is, it can be said that the intermediate annealing is very important in reducing the in-plane anisotropy of elongation of the multiphase structure material. Therefore, from the results shown in Table 2, when cold rolling with intermediate annealing is performed and a finishing heat treatment to give a multi-phase structure is performed, the ductility is excellent and the strength and ductility are small in the in-plane anisotropy. It is clear that a high-strength chromium stainless steel sheet having a phase structure can be obtained.

この試験結果に見られるように,また後記の実施例でも
示すように,複相組織材の伸びの面内異方性は,冷間圧
延工程を中間焼鈍を挟む2回以上の冷間圧延を実施する
ことによって小さくすることができる。したがって,延
性の面内異方性の小さい複相組織鋼帯を製造するうえ
で,製品板厚までの板厚減少の2回以上の冷間圧延で行
い,その間に中間焼鈍を実施することが本発明法におい
て重要である。この中間焼鈍の加熱温度はフェライト単
相域温度,すなわち,Ac点以下の温度である。また中
間焼鈍の前後の冷間圧延の冷間圧延率は各々少なくとも
30%以上とするのがよい。
As can be seen from the test results and as shown in the examples described later, the in-plane anisotropy of the elongation of the multiphase structure material is determined by performing the cold rolling process in two or more cold rolling steps with intermediate annealing. It can be reduced by implementing. Therefore, in producing a multi-phase steel strip with low ductility and in-plane anisotropy, cold rolling may be performed twice or more to reduce the sheet thickness to the product sheet thickness, and intermediate annealing may be performed in the meantime. It is important in the method of the present invention. The heating temperature of this intermediate annealing is the ferrite single-phase region temperature, that is, the temperature below the Ac 1 point. The cold rolling ratio of cold rolling before and after the intermediate annealing is at least
30% or more is recommended.

「連続仕上熱処理工程」 冷間圧延工程で得られた製品板厚の冷延鋼帯を次に連続
熱処理炉に通板して,Ac点以上で1100℃以下のフェラ
イト+オーステナイトの二相域温度に10分以内の保持の
あと,最高加熱温度から100℃までを平均冷却速度1℃/
sec以上,500℃/sec以下で冷却する連続仕上熱処理を施
すのであるが,この連続仕上熱処理工程は本発明法の最
も特徴とする工程であり,この連続仕上熱処理条件は後
記の実施例でも示すとおり本発明において重要な意義を
有している。この連続仕上熱処理工程での加熱条件と冷
却条件を規制した理由の概要を説明すると次のとおりで
ある。
"Continuous finishing heat treatment process" The cold-rolled steel strip with the product thickness obtained in the cold rolling process is then passed through a continuous heat treatment furnace, and the two-phase region of ferrite + austenite with Ac 1 point or more and 1100 ° C or less After keeping the temperature within 10 minutes, the average cooling rate from the maximum heating temperature to 100 ℃ is 1 ℃ /
A continuous finishing heat treatment of cooling at a temperature of not less than sec and not more than 500 ° C / sec is performed. This continuous finishing heat treatment step is the most characteristic step of the method of the present invention, and this continuous finishing heat treatment condition is also shown in Examples described later. As described above, it has important significance in the present invention. The outline of the reason why the heating condition and the cooling condition in this continuous finishing heat treatment step are regulated is as follows.

連続仕上熱処理時の加熱温度はフエライト+オーステナ
イト二相域温度であることが絶対条件である。このため
Ac点以上の温度とする。本発明法の実施にあたり,
連続熱処理炉に鋼帯を通板して低温から加熱した場合に
オーステナイトが生成し始める温度(つまりAc点の
温度)の近傍では温度変化に対するオーステナイト量の
変動が大きく,急冷後に安定した硬さが得られない場合
がある。しかし,本発明が対象とする鋼成分範囲におい
ては,Ac点より100℃以上の高温域に加熱した場合には
このような硬さの変動が実質上生じないことがわかっ
た。したがって,連続仕上熱処理時の加熱温度はAc
点以上,好ましくはAc点+100℃以上とするのがよ
い。より具体的には900℃以上,さらに好ましくは950℃
以上とするのがよい。一方,加熱温度の上限について
は,あまり高温では強度上昇が飽和するのみならず,場
合によっては低下することもあり,また製造コストの面
でも不利となるので1100℃を上限とするのがよい。
It is an absolute condition that the heating temperature during the continuous finishing heat treatment is a ferrite + austenite two-phase region temperature. Therefore, the temperature is set to Ac 1 point or higher. In carrying out the method of the present invention,
When the steel strip is passed through a continuous heat treatment furnace and heated from a low temperature, the amount of austenite varies greatly with temperature change near the temperature at which austenite begins to form (that is, the temperature at the Ac 1 point), and the hardness is stable after rapid cooling. May not be obtained. However, in the steel composition range targeted by the present invention, it was found that such hardness variation does not substantially occur when heated to a high temperature range of 100 ° C. or higher from the Ac 1 point. Therefore, the heating temperature for continuous finishing heat treatment is Ac 1
It is preferable that the temperature is not less than the point, preferably Ac 1 point + 100 ° C or more. More specifically, 900 ° C or higher, more preferably 950 ° C
The above is preferable. On the other hand, regarding the upper limit of the heating temperature, the strength increase may not only be saturated at too high a temperature but may be lowered in some cases, and it is disadvantageous in terms of manufacturing cost. Therefore, it is preferable to set the upper limit to 1100 ° C.

本発明法における連続仕上熱処理時のフエライト+オー
ステナイト二相域加熱の治金的意義として,Cr炭化
物,窒化物の固溶,オーステナイト相の生成,生成
したオーステナイト中へのCおよびNの濃縮の3点を挙
げることができる。本発明法で対象とするクロムステン
レス鋼帯の場合には,これらの対象はいずれも短時間の
うちにほぼ平衡状態に達するので,本発明における連続
仕上熱処理時の上記二相温度域での加熱時間は短時間,
おおむね10分間以内の加熱でよい。この短時間加熱でよ
いことは本発明法の実際操業の点でも生産効率,製造コ
ストの面から非常に有利である。以上の加熱条件および
保持時間によって以後の冷却によって生成するマルテン
サイト量が20容量%以上となるに必要なオーステナイト
を生成させることができる。
The metallurgical significance of the two-phase heating of ferrite + austenite during the continuous finishing heat treatment in the method of the present invention is as follows: solid solution of Cr carbide and nitride, formation of austenite phase, and concentration of C and N in the formed austenite. I can point. In the case of the chromium stainless steel strip targeted by the method of the present invention, all of these objects reach an almost equilibrium state in a short time, so that heating in the above two-phase temperature range during the continuous finishing heat treatment in the present invention is performed. Time is short,
Heating for about 10 minutes is enough. The fact that this short-time heating is sufficient is very advantageous in terms of production efficiency and manufacturing cost in the actual operation of the method of the present invention. By the above heating conditions and holding time, austenite necessary for the amount of martensite generated by subsequent cooling to be 20% by volume or more can be generated.

仕上熱処理時の冷却速度についてはマルテンサイト相と
軟質なフエライト相との複相組織を得るうえから1℃/s
ec以上の冷却速度とする必要があるが,500℃/secを超え
る冷却速度を得るのは実質上困難である。したがって,
本発明において二相温度域加熱からの冷却は1〜500℃/
secの範囲の冷却速度で実施する。この冷却速度は最高
加熱温度から100℃までの平均冷却速度とするが,オー
ステナイトがマルテンサイトに変態してしまった後の冷
却過程では必ずしもこの冷却速度を採用する必要はな
い。この冷却速度と冷却終点温度は前述の加熱条件によ
って高温で生成したオーステナイトがマルテンサイトに
変態するに十分なものである。冷却の方法としては気体
および/または液体の冷却媒体を鋼帯に吹き付ける強制
冷却方式または水冷ロールによるロール冷却方式などを
適用できる。このような条件での連続加熱と冷却はコイ
ル巻戻し機から巻取り機に至る間に加熱均熱帯域と急冷
帯域を有する連続熱処理炉を用いて実施することができ
る。
The cooling rate during the finishing heat treatment is 1 ℃ / s in order to obtain a multi-phase structure of the martensite phase and the soft ferrite phase.
It is necessary to set the cooling rate to ec or more, but it is practically difficult to obtain the cooling rate to exceed 500 ° C / sec. Therefore,
In the present invention, the cooling from the two-phase temperature range heating is 1 to 500 ° C /
Perform at a cooling rate within the range of sec. This cooling rate is the average cooling rate from the maximum heating temperature to 100 ° C, but it is not always necessary to adopt this cooling rate in the cooling process after the transformation of austenite into martensite. The cooling rate and the cooling end temperature are sufficient to transform the austenite produced at high temperature under the above heating conditions into martensite. As a cooling method, a forced cooling method in which a gas and / or liquid cooling medium is sprayed on a steel strip, a roll cooling method using a water cooling roll, or the like can be applied. Continuous heating and cooling under such conditions can be carried out using a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil rewinding machine and the winding machine.

第1図は,前記第1表の各鋼について,既に説明した方
法で製造した熱延板(熱延板焼鈍および酸洗後の熱延
板)を,冷間圧延により板厚1mmとし,800℃×1分・空
冷の中間焼鈍を行ったあとさらに800〜1100℃の間の各
温度で1分間均熱したあと,その温度から100℃までを
平均冷却速度20℃/secで冷却する仕上熱処理を施して得
られた仕上熱処理材のマルテンサイト量(容量%)と硬
さ(HV)を,仕上熱処理時の加熱温度の関係で示したも
のである(図中のA,B,Cは第1表の成分の鋼を表す)。
Fig. 1 shows that for each steel in Table 1 above, the hot rolled sheet manufactured by the method already described (hot rolled sheet after annealing and pickling) was cold rolled to a thickness of 1 mm, ℃ × 1 minute · After air-cooling intermediate annealing, after further soaking for 1 minute at each temperature between 800 ~ 1100 ℃, finish heat treatment to cool from that temperature to 100 ℃ at an average cooling rate of 20 ℃ / sec The martensite content (% by volume) and hardness (HV) of the finished heat-treated material obtained by applying the heat treatment are shown in relation to the heating temperature during the finish heat treatment (A, B, C in the figure are the 1 represents the steel composition.

第1図から明らかなように,加熱温度が800℃を超えて
フェライト+オーステナイト二相域になると,仕上熱処
理後にマルテンサイトが出現し,加熱温度の上昇ととも
にマルテンサイト量は急激に増加するが900℃を超える
とその増加の程度は小さくなって次第に飽和する傾向を
示す。硬さの挙動もマルテンサイト量の変化に対応して
同様の傾向を示し,またマルテンサイト量が多いほど硬
さは高い。この第1図の結果は仕上熱処理を連続熱処理
ラインで行なう上での重要な意義を有している。すなわ
ち連続熱処理ラインでは或る程度の温度変動はやむを得
ず,特に鋼帯の長さ方向での変動,および目標温度は同
じであっても通板チャンスの違いによる熱処理温度の違
いは,実ラインでの操業では目標温度に対して±20℃程
度の変動を見込む必要がある。第1図は,冷却速度をほ
ぼ一定にし且つ硬さ変動の小さい熱処理温度域を採用す
るならば,連続熱処理ラインにおいて多少の温度変動が
あったとしても,硬さすなわち強度の変動の小さい鋼帯
が製造できることを示している。そして,強度レベルの
制御は前記のような成分制御によって行えば目標とする
強度は安定して得ることができ,鋼帯の全長にわたって
強度変動の小さい,また鋼帯間での強度差の小さい高強
度素材が既存の連続熱処理ラインを用いて容易に且つ安
価に製造できる。
As is clear from Fig. 1, when the heating temperature exceeds 800 ° C and reaches the ferrite + austenite two-phase region, martensite appears after the finishing heat treatment, and the amount of martensite rapidly increases with increasing heating temperature, but 900 When the temperature exceeds ℃, the degree of the increase becomes small and it tends to be saturated. The behavior of hardness also shows the same tendency corresponding to the change of the amount of martensite, and the hardness increases as the amount of martensite increases. The results shown in FIG. 1 have important significance in performing finishing heat treatment on a continuous heat treatment line. In other words, in the continuous heat treatment line, some temperature fluctuations are unavoidable. In particular, fluctuations in the length direction of the steel strip, and even if the target temperature is the same, the difference in heat treatment temperature due to the difference in strip passing chance is In operation, it is necessary to expect a fluctuation of about ± 20 ° C with respect to the target temperature. Fig. 1 shows that if the heat treatment temperature range where the cooling rate is almost constant and the hardness variation is small is adopted, the steel strip with little variation in hardness, that is, strength, even if there is some temperature variation in the continuous heat treatment line. It can be manufactured. If the strength level is controlled by the component control as described above, the target strength can be stably obtained, and the strength variation is small over the entire length of the steel strip and the strength difference between the steel strips is small. The strength material can be easily and inexpensively manufactured using the existing continuous heat treatment line.

第2図は,本発明で規制する範囲の鋼成分と製造条件内
でマルテンサイト量の異なる複相組織材を幾つか作りそ
の硬さと伸び(3方向の重みつき平均値)の相関を調
べ,これを調質圧延材の相関と比較して示したものであ
る。複相組織材の構造は第1図で説明したのと同じであ
り仕上熱処理の加熱温度は900℃以上である。また調質
圧延材は冷延後に焼鈍を行ったあと図中の添字で示す調
質圧延率を変えることによって硬さを変えたものであ
る。
FIG. 2 is a graph showing the correlation between hardness and elongation (weighted average value in three directions) of several multiphase structural materials having different martensite contents within the steel composition and manufacturing conditions controlled by the present invention. This is shown in comparison with the correlation of the temper-rolled material. The structure of the multi-phase structure material is the same as that described in FIG. 1, and the heating temperature of the finish heat treatment is 900 ° C. or higher. Further, the temper-rolled material has its hardness changed by annealing after cold rolling and then changing the temper-rolling rate indicated by the suffix in the figure.

第2図から明らかなように,調質圧延材は調質圧延率の
上昇に伴う硬さの上昇につれて伸びは急激に低下する。
これに対して複相組織材は硬さが上昇しても伸びの低下
は緩やかである。特に,複相組織材の伸びが調質圧延材
に比べて優るのは硬さの高い領域,具体的にはHv200以
上の領域において顕著となる。すなわち複相組織材とす
ることによる高延性化はHv200以上の領域で一段と顕著
に発揮されるのであり,そのためには前述の第1図から
もわかるように,約20容量%以上のマルテンサイト量の
ところである。このように硬さがHv200以上での高延性
が図れる点に調質圧延材では達成できない本発明法によ
る複相組織材の特徴があり,この強度−伸びバランスが
良好なことから本発明法によって得られた複相組織鋼帯
はプレス成形性などの加工性についても調質圧延では得
られない特質をもつことになる。
As is clear from FIG. 2, in the temper-rolled material, the elongation sharply decreases as the hardness increases as the temper-rolling rate increases.
On the other hand, in the multiphase structure material, the decrease in elongation is slow even if the hardness increases. In particular, the elongation of the multi-phase structure material is superior to that of the temper-rolled material in the high hardness region, specifically in the region of Hv200 or higher. In other words, the high ductility achieved by using a multi-phase structure material is more pronounced in the Hv200 or higher region. For this reason, as can be seen from Fig. 1 above, the martensite content of about 20% by volume or more is used. Is where Thus, there is a feature of the multi-phase structure material according to the method of the present invention that cannot be achieved with the temper-rolled material in that high ductility at hardness of Hv200 or more can be achieved. The obtained multiphase structure steel strip has properties such as press formability that cannot be obtained by temper rolling.

第3図は,第1表の鋼Aを第2表の(a)の方法で製造
した場合の金属組織写真である。写真中の白く見える領
域がフエライト,黒もしくは灰色に見える領域がマルテ
ンサイトである。この写真からわかるように,この材料
は微細なフエライトおよびマルテンサイトが均一に混在
した複相組織を有している。
FIG. 3 is a photograph of the metallographic structure when Steel A in Table 1 was manufactured by the method (a) in Table 2. Areas that appear white in the photo are ferrite and areas that appear black or gray are martensite. As can be seen from this photograph, this material has a multiphase structure in which fine ferrite and martensite are uniformly mixed.

以上に説明したように,強度並びに延性の異方性の小さ
い高延性高強度の鋼帯材料が得られたのは,熱間圧延,
熱延板焼鈍,中間焼鈍を挟む2回以上の冷間圧延のあと
にフエライト+オーステナイトの二相域に加熱し急冷す
る仕上熱処理によって,微細なフエライトと急冷によっ
てオーステナイトから変態して生成したマルテンサイト
とが均一に混在した複相組織としたことで達成し得たも
のである。すなわち,硬質なマルテンサイトによる強度
(硬さ)を得,軟質なフェライトにより延性を得たもの
であり,そして両相を微細且つ均一に混在させたことに
より強度と延性の面内異方性を小さくし得たものであ
る。なお,仕上熱処理後の組織はX線的な調査では微量
の残留オーステナイトが検出される場合がある。
As explained above, high-strength and high-strength steel strip materials with small anisotropy of strength and ductility were obtained by hot rolling,
Martensite produced by transformation from austenite by fine ferrite and quenching by finishing heat treatment by heating to the two-phase region of ferrite and austenite after two or more cold rollings including hot-rolled sheet annealing and intermediate annealing. This can be achieved by forming a multiphase structure in which and are uniformly mixed. That is, the strength (hardness) of hard martensite and the ductility of soft ferrite were obtained, and the in-plane anisotropy of strength and ductility was improved by finely and uniformly mixing both phases. It can be made smaller. In the structure after the finish heat treatment, a trace amount of retained austenite may be detected by X-ray examination.

以下に,本発明法を実施した実施例を挙げて,本発明法
で得られた複相組織鋼帯の特性を比較例と対比しなから
具体的に示す。
Hereinafter, the characteristics of the multi-phase steel strip obtained by the method of the present invention will be specifically described by giving examples of carrying out the method of the present invention without comparison with comparative examples.

実施例 第3表に示す化学成分を有する鋼を溶製してスラブを製
造した。そしていずれも板厚3.6mmに熱間圧延後,780℃
×6時間加熱・炉冷の熱延板焼鈍を行い,酸洗のあと,
第4表に示す冷延条件で冷間圧延して板厚0.3mmの冷延
鋼帯とし,第4表に示した仕上熱処理条件のもとで連続
熱処理炉にて連続仕上熱処理を施した。なお冷間圧延工
程での中間焼鈍の均熱時間はいずれも1分であり,また
連続仕上熱処理工程での均熱時間もいずれも1分であ
る。仕上熱処理後の鋼帯の材料特性を第4表に併記し
た。
Example A slab was manufactured by melting steel having the chemical composition shown in Table 3. And in each case, after hot rolling to a plate thickness of 3.6 mm, 780 ℃
× Hot-rolled sheet annealing with heating and furnace cooling for 6 hours, after pickling,
A cold-rolled steel strip having a plate thickness of 0.3 mm was cold-rolled under the cold-rolling conditions shown in Table 4, and subjected to continuous finishing heat treatment in a continuous heat-treating furnace under the finishing heat-treatment conditions shown in Table 4. The soaking time of the intermediate annealing in the cold rolling process is 1 minute in all, and the soaking time in the continuous finishing heat treatment process is 1 minute in all. The material properties of the steel strip after the finish heat treatment are also shown in Table 4.

第4表から明らかなように,本発明法によればいずれも
高い引張強さと硬さおよび良好な伸びを有した複相組織
鋼帯が得られたことがわかる。また,本発明法による鋼
帯は,0.2%耐力,引張強さおよび伸びの異方性が小さい
ことが明らかである。そして,本発明法による鋼帯はい
ずれも破断後の引張試験片にリジングの発生が見られな
かった。
As is clear from Table 4, according to the method of the present invention, it was found that a multiphase structure steel strip having high tensile strength, hardness and good elongation was obtained. Further, it is clear that the steel strip produced by the method of the present invention has small anisotropy of 0.2% proof stress, tensile strength and elongation. In each of the steel strips produced by the method of the present invention, no ridging was observed in the tensile test piece after fracture.

これに対し比較例No.1では製造条件は本発明で規定する
範囲であるが,鋼のC,N量が本発明鋼の条件である(C
+N)≧0.02%より低い,(C+N)=0.012%の鋼
(第3表のNo.8の鋼)であるため,連続仕上熱処理後の
マルテンサイト量も少なく,また十分な引張強さおよび
硬さが得られていない。
On the other hand, in Comparative Example No. 1, the manufacturing conditions are within the range specified by the present invention, but the C and N contents of the steel are the conditions for the present invention steel (C
+ N) ≥ 0.02%, (C + N) = 0.012% steel (No. 8 steel in Table 3), the amount of martensite after continuous finishing heat treatment is small, and the tensile strength and hardness are sufficient. Is not obtained.

比較例No.2では,やはり製造条件は本発明の範囲内にあ
るが,鋼のC量が本発明で規定するC量(C≦0.10%)
よりも高いC=0.124%の鋼(第3表のNo.9の鋼)であ
り,また(C+N)量も本発明で規定する0.12%を超え
ているので,連続仕上熱処理後のマルテンサイト量が10
0%となり,強度は高いものの,伸びが非常に低い。
In Comparative Example No. 2, the manufacturing conditions are still within the range of the present invention, but the C content of steel is the C content defined by the present invention (C ≦ 0.10%).
It is a steel with a higher C = 0.124% (No. 9 steel in Table 3) and the (C + N) content also exceeds 0.12% specified in the present invention, so the martensite content after continuous finishing heat treatment Is 10
The strength is 0%, but the elongation is very low.

比較例No.3では連続仕上熱処理での加熱温度が800℃と
低く,この加熱温度では鋼No.2の鋼はフエライト+オー
ステナイト二相域にならず,したがって仕上熱処理後の
金属組織はマルテンサイトの存在しないフエライト単相
組織であり,伸びは高いものの強度および硬さが低い。
In Comparative Example No. 3, the heating temperature in the continuous finishing heat treatment was as low as 800 ° C, and at this heating temperature, the steel of Steel No. 2 was not in the ferrite-austenite two-phase region, so the metal structure after the finishing heat treatment was martensite. It is a ferrite single-phase microstructure in which no elongation exists, and although the elongation is high, the strength and hardness are low.

比較例No.4は,仕上熱処理を箱型炉で行ない,その冷却
も炉冷によるため冷却速度が0.03℃/secと非常に低いの
で熱処理後にマルテンサイトが生成しておらず,比較例
No.3と同様に伸びは高いものの,強度および硬さが低
い。
In Comparative Example No. 4, the finishing heat treatment was performed in a box furnace, and the cooling rate was very low at 0.03 ° C / sec because the furnace cooling was also used, so martensite did not form after the heat treatment.
Similar to No.3, it has high elongation but low strength and hardness.

比較例No.5は,調質圧延材であり,本発明のものに比較
して伸びが著しく低い。また引張強さに対する0.2%耐
力の比,すなわち降伏比が高いと共に,0.2%耐力,引張
強さ,伸びの異方性が大きい。したがって本発明法によ
って得られた鋼帯に比べて加工性並びに加工後の形状性
に劣ることが明らかである。
Comparative Example No. 5 is a temper-rolled material, and the elongation is significantly lower than that of the present invention. The ratio of 0.2% proof stress to tensile strength, that is, the yield ratio is high, and the anisotropy of 0.2% proof stress, tensile strength, and elongation is large. Therefore, it is clear that the workability and the formability after working are inferior to those of the steel strip obtained by the method of the present invention.

比較例No.6は,連続仕上熱処理前の冷間圧延において中
間焼鈍を行っていないので,強度が高く伸びも優れてい
るものの,伸びの面内異方性が中間焼鈍を施した本発明
例のものに比べると大きくなっている。
In Comparative Example No. 6, since the intermediate annealing was not performed in the cold rolling before the continuous finishing heat treatment, the strength was high and the elongation was excellent, but the in-plane anisotropy of elongation was subjected to the intermediate annealing. It is bigger than the ones.

なお,比較例No.1,3,4および5の鋼帯については,破断
後の引張試験片でいずれもリジングの発生が見られたの
対し,本発明例の複相組織鋼帯はリジングの発生が見ら
れず,プレス成形などの加工が良好に行えることがわか
る。
Regarding the steel strips of Comparative Examples Nos. 1, 3, 4 and 5, the occurrence of ridging was observed in the tensile test pieces after fracture, whereas the multiphase structure steel strips of the present invention example showed ridging. No occurrence is observed, which means that press forming and other processing can be performed well.

以上のように,本発明法によれば,高延性と高強度を兼
備し,強度と延性の面内異方性が小さく且つ低耐力,低
降伏比の複相組織鋼帯が提供される。クロムステンレス
鋼板の分野において,従来かような良好な加工性を兼備
したHv200以上の高強度素材が鋼板または鋼帯の形で市
場に出荷された例は見ない。したがって,本発明は従来
のクロムステンレス鋼板分野に新規素材鋼板または鋼帯
を提供するものである。本発明に従う材料は電子部品,
精密機械部品などへの加工性が要求される高強度材とし
て特に有用であり,この分野において多大の成果が発揮
され得る。
As described above, according to the method of the present invention, a multi-phase steel strip having both high ductility and high strength, small in-plane anisotropy of strength and ductility, low yield strength, and low yield ratio is provided. In the field of chrome stainless steel sheets, there are no examples of Hv200 or higher high-strength materials with good workability that have been shipped to the market in the form of steel sheets or strips. Therefore, the present invention provides a new material steel plate or steel strip in the conventional chromium stainless steel plate field. The material according to the invention is an electronic component,
It is especially useful as a high-strength material that is required to be processed into precision machine parts, and can exert great results in this field.

【図面の簡単な説明】[Brief description of drawings]

第1図は,本発明に従う仕上熱処理の加熱温度とマルテ
ンサイト量および硬さとの関係を示した図, 第2図は本発明に従う仕上熱処理材と調質圧延材につい
て硬さ−伸びの相関関係を示した図, 第3図は本発明に従う連続仕上熱処理を施したクロムス
テンレス鋼帯の金属組織を示した顕微鏡写真である。
FIG. 1 shows the relationship between the heating temperature, the amount of martensite and the hardness of the finish heat treatment according to the present invention, and FIG. 2 shows the hardness-elongation correlation for the finish heat treatment material and the temper rolled material according to the present invention. And FIG. 3 are micrographs showing the metallographic structure of the chromium stainless steel strip subjected to the heat treatment for continuous finishing according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重量%において, C:0.10%以下, Si:2.0%以下, Mn:1.0%以下, P:0.040%以下, S:0.030%以下, Ni:0.60%以下, Cr:10.0以上で14.0%以下, N:0.08%以下, O:0.02%以下, を含有し,残部がFeおよび不可避的不純物からなる鋼
であって,且つ 0.02%≦C+N≦0.12% の関係を満足する鋼のスラブを製造し,これを熱間圧延
して熱延鋼帯を製造する工程, フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程,
そして, 得られた冷延鋼帯を連続熱処理炉に通板して,Ac点以
上1100℃以下のフェライト+オーステナイトの二相域温
度に10分以内の保持のあと,最高加熱温度から100℃ま
でを平均冷却速度1℃/sec以上500℃/sec以下で冷却す
る仕上熱処理を施す連続仕上熱処理工程, からなる,HV200以上の硬さを有する面内異方性の小さい
高延性高強度の複相組織クロムステンレス鋼帯の製造
法。
1. In% by weight, C: 0.10% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0.60% or less, Cr: 10.0 or more A slab of steel containing 14.0% or less, N: 0.08% or less, O: 0.02% or less, the balance being Fe and inevitable impurities, and satisfying the relationship of 0.02% ≦ C + N ≦ 0.12%. To produce hot-rolled steel strip by hot rolling, and cold-rolled steel strip with product thickness is produced by cold rolling two or more times with intermediate annealing of ferrite single-phase temperature heating Process,
Then, the obtained cold-rolled steel strip is passed through a continuous heat treatment furnace, and the two-phase region temperature of ferrite + austenite of Ac 1 point or more and 1100 ° C or less is held for 10 minutes or less, and then 100 ° C from the maximum heating temperature. A continuous finishing heat treatment process in which the finishing heat treatment is performed at an average cooling rate of 1 ° C / sec or more and 500 ° C / sec or less, which has a hardness of HV200 or more, a small in-plane anisotropy, a high ductility and a high strength composite. Method for producing phase-structured chromium stainless steel strip.
【請求項2】連続仕上熱処理工程における加熱温度はA
c点+100以上で1100℃以下である特許請求の範囲第1
項記載の製造法。
2. The heating temperature in the continuous finishing heat treatment step is A
c 1 point +100 or more and 1100 ° C or less, Claim 1
The manufacturing method described in the item.
【請求項3】連続仕上熱処理工程における加熱温度は90
0℃以上1100℃以下である特許請求の範囲第1項記載の
製造法。
3. The heating temperature in the continuous finishing heat treatment step is 90.
The production method according to claim 1, which is 0 ° C or higher and 1100 ° C or lower.
【請求項4】重量%において, C:0.10%以下, Si:2.0%以下, Mn:1.0%以下, P:0.040%以下, S:0.030%以下, Ni:0.60%以下, Cr:10.0以上で14.0%以下, N:0.08%以下, O:0.02%以下, および,0.20%以下のAl,0.0050%以下のB,1.0%以下の
Mo,0.10%以下のREM,0.20%以下のYの一種または二種
以上を含有し,残部がFeおよび不可避的不純物からな
る鋼であって,且つ0.02%≦C+N≦0.12% の関係を満足する鋼のスラブを製造し,これを熱間圧延
して熱延鋼帯を製造する工程, フェライト単相域温度加熱の中間焼鈍を挟む2回以上の
冷間圧延によって製品板厚の冷延鋼帯を製造する工程,
そして, 得られた冷延鋼帯を連続熱処理炉に通板して,Ac点以
上1100℃以下のフェライト+オーステナイトの二相域温
度に10分以内の保持のあと,最高加熱温度から100℃ま
でを平均冷却速度1℃/sec以上500℃/sec以下で冷却す
る仕上熱処理を施す連続仕上熱処理工程, からなる,HV200以上の硬さを有する面内異方性の小さい
高延性高強度の複相組織クロムステンレス鋼帯の製造
法。
4. In% by weight, C: 0.10% or less, Si: 2.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.030% or less, Ni: 0.60% or less, Cr: 10.0 or more 14.0% or less, N: 0.08% or less, O: 0.02% or less, and 0.20% or less Al, 0.0050% or less B, 1.0% or less Mo, 0.10% or less REM, 0.20% or less Y or A steel slab containing two or more kinds, the balance of which is Fe and unavoidable impurities, and which satisfies the relationship of 0.02% ≤ C + N ≤ 0.12% is manufactured, and hot rolled by hot rolling. The process of manufacturing a steel strip, the process of manufacturing a cold-rolled steel strip having a product thickness by cold rolling two or more times with intermediate annealing of ferrite single-phase temperature heating.
Then, the obtained cold-rolled steel strip is passed through a continuous heat treatment furnace, and the two-phase region temperature of ferrite + austenite of Ac 1 point or more and 1100 ° C or less is held for 10 minutes or less, and then 100 ° C from the maximum heating temperature. A continuous finishing heat treatment process in which the finishing heat treatment is performed at an average cooling rate of 1 ° C / sec or more and 500 ° C / sec or less, which has a hardness of HV200 or more, a small in-plane anisotropy, a high ductility and a high strength composite. Method for producing phase-structured chromium stainless steel strip.
【請求項5】連続仕上熱処理工程における加熱温度はA
c点+100℃以上で1100℃以下である特許請求の範囲第
4項記載の製造法。
5. The heating temperature in the continuous finishing heat treatment step is A
c The manufacturing method according to claim 4, wherein 1 point + 100 ° C or more and 1100 ° C or less.
【請求項6】連続仕上熱処理工程における加熱温度は90
0℃以上1100℃以下である特許請求の範囲第4項記載の
製造法。
6. The heating temperature in the continuous finishing heat treatment step is 90.
The production method according to claim 4, which is 0 ° C or higher and 1100 ° C or lower.
JP31195986A 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy. Expired - Fee Related JPH07100820B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP31195986A JPH07100820B2 (en) 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
CA000553958A CA1305911C (en) 1986-12-30 1987-12-10 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
EP87118421A EP0273278B1 (en) 1986-12-30 1987-12-11 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane anisotropy
DE87118421T DE3787633T2 (en) 1986-12-30 1987-12-11 Process for producing stainless steel strips with duplex structure, high strength and elongation and reduced even anisotropy.
ES87118421T ES2043637T3 (en) 1986-12-30 1987-12-11 A PROCEDURE FOR THE PRODUCTION OF A STAINLESS STEEL STRAP TO DOUBLE STRUCTURE CHROME, UNDERSTANDING SUBSTANTIALLY FERRITE AND MARTENSITE HAVING HIGH STRENGTH AND ELONGATION, AS WELL AS FLAT ANISTROPY REGARDING STRENGTH AND STRENGTH.
US07134874 US4812176B1 (en) 1986-12-30 1987-12-18 Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as well as reduced plane antisotrophy
CN87105993A CN1010856B (en) 1986-12-30 1987-12-29 Process for production of double structure stainless cr-steel band having high strength, high ductility and low degree aeolotropy
BR8707111A BR8707111A (en) 1986-12-30 1987-12-29 PROCESSES FOR THE PRODUCTION OF A CHROME STAINLESS STEEL
KR1019870015472A KR950013187B1 (en) 1986-12-30 1987-12-30 Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31195986A JPH07100820B2 (en) 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.

Publications (2)

Publication Number Publication Date
JPS63169332A JPS63169332A (en) 1988-07-13
JPH07100820B2 true JPH07100820B2 (en) 1995-11-01

Family

ID=18023492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31195986A Expired - Fee Related JPH07100820B2 (en) 1986-12-30 1986-12-30 Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.

Country Status (1)

Country Link
JP (1) JPH07100820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6489254B2 (en) * 2017-04-25 2019-03-27 Jfeスチール株式会社 Material for stainless cold-rolled steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPS63169332A (en) 1988-07-13

Similar Documents

Publication Publication Date Title
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
JP2756549B2 (en) Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
JP3363590B2 (en) High-strength duplex stainless steel and method for producing the same
JP2000144258A (en) Production of titanium-containing ferritic stainless steel sheet excellent in ridging resistance
JP3602201B2 (en) Method for producing high-strength duplex stainless steel strip or steel sheet
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP3172561B2 (en) Manufacturing method of composite structure stainless steel spring
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH07100821B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH07100820B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JP3144228B2 (en) Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material
JPH0814005B2 (en) Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance
JP3418928B2 (en) Ferritic stainless steel sheet for cold forging and its manufacturing method
JPH0572449B2 (en)
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees