JPH0814005B2 - Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance - Google Patents

Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Info

Publication number
JPH0814005B2
JPH0814005B2 JP62330914A JP33091487A JPH0814005B2 JP H0814005 B2 JPH0814005 B2 JP H0814005B2 JP 62330914 A JP62330914 A JP 62330914A JP 33091487 A JP33091487 A JP 33091487A JP H0814005 B2 JPH0814005 B2 JP H0814005B2
Authority
JP
Japan
Prior art keywords
heat treatment
stainless steel
temperature
strength
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62330914A
Other languages
Japanese (ja)
Other versions
JPH01172525A (en
Inventor
照夫 田中
克久 宮楠
廣 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62330914A priority Critical patent/JPH0814005B2/en
Publication of JPH01172525A publication Critical patent/JPH01172525A/en
Publication of JPH0814005B2 publication Critical patent/JPH0814005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,耐粒界腐食性に優れ,実質的にフェライト
およびマルテンサイト混合組織からなる高延性高強度の
複相組織クロムステンレス鋼帯の新規な工業的製造法に
関し,高強度が必要とされ且つプレス成形などの加工が
施される成形用素材としての高延性高強度ステンレス鋼
帯を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a highly ductile and high-strength dual-phase structure chromium stainless steel strip having excellent intergranular corrosion resistance and consisting essentially of a mixed structure of ferrite and martensite. The present invention provides a highly ductile high-strength stainless steel strip as a forming material that requires high strength and is subjected to processing such as press forming in relation to a new industrial manufacturing method.

なお,本発明法によれば,連続仕上熱処理工程を経た
成品は鋼帯の形態で工業的に製造させるものであり,市
場に出荷される場合には鋼帯のまま(コイル)か或いは
鋼板に成形された状態となる。
According to the method of the present invention, the product that has been subjected to the continuous finishing heat treatment step is industrially manufactured in the form of a steel strip, and when shipped to the market, the steel strip remains in a coil (coil) or a steel plate. It will be in the molded state.

〔従来の技術〕[Conventional technology]

クロムを主合金成分として含有するクロムステンレス
鋼にはマルテンサイト系ステンレス鋼とフェライト系ス
テンレス鋼とがある。
The chromium stainless steel containing chromium as a main alloy component includes martensitic stainless steel and ferritic stainless steel.

従来より,高強度のクロムステンレス鋼帯としてはマ
ルテンサイト系ステンレス鋼が良く知られている。例え
ばJIS G 4307には,マルテンサイト系ステンレス鋼とし
て7種の鋼が規定されている。これらのマルテンサイト
系ステンレス鋼は,C:0.08%以下(SUS410S)から0.60〜
0.75%(SUS440A)とフェライト系ステンレス鋼にくら
べて高いCを含有し,焼入れ処理または焼入れ焼もどし
処理により高強度を付与することができる。また,この
JIS G 4307において,0.26〜0.40%のCおよび12.00〜1
4.00%のGrを含有するSUS420J2では,980〜1040℃からの
急冷による焼入れ後,150〜400℃空冷の焼もどしによりH
RC 40以上の硬さが得られることが,そして0.60〜0.75
%のCおよび16.00〜18.00%のCrを含有するSUS440Aで
は,1010〜1070℃からの急冷による焼入れ後,150〜400℃
空冷の焼もどしにより,同じくHRC 40以上の硬さが得ら
れることが示されている。このようにマルテンサイト系
ステンレス鋼では熱処理により高強度が得られるもの
の,素材メーカーからステンレス鋼板または鋼帯として
出荷される場合には焼なまし状態で出荷されることがほ
とんどであり,その時点では,JIS G 4307の表16にも示
されるように強度および硬さは低い。したがって,焼入
れ,焼入れ−焼もどしなどの熱処理は加工メーカーにて
行われるのが通常である。
Conventionally, martensitic stainless steel is well known as a high-strength chromium stainless steel strip. For example, JIS G 4307 defines seven types of martensitic stainless steels. These martensitic stainless steels contain C: 0.08% or less (SUS410S) from 0.60 to
It contains 0.75% (SUS440A), which is higher than C in ferritic stainless steel, and can be given high strength by quenching or quenching and tempering. Also, this
According to JIS G 4307, 0.26 to 0.40% C and 12.00 to 1
For SUS420J2 containing 4.00% of Gr, after quenching by quenching from 980 to 1040 ℃, heat treatment by air tempering at 150 to 400 ℃
A hardness of RC 40 or more can be obtained, and 0.60 to 0.75
% Of C and 16.00-18.00% of Cr, SUS440A, after quenching by quenching from 1010-1070 ℃, 150-400 ℃
It has been shown that a hardness of HRC 40 or higher can be obtained by tempering with air cooling. In this way, although high strength is obtained by heat treatment in martensitic stainless steel, when it is shipped from a material manufacturer as a stainless steel plate or strip, it is shipped in an annealed state at that time. The strength and hardness are low as shown in Table 16 of JIS G 4307. Therefore, heat treatment such as quenching and quenching-tempering is usually performed by the processing manufacturer.

もう一種のクロムステンレス鋼であるフェライト系ス
テンレス鋼帯では熱処理による硬化があまり期待できな
いので,強度を上昇させる方法としては焼なまし後,さ
らに冷間で調質圧延を行って加工硬化による強度上昇を
はかる場合がある。しかし,フェライト系ステンレス鋼
は元来が高強度を必要とする用途にはあまり供されては
いないのが実状である。
Since ferritic stainless steel strip, which is another type of chrome stainless steel, is unlikely to be hardened by heat treatment, the method for increasing strength is to increase strength by work hardening by temper tempering after annealing after annealing. May be measured. However, the fact is that ferritic stainless steel has not been used so much for applications that originally require high strength.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

マルテンサイト系ステンレス鋼帯では,焼入れまたは
焼入れ−焼もどし処理後の組織はその名称のごとく基本
的にはマルテンサイト組織であり,非常に高い強度およ
び硬さが得られる反面,伸びは非常に低い。そのため,
加工前の鋼板または鋼帯に熱処理を施したのではその後
の加工が困難となる。したがって,最終製品にほぼ近い
形に加工した後に熱処理を施すことが多い。特にプレス
成形などの加工は熱処理後では不可能である。いずれに
しても,マルテンサイト系ステンレス鋼では高強度を得
るためには加工メーカーでの熱処理工程が不可欠である
という加工メーカー側での負担増があり,またこのため
に最終製品のコストアップは避けられないという問題が
あった。
In the case of martensitic stainless steel strip, the structure after quenching or quenching-tempering is basically a martensitic structure as its name suggests, while very high strength and hardness are obtained, but elongation is very low. . for that reason,
If the steel plate or strip before processing is heat-treated, subsequent processing becomes difficult. Therefore, heat treatment is often applied after processing to a shape close to the final product. In particular, processing such as press molding is impossible after heat treatment. In any case, in the case of martensitic stainless steel, the heat treatment process at the processing maker is indispensable to obtain high strength, which increases the burden on the processing maker side, and for this reason, avoid increasing the cost of the final product. There was a problem that I could not.

一方,フェライト系ステンレス鋼帯を調質圧延により
強度を上昇させた場合には,伸びの低下が著しくなって
強度−延性のバランスが悪くなる結果,加工性に劣るこ
とになる。そして,調質圧延による強度上昇の程度は引
張強さよりも耐力の方が著しく高い。このために高圧延
率になると耐力と引張強さの差が小さくなり,降伏比
(=耐力/引張強さ)が1に近くなって材料の塑性加工
域が非常に狭くなると共に耐力が高いとスプリングバッ
クが大きくなってプレス加工などの後の形状性が悪くな
る。さらに調質圧延材は強度および伸びの面内異方性が
非常に大きく,軽度のプレス加工などでも加工後の形状
が悪くなる。また,圧延による加工歪みは板の表面に近
いほど大きいという特徴があるため,調質圧延材では板
厚方向のひずみ分布が不均一になることが避けられな
い。これは残留応力の板厚方向の不均一分布をもたら
し,特に極薄鋼板では打抜き加工やフオトエッチング処
理による穴あけ加工後に板の反りなどの形状変化を生ず
る場合があり,電子部品などの高精度が必要とされる用
途では大きな問題となる。以上の調質圧延に起因する問
題のみならず,フェライト系ステンレス鋼では本質的な
欠点とも言えるリジングの問題があり,調質圧延後にお
いては一般に延性リジングと呼ばれるリジングを発生
し,表面の粗度が重視される用途ではやはり大きな問題
となる。
On the other hand, when the strength of a ferritic stainless steel strip is increased by temper rolling, the elongation decreases significantly and the balance between strength and ductility deteriorates, resulting in poor workability. The degree of strength increase due to temper rolling is significantly higher in proof stress than in tensile strength. For this reason, when the rolling ratio is high, the difference between the yield strength and the tensile strength is small, and the yield ratio (= yield strength / tensile strength) is close to 1 and the plastic working area of the material is extremely narrow and the yield strength is high. The spring back becomes large, and the formability after pressing is deteriorated. Furthermore, the temper-rolled material has a very large in-plane anisotropy of strength and elongation, and the shape after processing deteriorates even with mild press working. In addition, since the processing strain due to rolling increases as it approaches the surface of the plate, it is unavoidable that strain distribution in the plate thickness direction becomes uneven in temper-rolled material. This causes a non-uniform distribution of residual stress in the plate thickness direction, and especially for ultra-thin steel plates, shape changes such as plate warpage may occur after punching or hole-punching by photo-etching, which makes high precision of electronic components and the like difficult. It is a big problem in the required application. In addition to the above problems caused by temper rolling, there is a problem of ridging that can be said to be an essential drawback in ferritic stainless steels. After temper rolling, ridging generally called ductile ridging occurs and surface roughness This is still a big problem in applications where is important.

〔問題点を解決する手段〕[Means for solving problems]

前述のような問題は,適度な高強度を有し且つ所望の
形状に加工し得る良好な延性および加工性を具備し,異
方性が小さくリジング発生のないクロムステンレス鋼材
料が素材メーカー側で鋼板または鋼帯の形で提供できれ
ば解決し得る。そこで本発明者らはこの解決を目的とし
て化学成分並びに製造条件の両面からクロムステンレス
鋼について広範の研究を続けて来た。その結果,従来の
フェライト単相域温度での仕上焼鈍つまり鋼板または鋼
帯製品に施す焼なまし処理ではなく,フェライト+オー
ステナイト二相域への加熱とその後の急冷処理からなる
仕上熱処理をクロムステンレス鋼の鋼帯製品(通常の熱
間圧延,冷間圧延によって得られた冷延鋼板または鋼
帯)に施すならば,前記の問題点の実質上すべて解決で
きるという素晴らしい結果を得ることができた。
As for the above-mentioned problems, the material manufacturer has a chrome stainless steel material that has moderately high strength, good ductility and workability that can be processed into a desired shape, and has little anisotropy and no ridging. It can be solved if it can be provided in the form of steel plate or strip. Therefore, the present inventors have continued extensive research on chromium stainless steel from the viewpoint of both chemical composition and manufacturing conditions for the purpose of solving this problem. As a result, instead of the conventional finish annealing at the ferrite single-phase region temperature, that is, the annealing treatment performed on the steel sheet or strip product, the finish heat treatment consisting of heating to the ferrite + austenite two-phase region and subsequent quenching treatment is performed on the chromium stainless steel. When applied to steel strip products of steel (normal cold-rolled steel sheets or strips obtained by hot-rolling or cold-rolling), we were able to obtain the excellent results that virtually all of the above problems could be solved. .

しかしながら,この場合新たな問題点として,仕上熱
処理において高温に加熱,冷却した場合,鋭敏化を生じ
て耐食性が著しく劣化してしまう場合のあることが明ら
かとなった。ここでの鋭敏化とは,仕上熱処理前に析出
していたクロム炭化物やクロム窒化物が高温加熱時に一
旦固溶し,これが冷却時にフェライトもしくはマルテン
サイトの粒界や相境界に析出する結果,粒界や相境界近
傍にCr欠乏層を生じ,仕上熱処理に引き続いて連続酸洗
を行った場合に,粒界が優先的に浸食され「ゴールドダ
スト」や「キラ星」などと呼ばれる粒単位での脱落を生
じたり,製品になってからも耐粒界腐食性や耐発銹性が
著しく低下することを指す。
However, in this case, as a new problem, it became clear that when heating and cooling to a high temperature in the finish heat treatment, sensitization occurs and the corrosion resistance may be significantly deteriorated. Sensitization here means that the chromium carbides and chromium nitrides that had been precipitated before the finishing heat treatment once became a solid solution during high-temperature heating, and these precipitate at the grain boundaries and phase boundaries of ferrite or martensite during cooling. When a Cr-deficient layer is formed near the boundaries and phase boundaries, and the continuous pickling is carried out after the finishing heat treatment, the grain boundaries are preferentially eroded and the grain unit called “gold dust” or “Kira star” It means that the intergranular corrosion resistance and rusting resistance are significantly reduced even after the product has fallen off or becomes a product.

そこで,この鋭敏化についてさらに検討を行った結
果,仕上熱処理後の複相組織鋼の鋭敏化は主としてマル
テンサイト粒界もしくはマルテンサイト相境界で生じ高
温でのオーステナイト中の炭素もしくは窒素量が重要な
因子と推定されること,また鋭敏化を回避する手段とし
ては,Ti,Nb,Zrなどの炭・窒化物形成元素を添加し,鋼
中の炭素および窒素をこれら元素の炭・窒化物として固
定することが最も有効であるとの知見を得た。
Therefore, as a result of further study on this sensitization, the sensitization of the dual phase steel after the finish heat treatment mainly occurs at the martensite grain boundary or the martensite phase boundary, and the amount of carbon or nitrogen in austenite at high temperature is important. It is presumed to be a factor, and as a means to avoid sensitization, carbon, nitrogen forming elements such as Ti, Nb, and Zr were added, and carbon and nitrogen in steel were fixed as carbon and nitride of these elements. We obtained the finding that it is most effective.

なお,鋭敏化を回避するにはその他にも仕上熱処理に
おける加熱後の冷却速度を非常に大きくし,冷却時のク
ロム炭・窒化物の析出を抑制する方法や,炭素および窒
素量を低く押さえ同時にNi,Mn,Cuなどのオーステナイト
生成元素を添加してオーステナイト量を高めて,オース
テナイト相中の炭素,窒素量を低くする方法もある。し
かしながら,いずれも特に板厚の厚い場合などには,工
業的な規模の連続熱処理炉においてはその冷却速度に限
界があることなどから鋭敏化が避けられない場合もあ
る。
In addition, in order to avoid sensitization, the cooling rate after heating in the finishing heat treatment should be made extremely high to suppress the precipitation of chromium carbon / nitride during cooling, and the amount of carbon and nitrogen should be kept low at the same time. There is also a method of increasing the amount of austenite by adding austenite-forming elements such as Ni, Mn, and Cu to lower the amounts of carbon and nitrogen in the austenite phase. However, in both cases, especially when the plate thickness is large, sensitization may be unavoidable because the cooling rate is limited in an industrial scale continuous heat treatment furnace.

かくして本発明は,必須成分として10.0〜20.0重量%
のCr,0.1〜4.0重量%のNi,MnまたはCuのうちの1種また
は2種以上,0.05〜0.50重量%のTi,NbまたはZrのうちの
1種または2種以上を含有するクロムステンレス鋼の冷
延鋼帯を通常の熱間圧延および冷間圧延を経て製造し,
得られた冷延鋼帯を連続熱処理炉を用いてフェライト+
オーステナイト二相域となる温度に加熱し,この温度か
ら1℃/sec以上500℃/sec以下の冷却速度で冷却する仕
上熱処理を施すことを特徴とする耐粒界腐食性に優れた
高延性高強度の複相組織(実質上,フェライトとマルテ
ンサイトとからなる組織)を有するクロムステンレス鋼
帯の製造法を提供するものである。
Thus, the present invention has an essential component of 10.0 to 20.0% by weight.
Cr, 0.1 to 4.0% by weight of Ni, Mn or Cu, one or more, and 0.05 to 0.50% by weight of Ti, Nb or Zr, one or more of chromium stainless steel. Cold-rolled steel strip is manufactured by ordinary hot rolling and cold rolling,
The obtained cold-rolled steel strip is ferrite + using a continuous heat treatment furnace.
Finishing heat treatment is performed by heating to a temperature in the austenite two-phase region and cooling from this temperature at a cooling rate of 1 ° C / sec to 500 ° C / sec. The present invention provides a method for producing a chromium stainless steel strip having a strong multi-phase structure (substantially composed of ferrite and martensite).

本発明法によれば前述の問題点の実質上全てが解決さ
れるのみならず,鋼組成または仕上熱処理時の加熱温度
並びに冷却速度を制御することにより強度を自在に且つ
簡単に調整できるという点でクロムステンレス鋼帯素材
の工業的製造にあたっての有利且つ新しい製造技術を提
供するものであり,従来より市場に出荷されているマル
テンサイト系ステンレス鋼板または鋼帯やフェライト系
ステンレス鋼板または鋼帯では有しない延性と強度の両
特性を兼備し且つ延性と強度の面内異方性の少ない新規
クロムステンレス鋼材料を市場に提供するものである。
According to the method of the present invention, not only substantially all of the above-mentioned problems are solved, but also the strength can be freely and easily adjusted by controlling the steel composition or the heating temperature and the cooling rate during the finish heat treatment. It provides an advantageous and new manufacturing technology for the industrial manufacturing of chrome stainless steel strip materials, and is available in martensitic stainless steel sheets or steel strips or ferritic stainless steel sheets or steel strips that have hitherto been shipped to the market. The present invention provides a new chrome stainless steel material having both ductility and strength properties and a small in-plane anisotropy of ductility and strength to the market.

従来より,例えばフェライト系ステンレス鋼の代表鋼
種であるSUS430においても二相域温度に加熱すればオー
ステナイトが生成し,このオーステナイトは急冷によっ
てマルテンサイトに変態してフェライト+マルテンサイ
トの二相組織になること自体は知られていた。しかしな
がら,高温でオーステナイトを生成するフェライト系ス
テンレス鋼板または鋼帯の製造においては,冷延後の熱
処理はあくまでもフェライト単相域温度での焼なまし処
理であり,冷却後にマルテンサイトを生成するような高
温の熱処理は延性の低下などの材質上の劣化をもたらす
ものとして回避することが常識であり,鋼板または鋼帯
の実際の製造面では全く顧みられなかった。したがっ
て,クロムステンレス鋼の冷延後の鋼帯に本発明のよう
な仕上熱処理を施した場合の加熱温度と強度および延性
の関係や,延性および強度の異方性などについて詳細に
研究がなされた例もない。
Conventionally, for example, even in SUS430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to the two-phase region temperature, and this austenite is transformed into martensite by quenching and becomes a two-phase structure of ferrite + martensite. The thing itself was known. However, in the production of ferritic stainless steel sheets or strips that produce austenite at high temperatures, the heat treatment after cold rolling is only an annealing treatment at the ferrite single phase region temperature, and it is likely that martensite will form after cooling. It is common sense to avoid high-temperature heat treatment as it causes deterioration of the material such as decreased ductility, and it was never considered in the actual manufacturing of steel sheets or strips. Therefore, detailed studies have been conducted on the relationship between the heating temperature and the strength and ductility, and the anisotropy of ductility and strength when the finishing heat treatment of the present invention is applied to the cold rolled steel strip of chrome stainless steel. There is no example.

本発明を適用するクロムステンレス鋼におけるCr量に
ついては,ステンレス鋼としての耐食性を維持するうえ
で少なくとも10.0%は必要最低量として含有させるべき
であるが,あまりCr量が高いとマルテンサイト相を生成
させて高強度を得るに必要なNi,Mn,Cuなどのオーステナ
イト生成元素の量が多くなるとともに靭性が低下するよ
うになるため20.0%を上限とするのがよい。
Regarding the amount of Cr in the chromium stainless steel to which the present invention is applied, at least 10.0% should be contained as the necessary minimum amount in order to maintain the corrosion resistance as stainless steel, but if the amount of Cr is too high, a martensite phase is formed. As a result, the toughness decreases as the amount of austenite-forming elements such as Ni, Mn, and Cu required to obtain high strength increases, so 20.0% is preferable as the upper limit.

Ni,Mn,Cu量については,高温でフェライト+オーステ
ナイト二相組織を得るためにCr量に応じて一定量以上必
要であり,少なくとも0.1%以上含有させる必要があ
る。しかしながら,あまり高いと仕上熱処理後に生成す
るマルテンサイト相が多くなり,場合によっては100%
マルテンサイトとなって強度は得られるものの延性が低
下するため,それぞれ上限を4.0%とするのが良い。
Regarding Ni, Mn, and Cu contents, a certain amount or more is necessary according to the Cr amount in order to obtain a ferrite + austenite two-phase structure at high temperature, and it is necessary to contain at least 0.1% or more. However, if it is too high, more martensite phase will be formed after the finish heat treatment, and in some cases 100%.
Although it becomes martensite and strength is obtained, ductility decreases, so it is better to set the upper limit to 4.0% for each.

Ti,Nb,Zrは,C,Nをそれぞれの炭・窒化物として固定
し,仕上熱処理時における鋭敏化を防止し,耐粒界腐食
性の劣化を抑制するために必要である。このためには,
C,N量によっても異なるが,少なくともそれぞれ0.05%
以上の添加が必要であり,より好ましくは,Ti単独添加
の場合で(C+N)量の約4倍以上,Nb,Zr各々単独添加
では(C+N)量の約8倍以上とするのがよい。なお,
複合で添加する場合は,Ti,Nb,Zrの合計量がC,Nの固定に
十分な量であればよい。
Ti, Nb, and Zr are necessary to fix C and N as carbon and nitride, prevent sensitization during finish heat treatment, and suppress deterioration of intergranular corrosion resistance. To do this,
At least 0.05% for each, depending on the amount of C and N
The above additions are necessary, and more preferably about 4 times or more the amount of (C + N) in the case of adding Ti alone and about 8 times or more the amount of (C + N) in the case of adding each of Nb and Zr alone. In addition,
When they are added in combination, the total amount of Ti, Nb, and Zr should be sufficient to fix C and N.

一方,Ti,Nb,Zrはフェライト生成元素でもあるため,
これらを過剰に添加するとそれに見合った量のNi,Mn,Cu
などのオーステナイト生成元素をさらに添加する必要が
あり,このために製品が高価となるのでそれぞれ0.50%
を上限とするのが良い。
On the other hand, Ti, Nb, and Zr are also ferrite-forming elements, so
If these are added excessively, the amount of Ni, Mn, Cu
It is necessary to further add austenite-forming elements such as, which makes the product expensive.
The upper limit is

C,Nについては特にその量を規制するものではない
が,前述のTi,Nb,Zr添加量を少くするうえでは,C,N量は
低い方が望ましく,Cは0.03%以下,Nは0.015%以下がそ
れぞれ好ましいと言える。
Although the amount of C and N is not particularly limited, it is desirable that the amount of C and N be low in order to reduce the amount of addition of Ti, Nb, and Zr described above, with C of 0.03% or less and N of 0.015 or less. % Or less can be said to be preferable.

以上の成分個々の規制とともに本発明を適用するクロ
ムステンレス鋼では高温でフェライト+オーステナイト
二相組織となるよう成分調整されたものである必要があ
ることは言うまでもない。
It is needless to say that the chromium stainless steel to which the present invention is applied together with the above-mentioned restrictions on the individual components need to have their components adjusted so as to have a ferrite + austenite two-phase structure at high temperatures.

本発明における仕上熱処理時の加熱温度はフェライト
+オーステナイト二相域温度であることが絶対条件であ
る。本発明が有利に実施し得るクロムステンレス鋼では
フェライト+オーステナイト二相組織となる下限の温度
はおおむね700〜900℃の範囲であり,換言すればそのよ
うに成分調整したクロムステンレス鋼を対象とした場合
に本発明の効果が最も良く現れるとも言いえる。この仕
上熱処理時の加熱温度の上限については,あまり高温で
は強度上昇が飽和するとともに製造コスト面でも不利と
なるので1100℃を上限とするのがよい。
It is an absolute condition that the heating temperature during the finish heat treatment in the present invention is the ferrite + austenite two-phase temperature. In the chromium stainless steel in which the present invention can be advantageously carried out, the lower limit temperature at which the ferrite + austenite two-phase structure is formed is generally in the range of 700 to 900 ° C. In other words, the chromium stainless steel whose composition is adjusted in this way is targeted. In this case, it can be said that the effects of the present invention are best exhibited. Regarding the upper limit of the heating temperature during this finishing heat treatment, if the temperature is too high, the strength increase saturates and there is a disadvantage in terms of manufacturing cost, so it is preferable to set the upper limit to 1100 ° C.

本発明法における仕上熱処理時のフェライト+オース
テナイト二相域加熱では短時間のうちにほぼ平衡状態の
量のオーステナイト相が生成するので,加熱時間は短時
間,おおむね10分間以外の加熱でよい。この短時間加熱
でよいことは本発明法の実際操業の点でも連続熱処理が
可能となり生産効率,製造コストの面から非常に有利で
ある。
In the heating of the ferrite + austenite two-phase region during the finish heat treatment in the method of the present invention, the amount of the austenite phase in a nearly equilibrium state is generated in a short time, so the heating time may be short, generally other than 10 minutes. The fact that this short time heating is sufficient is very advantageous in terms of production efficiency and manufacturing cost because continuous heat treatment is possible in the actual operation of the method of the present invention.

仕上熱処理時の冷却速度についてはTi,Nb,Zr含有鋼を
対象とする本発明では,鋭敏化の観点からは特に規制す
る必要はないが,マルテンサイト相と軟質なフェライト
相との複相組織を得るうえから1℃/sec以上の冷却速度
とする必要があるが,500℃/secを超える冷却速度を得る
のは実質上困難である。したがって,本発明において二
相温度域加熱からの冷却は1〜500℃/secの範囲の冷却
速度で実施する。この冷却速度は常温までの終点冷却温
度までとしてもよいが,低温変態相すなわちマルテンサ
イト相に変態してしまったあとの冷却過程では必ずしも
この冷却速度を採用する必要はない。冷却の方法として
は気体および/または液体の冷却媒体を鋼板または鋼帯
に吹き付ける強制冷却方式,水冷ロールによるロール冷
却方式などを適用できる。本発明に従う仕上熱処理はコ
イル巻戻し機から巻取り機に至る間に加熱均熱帯域と急
冷帯域を有する連続熱処理炉にクロムステンレス鋼の冷
延ストリップを通板するという連続熱処理方式で行うこ
とができる。具体的には,ステンレス鋼用の連続光輝焼
鈍炉や連続焼鈍酸洗炉,また普通鋼用の連続焼鈍炉が適
用し得る。
Regarding the cooling rate during the finish heat treatment, in the present invention for Ti-, Nb-, and Zr-containing steels, there is no particular restriction from the viewpoint of sensitization, but the multiphase structure of the martensite phase and the soft ferrite phase It is necessary to set a cooling rate of 1 ° C / sec or more in order to obtain the above, but it is practically difficult to obtain a cooling rate of more than 500 ° C / sec. Therefore, in the present invention, the cooling from the two-phase temperature range heating is performed at a cooling rate in the range of 1 to 500 ° C / sec. This cooling rate may be up to the end point cooling temperature up to normal temperature, but it is not always necessary to adopt this cooling rate in the cooling process after transformation into the low temperature transformation phase, that is, the martensite phase. As a cooling method, a forced cooling method in which a gas and / or liquid cooling medium is sprayed on a steel plate or a steel strip, a roll cooling method using a water cooling roll, or the like can be applied. The finish heat treatment according to the present invention can be performed by a continuous heat treatment method in which a cold rolled strip of chrome stainless steel is passed through a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil rewinding machine and the winding machine. it can. Specifically, a continuous bright annealing furnace for stainless steel, a continuous annealing pickling furnace, or a continuous annealing furnace for ordinary steel can be applied.

なお,この仕上連続熱処理に供する鋼帯は,通常の熱
延工程,冷延工程を経て製造することができる。そのさ
い,冷延工程では1回冷延によって所望板厚まで圧下を
行ってもよいし,中間焼鈍を挟む2回以上の冷延によっ
て所望板厚まで圧下してもよい。前者の場合にも本発明
に従う仕上連続熱処理を行なうことによって複相組織鋼
帯には面内異方性は実質上現れなくなるが,後者の場合
にはさらにその面内異方性を低減させることができる。
The steel strip to be subjected to this finishing continuous heat treatment can be manufactured through ordinary hot rolling and cold rolling steps. In that case, in the cold rolling step, the reduction may be performed once to the desired sheet thickness, or may be performed to the desired sheet thickness by two or more times of cold rolling with intermediate annealing. Even in the former case, the in-plane anisotropy does not substantially appear in the multiphase structure steel strip by performing the finishing continuous heat treatment according to the present invention, but in the latter case, the in-plane anisotropy should be further reduced. You can

本発明法により得られる複相組織鋼の強度は主として
マルテンサイト相の量(体積分率)に依存する。したが
って,本発明法の実施に際し,化学成分面からはNi,Mn,
Cuなどのオーステナイト生成元素とCr,Si,Ti,Nb,Zr,Al,
Moなどのフェライト生成元素の成分バランスを調整する
ことにより高温でのオーステナイト量すなわち急冷後の
マルテンサイト相の体積分率を制御でき,これによって
仕上熱処理後の強度は自在に制御することができる。ま
た,製造条件の面からも仕上熱処理時の加熱温度の制御
により,マルテンサイト相の体積分率の制御が行い得
る。
The strength of the dual phase steel obtained by the method of the present invention mainly depends on the amount of martensite phase (volume fraction). Therefore, in carrying out the method of the present invention, Ni, Mn,
Austenite forming elements such as Cu and Cr, Si, Ti, Nb, Zr, Al,
The amount of austenite at high temperature, that is, the volume fraction of the martensite phase after rapid cooling can be controlled by adjusting the balance of the components of ferrite-forming elements such as Mo, and the strength after finishing heat treatment can be controlled freely. From the viewpoint of manufacturing conditions, the volume fraction of the martensite phase can be controlled by controlling the heating temperature during the finish heat treatment.

なお,化学成分面では強度制御のみならず,耐食性の
向上を目的としてMoを添加したり,耐酸化性向上の観点
からYやREMを添加したりするなど,複相組織鋼の各種
特性を向上させる目的で種々の元素を添加,またはその
含有量を規制することができる。また,炭・窒化物成形
元素としては,Ti,Nb,Zr以外にもV,Taなどの元素も同様
な効果を有する。
In terms of chemical composition, not only strength control but also addition of Mo for the purpose of improving corrosion resistance and addition of Y and REM from the viewpoint of improving oxidation resistance improve various properties of multi-phase steel. For this purpose, various elements can be added or their contents can be regulated. In addition to Ti, Nb, and Zr, elements such as V and Ta also have similar effects as carbon / nitride forming elements.

〔実施例〕〔Example〕

第1表に示す化学成分を有する鋼を溶製し,いずれも
板厚3.6mmに熱間圧延後,780℃×6時間の熱延板焼鈍を
行い,酸洗を経て板厚0.7mmの冷間圧延鋼帯とした。こ
れらの冷延鋼帯について第2表に示した仕上熱処理条件
のもとで連続仕上熱処理を施した。但し,比較例No.4は
仕上熱処理を連続熱処理炉ではなくバッチ式の箱型炉で
930℃×6時間,炉冷の熱処理を施したものであり,ま
た比較例No.5は前記酸洗後の熱延鋼帯を冷間圧延により
板厚1.0mmとした後,730℃×1分の中間焼鈍を施し,さ
らに冷間圧延により0.7mmとした調質圧延材である。こ
れらの材料特性を第2表に併記した。
Steel with the chemical composition shown in Table 1 was smelted, hot-rolled to a thickness of 3.6 mm, hot-rolled sheet was annealed at 780 ° C for 6 hours, pickled, and cooled to a thickness of 0.7 mm. A hot rolled steel strip was used. These cold-rolled steel strips were subjected to continuous finishing heat treatment under the finishing heat treatment conditions shown in Table 2. However, in Comparative Example No. 4, the finishing heat treatment is not performed in the continuous heat treatment furnace but in a batch type box furnace.
It was heat-treated by furnace cooling at 930 ° C for 6 hours, and in Comparative Example No. 5, the hot-rolled steel strip after pickling was cold-rolled to a plate thickness of 1.0 mm, then 730 ° C x 1 This is a temper-rolled material that has been subjected to intermediate annealing for a minute and has been further cold-rolled to 0.7 mm. These material properties are also shown in Table 2.

第2表から明らからように,本発明法によればいずれ
も高い引張強さと硬さおよび良好な伸びを有している。
また,本発明法ではリジング発生は認められず,さらに
仕上熱処理後の鋭敏化も認められない。
As is clear from Table 2, according to the method of the present invention, all have high tensile strength, hardness and good elongation.
Further, in the method of the present invention, no ridging was observed, and further no sensitization after finishing heat treatment was observed.

これに対し,比較例No.1,2では仕上熱処理条件は本発
明で規定する範囲であり機械的性質ならびにリジング特
性は良好であるが,比較例No.1はTi添加量が0.03%と低
く,また比較例No.2はTi,Nb,Zrの炭・窒化物形成元素を
特に添加していないことから,いずれも鋭敏化を生じて
おり耐粒界腐食性が劣る。
On the other hand, in Comparative Examples Nos. 1 and 2, the finish heat treatment conditions are within the range specified in the present invention and the mechanical properties and ridging characteristics are good, but in Comparative Example No. 1, the Ti addition amount is as low as 0.03%. In Comparative Example No. 2, since carbon, nitride forming elements such as Ti, Nb, and Zr were not added in particular, sensitization occurred and intergranular corrosion resistance was poor.

比較例No.3は仕上熱処理温度が730℃と低く,この温
度ではNo.4の鋼はフェライト+オーステナイト二相域に
はならず,したがって仕上熱処理後の金属組織はマルテ
ンサイトの存在しないフェライト単相組織であり,伸び
は比較的高いものの,強度および硬さが低く,またリジ
ングを発生している。
In Comparative Example No. 3, the finishing heat treatment temperature was as low as 730 ° C, and at this temperature, the steel of No. 4 did not enter into the ferrite + austenite two-phase region, so the metal structure after finishing heat treatment was a ferrite single ferrite without martensite. Although it has a phase structure and has relatively high elongation, it has low strength and hardness, and ridging occurs.

比較例No.4は仕上熱処理での冷却速度が0.03℃/secと
非常に低いので熱処理後にマルテンサイトが生成してお
らず,比較例No.3と同様に,伸びは高いものの強度およ
び硬さが低く,また,リジングを発生している。
Comparative Example No. 4 has a very low cooling rate of 0.03 ° C / sec in the finishing heat treatment, so no martensite is formed after the heat treatment, and as with Comparative Example No. 3, it has high elongation but high strength and hardness. Is low and ridging is occurring.

比較例No.5は調質圧延材であり本発明例のものに比べ
引張強さ(硬さ)に対する伸びが著しく低く,強度−伸
びバランスに劣る。また,引張強さに対する0.2%耐力
の比,すなわち降伏比が高いとともに,0.2%耐力および
引張強さの面内異方性が非常に大きい。したがって、本
発明例によって得られた材料に比べて加工性ならびに加
工後の形状性に劣ることが明らかである。
Comparative example No. 5 is a temper-rolled material, and the elongation with respect to tensile strength (hardness) is significantly lower than that of the example of the present invention, and the strength-elongation balance is poor. The ratio of 0.2% proof stress to tensile strength, that is, the yield ratio is high, and the in-plane anisotropy of 0.2% proof stress and tensile strength is very large. Therefore, it is apparent that the workability and the shape property after processing are inferior to those of the materials obtained by the examples of the present invention.

以上のように,本発明法によれば,耐粒界腐食性に優
れ,高延性と高強度を兼備し,強度と延性の面内異方性
が小さく且つ低耐力,低降伏比の複相組織鋼帯が提供さ
れる。クロムステンレス鋼板の分野におい,従来かよう
な良好な加工性を兼備した高強度素材が鋼板または鋼帯
の形で市場に出荷された例は見ない。したがって,本発
明は従来のクロムステンレス鋼板分野に新規素材鋼板ま
たは鋼帯を提供するものである。本発明に従う材料は電
子部品,精密機械部品などへの加工性が要求される高強
度材として特に有用であり,この分野において多大の成
果が発揮され得る。
As described above, according to the method of the present invention, a double phase having excellent intergranular corrosion resistance, high ductility and high strength, small in-plane anisotropy of strength and ductility, low yield strength and low yield ratio is obtained. A tissue strip is provided. In the field of chrome stainless steel sheets, there are no examples of high-strength materials with good workability that have been shipped to the market in the form of steel sheets or strips. Therefore, the present invention provides a new material steel plate or steel strip in the conventional chromium stainless steel plate field. The material according to the present invention is particularly useful as a high-strength material required to be processed into electronic parts, precision machine parts, etc., and can exert great results in this field.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】必須成分として、10.0〜20.0重量%のCr、
0.1〜4.0重量%のNi,MnまたはCuのうちの1種または2
種以上、0.05〜0.50重量%のTi,NbまたはZrのうちの1
種または2種以上を含有するクロムステンレス鋼の冷延
鋼帯を通常の熱間圧延および冷間圧延を経て製造し、得
られた冷延鋼帯を連続熱処理炉を用いてフェライト+オ
ーステナイトの二相域となる温度に加熱し、この温度か
ら1℃/sec以上500℃/sec以下の冷却速度で冷却する仕
上熱処理を施すことを特徴とする、実質的にフェライト
およびマルテンサイト混合組織からなる耐粒界腐食性に
優れた高延性高強度の複相組織クロムステンレス鋼帯の
製造法。
1. As an essential component, 10.0 to 20.0% by weight of Cr,
0.1 to 4.0% by weight of Ni, Mn or Cu, one or two
1 or more of 0.05 to 0.50% by weight of Ti, Nb or Zr.
Cold rolled steel strips of chromium stainless steel containing one or two or more types are manufactured through ordinary hot rolling and cold rolling, and the obtained cold rolled steel strips are processed into a ferrite + austenite alloy using a continuous heat treatment furnace. A finish heat treatment is performed by heating to a temperature in the phase region and cooling from this temperature at a cooling rate of 1 ° C / sec or more and 500 ° C / sec or less. A method for producing a high-ductility, high-strength, dual-phase chromium stainless steel strip with excellent intergranular corrosion.
【請求項2】クロムステンレス鋼は、フェライト+オー
ステナイト二相域となる温度が700℃を超える温度とな
るよう成分調整された鋼である特許請求の範囲第1項記
載の製造法。
2. The method according to claim 1, wherein the chromium stainless steel is a steel whose components are adjusted so that the temperature of the two-phase region of ferrite + austenite exceeds 700 ° C.
【請求項3】仕上熱処理の加熱温度は1100℃以下である
特許請求の範囲第1項または第2項記載の製造法。
3. The manufacturing method according to claim 1, wherein the heating temperature of the finish heat treatment is 1100 ° C. or lower.
【請求項4】仕上熱処理の加熱時間は10分以内である特
許請求の範囲第1項、第2項または第3項記載の製造
法。
4. The method according to claim 1, 2 or 3, wherein the heating time of the finish heat treatment is within 10 minutes.
【請求項5】仕上熱処理における冷却はオーステナイト
がマルテンサイトに変態するに十分な冷却速度と冷却終
点温度で行う特許請求の範囲第1項、第2項、第3項ま
たは第4項記載の製造法。
5. The production according to claim 1, claim 2, claim 3 or claim 4, wherein the cooling in the finish heat treatment is carried out at a cooling rate and a cooling end point temperature sufficient to transform austenite into martensite. Law.
JP62330914A 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance Expired - Fee Related JPH0814005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330914A JPH0814005B2 (en) 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330914A JPH0814005B2 (en) 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Publications (2)

Publication Number Publication Date
JPH01172525A JPH01172525A (en) 1989-07-07
JPH0814005B2 true JPH0814005B2 (en) 1996-02-14

Family

ID=18237884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330914A Expired - Fee Related JPH0814005B2 (en) 1987-12-26 1987-12-26 Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0814005B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138704A (en) * 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JPH11279654A (en) * 1998-03-31 1999-10-12 Nisshin Steel Co Ltd Manufacture of titanium-containing ferritic stainless steel strip
SE522969C2 (en) * 1999-10-18 2004-03-23 Haldex Garphyttan Ab Wire shaped product, way to manufacture this and wear part manufactured by the product
JP5290694B2 (en) * 2008-10-16 2013-09-18 南条装備工業株式会社 Manufacturing method of laminated mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156236A (en) * 1984-08-23 1986-03-20 Sumitomo Metal Ind Ltd Manufacture of two phase stainless steel hot rolled steel strip for working
JPS61284532A (en) * 1985-06-10 1986-12-15 Nippon Kokan Kk <Nkk> Production of two-phase stainless uoe steel pipe

Also Published As

Publication number Publication date
JPH01172525A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
KR100324892B1 (en) High-strength, high-strength superstructure tissue stainless steel and its manufacturing method
KR950013188B1 (en) Process for the production of a strip of a chromium stainless steel of a duplex structure having high strength and elongation as will as reduced plane anisotropy
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
JP2005528519A5 (en)
WO2021104417A1 (en) Carbon steel and austenitic stainless steel rolling clad plate and manufacturing method therefor
US5178693A (en) Process for producing high strength stainless steel of duplex structure having excellent spring limit value
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
JP3363590B2 (en) High-strength duplex stainless steel and method for producing the same
JPH06145788A (en) Production of high strength steel sheet excellent in press formbility
JP3602201B2 (en) Method for producing high-strength duplex stainless steel strip or steel sheet
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0814005B2 (en) Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP3172561B2 (en) Manufacturing method of composite structure stainless steel spring
JPH09268350A (en) High strength and high ductility ferrite single phase chromium-containing steel sheet and its production
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP2004124123A (en) Low yield ratio type high strength cold rolled steel sheet having excellent workability and shape fixability, and production method therefor
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JPH07100821B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0572449B2 (en)
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JPH0426719A (en) Production of 13cr stainless steel having high strength and high ductility

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees