JPH0572449B2 - - Google Patents

Info

Publication number
JPH0572449B2
JPH0572449B2 JP14966286A JP14966286A JPH0572449B2 JP H0572449 B2 JPH0572449 B2 JP H0572449B2 JP 14966286 A JP14966286 A JP 14966286A JP 14966286 A JP14966286 A JP 14966286A JP H0572449 B2 JPH0572449 B2 JP H0572449B2
Authority
JP
Japan
Prior art keywords
heat treatment
steel
stainless steel
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14966286A
Other languages
Japanese (ja)
Other versions
JPS637338A (en
Inventor
Teruo Tanaka
Katsuhisa Myakusu
Hiroshi Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP14966286A priority Critical patent/JPS637338A/en
Publication of JPS637338A publication Critical patent/JPS637338A/en
Publication of JPH0572449B2 publication Critical patent/JPH0572449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、延性に優れ強度および延性の面内異
方性の小さい高強度複相組織クロムステンレス鋼
板または鋼帯の新規な工業的製造法に関し、高強
度が必要とされ且つプレス成形などの加工が施さ
れる成形用素材としての高強度延性ステンレス鋼
板または鋼帯を提供するものである。 以下の説明において「鋼板または鋼帯」を「鋼
板」と略称することがあるが「鋼帯」も本発明の
内容に含まれるものである。 〔従来の技術〕 クロムを主合金成分として含有するクロムステ
ンレス鋼にはマルテサイト系ステンレス鋼とフエ
ライト系ステンレス鋼とがある。 従来より、高強度のクロムステンレス鋼板とし
てはマルテンサイト系ステンレス鋼が良く知られ
ている。例えば、JIS G 4305には、マルテンサ
イト系ステンレス鋼として7種の鋼が規定されて
いる。これらのマルテンサイト系ステンレス鋼
は、C:0.8%以下(SUS410S)から0.60〜0.75%
(SUS440A)とフエライト系ステンレンス鋼にく
らべて高いCを含有し、焼入れ処理または焼入れ
焼もどし処理により高強度を付与することができ
る。またこのJIS G 4305において、0.26〜0.40
%のCおよび12.00〜14.00%のCrを含有する
SUS420J2では、980〜1040℃からの急冷による
焼入れ後、150〜400℃空冷の焼もどしにより
HRC40以上の硬さが得られることが、そして、
0.60〜0.75%のCおよび16.00〜18.00%のCrを含
有するSUS440Aでは、1010〜1070℃からの急冷
による焼入れ後、150〜400℃空冷の焼もどしによ
り、同じくHRC 40以上の硬さが得られることが
示されている。このようにマルテンサイト系ステ
ンレス鋼では熱処理により高強度が得られるもの
の、素材メーカーからステンレス鋼板または鋼帯
として出荷される場合には焼なまし状態で出荷さ
れており、その時点では、JIS G 4305の表15に
も示されるように強度および硬さは低い。したが
つて、焼入れ、焼入れ−焼もどしなどの熱処理は
加工メーカーにて行われるのが通常である。 もう一種のクロムステンレス鋼であるフエライ
ト系ステンレス鋼板は熱処理による硬化があまり
期待できないので、強度を上昇させる方法として
は焼なまし後、さらに冷間で調質圧延を行つて加
工硬化による強度上昇をはかる場合がある。しか
し、フエライト系ステンレス鋼は元来が高強度を
必要とする用途にはあまり供されてはいないのが
実状である。 〔発明が解決しようとする問題点〕 マルテンサイト系スンテンレス鋼板では、焼入
れまたは焼入れ−焼もどし処理後の組織はその名
称のごとく基本的にはマルテンサイト組織であ
り、非常に高い強度および硬さが得られる反面、
伸びは非常に低い。そのため、加工前の鋼板また
は鋼帯に熱処理を施したのではその後の加工が困
難となる。したがつて、最終製品にほぼ近い形に
加工した後熱処理を施すことが多い。特にプレス
成形などの加工は熱処理後では不可能である。い
ずれにしても、マルテサイト系ステンレス鋼では
高強度を得るためには加工メーカーの熱処理工程
が不可欠であるという加工メーカー側での負担増
があり、またこのために最終製品のコストアツプ
は避けられないという問題があつた。 一方、フエライト系ステンレス鋼板を調質圧延
により強度を上昇させた場合には、伸びお低下が
著しくなつて強度−延性のバランスが悪くなる結
果、加工性に劣ることになる。そして、調質圧延
による強度上昇の程度は引張強さよりも耐力の方
が著しく高い。このために高圧延率になると耐力
と引張強さの差が小さくなり、降伏比(=耐力/
引張強さ)が1に近くなつて材料の塑性加工域が
非常に狭くなると共に耐力が高いとスプリングバ
ツクが大きくなつてプレス加工などの後の形状性
が悪くなる。さらに張質圧延材は強度および伸び
の面内異方性が非常に大きく、軽度にプレス加工
などでも加工後の形状が悪くなる。また、圧延に
よる加工歪みは板の表面に近いほど大きいという
特徴があるため、張質圧延材では板厚方向のひず
み分布が不均一になることが避けられない。これ
は残留応力の板厚方向の不均一分布をもたらし、
特に極薄鋼板では打抜き加工やフオトエツチング
処理による穴あけ加工後に板の反りなどの形状変
化を生ずる場合があり、電子部品などの高精度が
必要とされる用途では大きな問題となる。以上の
調質圧延に起因する問題のみならず、フエライト
系スンテンレス鋼では本質的な欠点とも言えるリ
ジングの問題があり、調質圧延後においては一般
に冷延リジングと呼ばれるリジングを発生し、表
面の粗度が重視される用途ではやはり大きな問題
となる。 〔問題点を解決する手段〕 前述のような問題は、適度な高強度を有し且つ
所望の形状に加工し得る良好な延性および加工性
を具備し、異方性が小さくリジング発生のないク
ロムステンレス鋼材料が素材メーカー側で鋼板ま
たは鋼帯の形で提供できれば解決し得る。そこで
本発明者らはこの解決を目的として化学成分並び
に製造条件の両面からクロムステンレス鋼につい
て広範な研究を続けて来た。その結果、思いがけ
ずも、従来のフエライト単相域温度での仕上焼鈍
つまり鋼板または鋼帯製品に施す焼なまし処理で
はなく、フエライト+オーステナイト二相域への
加熱とその後の急冷処理からなる仕上熱処理をク
ロムステンレス鋼の鋼板または鋼帯成品(通常の
熱間圧延、冷間圧延によつて得られた冷延鋼板ま
たは鋼帯)に施すならば、前記の問題点の実質上
すべてが解決できるという素晴しい成果を得るこ
とができた。かくして本発明は、必須成分として
0.10重量%以下の炭素と10.0〜18.0重量%のクロ
ムを含有するクロムステンレス鋼の冷延鋼板また
は鋼帯を通常の熱間圧延および冷間圧延を経て製
造し、得られた冷延鋼板または鋼帯をフエライト
+オーステナイトの二相域となる温度に加熱した
うえこの温度から5℃/sec以上、1000℃/sec以
下の冷却速度で冷却する仕上熱処理に供すること
を特徴とする面内異方性の小さい高延性高強度の
複相組織(実質状フエライトとマルテンサイトと
からなる組織)を有するクロムステンレス鋼板ま
たは鋼帯の製造法を提供するものである。 本発明法によれば前述の問題点の実質上全てが
解決されるのみならず、鋼組成または仕上熱処理
時の加熱温度並びに冷却速度を制御することによ
り強度を自在に且つ簡単に調整できるという点で
クロムステンレス鋼板または鋼帯素材の工業的製
造にあたつての有利且つ新しい製造技術を提供す
るものであり、従来より市場に出荷されているマ
ルテサイト系ステンレス鋼板または鋼帯やフエラ
イト系ステンレス鋼板または鋼帯では有しない延
性と強度の両特性を兼備し且つ延性と強度の面内
異方性の少ない新規クロムステンレス鋼材料を市
場に提供するものである。 従来より、例えばフエライト系ステンレス鋼の
代表鋼種であるSUS430においても二層域温度に
加熱すればオーステナイトが生成し、このオース
テナイトは急冷によつてマルテンサイトに変態し
てフエライト+マルテンサイトの二相組織になる
こと自体は知られていた。しかしながら、高温で
オーステナイトを生成するクロムステンレス鋼板
または鋼帯の製造においては、冷延後の熱処理は
あくまでフエライト単相域温度での焼なまし処理
であり、マルテンサイトを生成するような高温の
熱処理は延性の低下などの材質上の劣化をもたら
すものとして回避することが常識であり、鋼板ま
たは鋼帯の実際の製造面では全く顧みられなかつ
た。したがつて、クロムステンレス鋼の冷延後に
本発明のような仕上熱処理を施した場合の加熱温
度と強度および延性の関係や、延性および強度の
異方性などについて詳細に研究がなされた例もな
い。 以下に本発明者らの行つたクロムステンレス鋼
の冷延材に対する二相域加熱と急冷の仕上熱処理
試験についてその結果の一例を挙げながら本発明
の内容を具体的に説明する。 第1表に示す化学成分を有する鋼AとBを溶製
し、通常の条件の熱間圧延にて板厚3.6mmの熱圧
板とし、780×4時間の焼鈍を施したあと、冷間
圧延により板厚0.7mmの冷間圧延板を得た。鋼A
は従来の概念ではマルテンサイト系ステンレス鋼
に分類される鋼成分であり、鋼Bは従来の概念で
はフエライト系ステンレス鋼に分類される鋼成分
である。
[Industrial Application Field] The present invention relates to a new industrial manufacturing method for high-strength multi-phase structure chromium stainless steel sheets or steel strips that are excellent in ductility and have low in-plane anisotropy in strength and ductility. The present invention provides a high-strength, ductile stainless steel plate or steel strip that can be used as a forming material and subjected to processing such as press forming. In the following description, "steel plate or steel strip" may be abbreviated as "steel plate", but "steel strip" is also included in the content of the present invention. [Prior Art] Chromium stainless steel containing chromium as a main alloy component includes martesitic stainless steel and ferritic stainless steel. Martensitic stainless steel has been well known as a high-strength chromium stainless steel sheet. For example, JIS G 4305 specifies seven types of martensitic stainless steel. These martensitic stainless steels have C: 0.8% or less (SUS410S) to 0.60 to 0.75%.
(SUS440A) contains higher C than ferritic stainless steel, and can be given high strength by quenching or quenching and tempering. Also, in this JIS G 4305, 0.26 to 0.40
Contains % C and 12.00-14.00% Cr
For SUS420J2, after quenching by rapid cooling from 980 to 1040℃, tempering by air cooling to 150 to 400℃
It is possible to obtain a hardness of HRC40 or higher, and
For SUS440A containing 0.60-0.75% C and 16.00-18.00% Cr, a hardness of HRC 40 or higher can be obtained by quenching by rapid cooling from 1010-1070℃ and then air-cooling tempering at 150-400℃. It has been shown that As described above, martensitic stainless steel can achieve high strength through heat treatment, but when it is shipped from material manufacturers as stainless steel plates or steel strips, it is shipped in an annealed state, and at that point JIS G 4305. As shown in Table 15, the strength and hardness are low. Therefore, heat treatments such as quenching, quenching-tempering, etc. are usually performed by the processing manufacturer. Ferritic stainless steel sheets, which are another type of chromium stainless steel, cannot be expected to harden very well through heat treatment, so the best way to increase their strength is to perform cold temper rolling after annealing to increase the strength due to work hardening. It may be measured. However, the reality is that ferritic stainless steel is not often used for applications that originally require high strength. [Problems to be solved by the invention] In martensitic stainless steel sheets, the structure after quenching or quenching-tempering treatment is basically martensitic structure, as its name suggests, and has very high strength and hardness. On the other hand,
Elongation is very low. Therefore, if a steel plate or steel strip is subjected to heat treatment before processing, subsequent processing becomes difficult. Therefore, heat treatment is often performed after processing the product into a shape that approximates the final product. In particular, processing such as press molding is not possible after heat treatment. In any case, in order to obtain high strength with martesitic stainless steel, a heat treatment process by the processing manufacturer is essential, which increases the burden on the processing manufacturer, and this inevitably increases the cost of the final product. There was a problem. On the other hand, when the strength of a ferritic stainless steel sheet is increased by temper rolling, the elongation decreases significantly and the balance between strength and ductility worsens, resulting in poor workability. The degree of increase in strength due to temper rolling is significantly higher in yield strength than in tensile strength. For this reason, when the rolling reduction becomes high, the difference between proof stress and tensile strength becomes smaller, and the yield ratio (= proof stress /
When the tensile strength (tensile strength) approaches 1, the plastic working range of the material becomes very narrow, and when the yield strength is high, the spring back becomes large and the shapeability after press working etc. becomes poor. Furthermore, tension-rolled materials have very large in-plane anisotropy in strength and elongation, and even with slight press working, the shape after working becomes poor. Furthermore, since the processing strain caused by rolling is larger closer to the surface of the plate, it is inevitable that strain distribution in the thickness direction of the tension-rolled material will become non-uniform. This results in uneven distribution of residual stress in the plate thickness direction,
In particular, ultra-thin steel plates may undergo shape changes such as warpage after punching or photo-etching, which is a major problem in applications that require high precision, such as electronic parts. In addition to the above-mentioned problems caused by skin-pass rolling, ferritic stainless steels also have the problem of ridging, which can be said to be an essential drawback. This becomes a big problem in applications where strength is important. [Means for solving the problem] The above-mentioned problem is solved by using chrome that has moderately high strength, good ductility and workability that can be processed into a desired shape, and has small anisotropy and does not cause ridging. This problem could be solved if stainless steel materials could be provided in the form of steel plates or steel strips by material manufacturers. In order to solve this problem, the present inventors have continued extensive research on chromium stainless steel from both the chemical composition and manufacturing conditions. As a result, unexpectedly, instead of the conventional finish annealing at a temperature in the ferrite single-phase region, that is, the annealing treatment applied to the steel plate or steel strip product, a finishing process consisting of heating to the ferrite + austenite two-phase region followed by a rapid cooling treatment was realized. Substantially all of the above problems can be solved if heat treatment is applied to chromium stainless steel steel plates or steel strip products (cold rolled steel plates or steel strips obtained by conventional hot rolling or cold rolling). We were able to obtain a wonderful result. Thus, the present invention provides that as an essential component
A cold-rolled steel plate or steel obtained by manufacturing a cold-rolled steel plate or steel strip of chromium stainless steel containing 0.10% by weight or less of carbon and 10.0-18.0% by weight of chromium through normal hot rolling and cold rolling. In-plane anisotropy characterized by heating the band to a temperature in which it becomes a two-phase region of ferrite + austenite, and then subjecting it to a finishing heat treatment in which it is cooled at a cooling rate of 5°C/sec or more and 1000°C/sec or less. The present invention provides a method for producing a chromium stainless steel sheet or steel strip having a high ductility, high strength, and a multi-phase structure (structure consisting of substantial ferrite and martensite) with a small amount of heat. According to the method of the present invention, not only virtually all of the above-mentioned problems are solved, but also the strength can be freely and easily adjusted by controlling the steel composition or the heating temperature and cooling rate during finishing heat treatment. This product provides an advantageous and new manufacturing technology for the industrial production of chromium stainless steel sheets or steel strip materials, and can be applied to martesitic stainless steel sheets or steel strips and ferritic stainless steel sheets that have been shipped to the market in the past. Another object of the present invention is to provide the market with a new chromium stainless steel material that has both ductility and strength properties that steel strips do not have, and has less in-plane anisotropy in ductility and strength. Traditionally, for example, even in SUS430, which is a representative steel type of ferritic stainless steel, austenite is generated when heated to a temperature in the two-layer region, and this austenite is transformed into martensite by rapid cooling, forming a two-phase structure of ferrite + martensite. It was known that it would become. However, in the production of chromium stainless steel sheets or steel strips that produce austenite at high temperatures, the heat treatment after cold rolling is limited to annealing at a temperature in the ferrite single-phase region; It is common sense to avoid this as it causes material deterioration such as a decrease in ductility, and it has not been considered at all in the actual production of steel plates or steel strips. Therefore, there have been detailed studies on the relationship between heating temperature, strength, and ductility, as well as the anisotropy of ductility and strength when finishing heat treatment as in the present invention is applied after cold rolling of chromium stainless steel. do not have. The content of the present invention will be specifically explained below by citing an example of the results of a finishing heat treatment test of two-phase region heating and rapid cooling on a cold-rolled chromium stainless steel material conducted by the present inventors. Steels A and B having the chemical composition shown in Table 1 are melted and hot-rolled under normal conditions to form a hot-rolled plate with a thickness of 3.6 mm. After annealing at 780 x 4 hours, cold-rolling is performed. A cold rolled plate with a thickness of 0.7 mm was obtained. Steel A
is a steel component that is classified as martensitic stainless steel in the conventional concept, and steel B is a steel component that is classified as ferritic stainless steel in the conventional concept.

【表】 ころ冷間圧延板を750〜1150℃の範囲の各温度
で2分間均熱したあと、平均冷却速度20℃/sec
で常温まで冷却する仕上熱処理を施した。得られ
た各仕上熱処理材について引張試験、硬さ試験お
よび顕微鏡による金属組織観察を行つた。 第1図における左側のa欄に、前記仕上熱処理
時の加熱温度とマルテンサイト量(体積%)、硬
さ(Hv)、引張強さ(Kgf/mm2)および伸び
(%)との関係を示した。また比較のために、第
1図における右欄のbには同じ冷間圧延板を圧延
率70%および80%で調質圧延して強度を高めた場
合の各特性を対比して示した。なお、引張強さお
よび伸びについては、圧延方向の値L、圧延方向
に対して45°方向の値Dおよび圧延方向に対し90°
方向の値Tをそれぞれ求め、(L+2D+T)/4
によつて計算した平均値で示した。第1図aから
明らかなように鋼Aおよび鋼Bとも、加熱温度が
800〜900℃以上の範囲(フエライト+オーステナ
イトの二相温度域となる温度)から硬さおよび引
張強さの急激な上昇が見られ、加熱温度が950℃
を超えると硬さおよび引張強さの上昇は飽和する
傾向にある。一方、硬さおよび引張強さの上昇に
ともない伸びは低下するが、例えば鋼Aは加熱温
度を900℃とした場合の伸びは15%であり(硬さ
Hv:265、引張強さ:83Kgf/mm2)、これは同等
の硬さおよび引張強さを調質圧延により得た場合
の2.5%(第1図b)に比べ非常に優れた延性を
有していると言える。この点を明らかにするため
に、第1図の結果を引張強さと伸びの関係で示し
たのが第2図である。第2図から明らかなよう
に、仕上熱処理としてフエライト+オーステナイ
ト二相温度域加熱およびこの温度からの急冷を行
つた場合の伸びは同じ強度レベルで比較して調質
圧延材よりも著しく高く、強度−延性バランスに
優れていることがわかる。 また、第2表には、鋼Aの950℃加熱の仕上熱
処理材と80%調質圧延材について、L、D、Tの
3方向の引張強さおよび伸びを示した。
[Table] After soaking the roller cold-rolled plate for 2 minutes at each temperature in the range of 750 to 1150℃, the average cooling rate was 20℃/sec.
Finishing heat treatment was performed by cooling to room temperature. A tensile test, a hardness test, and a microscopic observation of the metallographic structure were performed on each of the finished heat-treated materials obtained. Column a on the left side of Figure 1 shows the relationship between the heating temperature during the finishing heat treatment and the amount of martensite (volume %), hardness (Hv), tensile strength (Kgf/mm 2 ), and elongation (%). Indicated. For comparison, b in the right column of FIG. 1 compares the properties of the same cold-rolled sheet with enhanced strength by temper rolling at rolling ratios of 70% and 80%. Regarding tensile strength and elongation, the value L in the rolling direction, the value D at 45° to the rolling direction, and the value D at 90° to the rolling direction.
Find the value T of each direction and calculate (L+2D+T)/4
The average value calculated by As is clear from Fig. 1a, both steel A and steel B have a heating temperature of
A rapid increase in hardness and tensile strength was observed from the range of 800 to 900℃ or higher (the temperature in the two-phase temperature range of ferrite + austenite), and the heating temperature was 950℃.
If the value exceeds 100%, the increase in hardness and tensile strength tends to be saturated. On the other hand, as hardness and tensile strength increase, elongation decreases; for example, steel A has an elongation of 15% when the heating temperature is 900°C (hardness
Hv: 265, tensile strength: 83 Kgf/mm 2 ), which is 2.5% when the same hardness and tensile strength are obtained by temper rolling (Fig. 1b), which has extremely superior ductility. I can say that I am doing it. In order to clarify this point, Figure 2 shows the results of Figure 1 in terms of the relationship between tensile strength and elongation. As is clear from Figure 2, the elongation when heating in the ferrite + austenite two-phase temperature range and rapid cooling from this temperature as finishing heat treatment is significantly higher than that of the temper-rolled material at the same strength level. - It can be seen that the ductility balance is excellent. Furthermore, Table 2 shows the tensile strength and elongation in the three directions L, D, and T for the finish heat-treated material of Steel A heated at 950° C. and the 80% temper-rolled material.

【表】 第2表から明らかなように、950℃仕上熱処理
材の引張強さおよび伸びの方向による差、すなわ
ち異方性は、調質圧延材に比べて著しく小さい。
例えば950℃仕上熱処理材の引張強さはL方向で
最も高く96.1Kgf/mm2、D方向で最も低く93.4Kg
f/mm2であり、その差は僅かに2.7Kgf/mm2であ
るのに対し、調質圧延のそれは最も高いT方向と
最も低いL方向の差は19.8Kgf/mm2と非常に大き
い。伸びについても同様であつて仕上熱処理は高
い伸びに示して異方性が小さいのに対し調質圧延
では低い伸びを示して異方性が大きい。 第3図は鋼Aの950℃加熱の仕上熱処理材の金
属組織写真である。写真中の白く見える領域がフ
エライト、黒もしくは灰色に見える領域がマルテ
ンサイトである。この写真からわかるように、こ
の材料はフエライトとマルテンサイトの複相組織
を有している。すなわち前記の試験結果に見られ
るように、強度並びに延性の異方性の小さい高延
性高強度の材料が得られたのは、熱間圧延、冷間
圧延のあとにフエライト+オーステナイトの二相
域に加熱し急冷する仕上熱処理によつて、基本的
には、フエライトと、急冷によつてオーステナイ
トから変態して生成したマルテンサイトとの複相
組織とすることで達成し得たものである。 このような複相組織鋼板の強度(硬さ)はマル
テンサイト相の量(体積分率)およびマルテンサ
イト相の強度(硬さ)に依存する。したがつて、
本発明法の実施にさいし、化学成分面からは
Mn、Ni、C、Nなどのオーステナイト生成元素
とCr、Si、Alなどのフエライト生成元素のバラ
ンスにより高温でオーステナイト量すなわち急冷
後のマルテンサイト相の体積分率は自在に制御で
きると共に、マルテンサイト強化能の大きいCお
よびN量の制御によつてマルテンサイト相そのも
のの強度(硬さ)も自在に制御することができ
る。また、製造条件の面からも仕上熱処理時の加
熱温度および冷却速度の制御によりマルテンサイ
ト相の体積分率および強度(硬さ)の制御が行い
得る。 本発明法を適用するクロムステンレス鋼におけ
るC量についてはあまり高いと仕上熱処理後に生
成するマルテンサイト相が多くなり、場合によつ
ては100%マルテンサイトとなると共に、マルテ
ンサイト相そのものの硬さを非常に高くなるので
高強度は得られるものの延性が低下する。したが
つて、本発明法を適用するクロムステンレス鋼の
C量の上限は0.10%とするのがよい。またCr量に
ついては、ステンレス鋼としての耐食性を維持す
るうえで少なくとも10.0%は必要最低量として含
有させるべきであるが、あまりCr量が高いと、
マルテンサイト相を生成させて高強度を得るに必
要なオーステナイト生成元素の量が多くなると共
に製品が高価となるために18.0%を上限とするの
がよい。 本発明において前記目的を達成するには仕上熱
処理時の加熱温度はフエライト+オーステナイト
二相域温度であることが絶対条件である。本発明
が有利に実施し得るクロムステンレス鋼ではフエ
ライト+オーステナイト二相組織となる下限の温
度はおおむね800〜900℃の範囲である。換言すれ
ば本発明法は800〜900℃の範囲にフエライト+オ
ーステナイト二相組織となる下限温度をもつよう
な化学成分のクロムステンレス鋼を対象とした場
合に本発明の効果が最も良く現れるとも言いえ
る。この仕上熱処理時の加熱温度の上限について
はあまり高温では強度上昇が飽和するとともに製
造コストの面でも不利となるので1100℃を上限と
するのがよい。 本発明法における仕上熱処理時のフエライト+
オーステナイト二相入加熱の治金的意義として、
Cr炭化物、窒化物の固溶、オーステナイト
相の生成、生成したオーステナイト中へのCお
よびNの濃縮の3点を挙げることができる。クロ
ムステレス鋼の場合にはこれらの現象はいずれも
短時間のうちにほぼ平衡状態に達するので、本発
明における仕上熱処理時の加熱時間は短時間、お
おむね10分間以内の加熱でよい。この短時間加熱
でよいことは本発明法の実際操業の点でも生産効
率、製造コストの面から非常に有利である。 仕上熱処理時の冷却速度についてはマルテンサ
イト相と軟質なフエライト相との複相組織を得る
うえから5℃/sec以上の冷却速度とする必要が
あるが、1000℃/secを超える冷却速度を得るの
は実質上困難である。したがつて、本発明におい
て二相温度域加熱からの冷却は5〜1000℃/sec
の範囲の冷却速度で実施する。この冷却速度は常
温までの終点冷却温度までとしてもよいが、低温
変態相すなわちマルテンサイト相に変態してしま
つたあとの冷却過程では必ずしもこの冷却速度を
採用する必要はない。冷却の方法としては気体お
よび/または液体の冷却媒体を鋼板または鋼帯に
吹き付ける強制冷却方式、水冷ロールによるロー
ル冷却方式などを適用できる。本発明に従う仕上
熱処理はコイル巻戻し機から巻取り機に至る間に
加熱均熱帯域と急冷帯域を有する連続熱処理炉に
クロムステンレス鋼の冷延ストリツプを通板する
という連続熱処理方式で行うことができる。 実施例 第3表に示す化学成分を有する鋼を溶製し、い
ずれも板厚3.6mmに熱間圧延後、780℃×4時間の
熱延板焼鈍を行い、酸洗を経て板厚0.3mmに冷間
圧延した。これらの冷間圧延板を対象として第4
表に示した仕上熱処理条件のもので仕上熱処理を
施した。得られた仕上熱処理材の材料特性を第4
表に併記した。なお、第4表における比較例No.3
と5は、鋼No.2と3について調質圧延によつて強
度を上昇させた例である。この場合、備考に表示
の圧下率を付与した後の板厚が0.3mmとなるよう
に予め熱延板の板厚を表面研削によつて調整し
た。
[Table] As is clear from Table 2, the difference in tensile strength and elongation of the 950°C finish heat-treated material depending on the direction, that is, the anisotropy, is significantly smaller than that of the temper-rolled material.
For example, the tensile strength of heat-treated material finished at 950℃ is highest in the L direction at 96.1Kgf/mm 2 and lowest in the D direction at 93.4Kg.
f/mm 2 , and the difference is only 2.7 Kgf/mm 2 , whereas in temper rolling, the difference between the highest T direction and the lowest L direction is as large as 19.8 Kgf/mm 2 . The same is true for elongation; finish heat treatment shows high elongation and small anisotropy, while temper rolling shows low elongation and large anisotropy. Figure 3 is a photograph of the metallographic structure of Steel A, which was subjected to finishing heat treatment at 950°C. The white area in the photo is ferrite, and the black or gray area is martensite. As can be seen from this photo, this material has a dual-phase structure of ferrite and martensite. In other words, as seen in the above test results, a high ductility and high strength material with small anisotropy of strength and ductility was obtained in the two-phase region of ferrite + austenite after hot rolling and cold rolling. This can be achieved by finishing heat treatment in which the material is heated to a temperature of 100% and then rapidly cooled to basically form a multi-phase structure of ferrite and martensite, which is transformed from austenite by rapid cooling. The strength (hardness) of such a multiphase steel sheet depends on the amount (volume fraction) of the martensitic phase and the strength (hardness) of the martensitic phase. Therefore,
When implementing the method of the present invention, from the chemical composition perspective
Due to the balance between austenite-forming elements such as Mn, Ni, C, and N and ferrite-forming elements such as Cr, Si, and Al, the amount of austenite at high temperatures, that is, the volume fraction of the martensite phase after quenching, can be freely controlled. The strength (hardness) of the martensitic phase itself can be freely controlled by controlling the amounts of C and N, which have a large strengthening ability. Also, from the viewpoint of manufacturing conditions, the volume fraction and strength (hardness) of the martensitic phase can be controlled by controlling the heating temperature and cooling rate during the final heat treatment. If the amount of C in the chromium stainless steel to which the method of the present invention is applied is too high, a large amount of martensite phase will be formed after finishing heat treatment, and in some cases, 100% martensite will be formed, and the hardness of the martensite phase itself will decrease. Since it becomes very high, although high strength can be obtained, ductility decreases. Therefore, the upper limit of the amount of C in chromium stainless steel to which the method of the present invention is applied is preferably 0.10%. Regarding the amount of Cr, at least 10.0% should be contained as the minimum necessary amount to maintain the corrosion resistance of stainless steel, but if the amount of Cr is too high,
The upper limit is preferably 18.0% because the amount of austenite-forming elements necessary to generate martensitic phase and obtain high strength increases and the product becomes expensive. In order to achieve the above object in the present invention, it is an absolute condition that the heating temperature during the finishing heat treatment is in the ferrite+austenite two-phase region temperature. In the case of chromium stainless steel in which the present invention can be advantageously practiced, the lower limit temperature at which a ferrite+austenite two-phase structure is formed is approximately in the range of 800 to 900°C. In other words, it can be said that the effects of the present invention are best exhibited when the method of the present invention is applied to chromium stainless steel whose chemical composition has a lower limit temperature in the range of 800 to 900°C at which a ferrite + austenite dual-phase structure is formed. I can say that. Regarding the upper limit of the heating temperature during this finishing heat treatment, it is preferable to set the upper limit to 1100° C., since if the temperature is too high, the increase in strength will be saturated and it will also be disadvantageous in terms of manufacturing cost. Ferrite + during finishing heat treatment in the method of the present invention
The metallurgical significance of austenite two-phase input heating is as follows:
Three points can be mentioned: solid solution of Cr carbides and nitrides, generation of austenite phase, and concentration of C and N in the generated austenite. In the case of chromium stainless steel, all of these phenomena reach an almost equilibrium state within a short time, so the heating time during the finishing heat treatment in the present invention may be short, approximately 10 minutes or less. The fact that heating is required for a short time is very advantageous in terms of production efficiency and manufacturing cost in terms of actual operation of the method of the present invention. Regarding the cooling rate during finishing heat treatment, it is necessary to set the cooling rate to 5℃/sec or more in order to obtain a multi-phase structure of martensitic phase and soft ferrite phase, but it is necessary to set the cooling rate to over 1000℃/sec. is practically difficult. Therefore, in the present invention, cooling from two-phase temperature range heating is performed at a rate of 5 to 1000°C/sec.
Carry out cooling rates in the range of . Although this cooling rate may be set to the final cooling temperature to room temperature, it is not necessarily necessary to employ this cooling rate in the cooling process after transformation to a low-temperature transformation phase, that is, a martensitic phase. As a cooling method, a forced cooling method in which a gas and/or liquid cooling medium is sprayed onto the steel plate or steel strip, a roll cooling method using water-cooled rolls, etc. can be applied. The finishing heat treatment according to the present invention can be carried out by a continuous heat treatment method in which the cold rolled chromium stainless steel strip is passed through a continuous heat treatment furnace having a heating soaking zone and a quenching zone between the coil unwinding machine and the winding machine. can. Example Steel having the chemical composition shown in Table 3 was melted, hot-rolled to a thickness of 3.6 mm, hot-rolled at 780°C for 4 hours, and pickled to a thickness of 0.3 mm. cold rolled. The fourth test targeted at these cold-rolled plates.
Finish heat treatment was performed under the finish heat treatment conditions shown in the table. The material properties of the finished heat-treated material obtained were
Also listed in the table. In addition, comparative example No. 3 in Table 4
and 5 are examples of steel Nos. 2 and 3 in which the strength was increased by temper rolling. In this case, the thickness of the hot-rolled sheet was adjusted in advance by surface grinding so that the thickness after adding the indicated rolling reduction in the notes was 0.3 mm.

【表】【table】

【表】【table】

【表】 第4表から明らかなように、本発明によればい
ずれも高い引張強さと硬さおよび良好な伸びを有
している。また、本発明法では0.2%耐力、引張
強さおよび伸びの異方性が小さいことが明らかで
ある。 これに対し比較例No.1では仕上熱処理条件は本
発明で規定する範囲であるが、鋼のC量が本発明
で規定するC量(C≦0.10%)より多いC=
0.162%の鋼No.5であるために、仕上熱処理後の
マルテンサイト量が表示のように100%となり、
強度は高いものの伸びが非常に低い。 比較例No.2では仕上熱処理での加熱温度が800
℃と低く、この加熱温度では鋼No.2の鋼はフエラ
イト+オーステナイト二相域にならず、したがつ
て仕上熱処理後の金属組織はマルテンサイトの存
在しないフエライト単相組織であり、伸びは高い
ものの強度および硬さが低い。 比較例No.3および比較例No.5は、前述のように
熱延板焼鈍後の冷間圧延率を制御しいわゆる調質
圧延により強度を高めたものであるが、本発明例
のものに比較して引張強さ(硬さ)に対する伸び
が著しく低い。また調張強さに対する0.2%耐力
の比、すなわち降伏比が高いと共に、0.2%耐力、
引張強さ、伸びの異方性が大きい。したがつて本
発明例によつて得られた材料に比べて加工性並び
に加工後の形状性に劣ることが明らかである。 比較例No.4は、仕上熱処理の冷却速度が0.03
℃/secと非常に低いので熱処理後にマルテンサ
イトが生成しておらず、伸びは高いものの強度お
よび硬さが低い。 次に、本発明例No.1〜4および比較例No.1、
3、5によつて得られた材料についてプレス加工
試験を行ない、プレス加工の成否、加工品の形状
精度およびリジング発生の有無を調べた結果を第
5表に示した。試験は直径35mmの円板試片を第4
図に示す形状にプレス加工した。そのさいのポン
チ肩半径Rを0.2mmと0.6mmの2種とした。また、
加工品の形状精度については、加工後のフランジ
部の平坦度で評価し、水平な台上に加工品を置
き、フランジ部のシワもしくはうねりの凹凸を全
周にわたつて測定し、その最高の高さと最低の高
さの差で示した。
[Table] As is clear from Table 4, all the samples according to the present invention have high tensile strength, hardness, and good elongation. Furthermore, it is clear that the method of the present invention has small anisotropy in 0.2% proof stress, tensile strength, and elongation. On the other hand, in Comparative Example No. 1, the finishing heat treatment conditions are within the range specified by the present invention, but the C content of the steel is greater than the C amount specified by the present invention (C≦0.10%).
Since it is steel No. 5 with a content of 0.162%, the amount of martensite after finishing heat treatment is 100% as shown,
It has high strength but very low elongation. In comparative example No. 2, the heating temperature in the finishing heat treatment was 800℃.
℃, and at this heating temperature, Steel No. 2 does not enter the ferrite + austenite two-phase region, so the metal structure after finishing heat treatment is a ferrite single-phase structure without martensite, and the elongation is high. The strength and hardness of objects are low. In Comparative Example No. 3 and Comparative Example No. 5, the cold rolling rate after hot-rolled sheet annealing was controlled as described above, and the strength was increased by so-called temper rolling. In comparison, elongation relative to tensile strength (hardness) is significantly lower. In addition, the ratio of 0.2% proof stress to tensile strength, that is, the yield ratio, is high, and the 0.2% proof stress is
High anisotropy in tensile strength and elongation. Therefore, it is clear that the workability and shapeability after processing are inferior to the materials obtained by the examples of the present invention. Comparative example No. 4 has a cooling rate of 0.03 in the finishing heat treatment.
Since the temperature is very low at ℃/sec, no martensite is generated after heat treatment, and although elongation is high, strength and hardness are low. Next, present invention examples No. 1 to 4 and comparative example No. 1,
A press working test was conducted on the materials obtained in 3 and 5, and the success or failure of press work, the shape accuracy of the processed product, and the presence or absence of ridging were investigated. The results are shown in Table 5. In the test, a disk specimen with a diameter of 35 mm was used as the fourth
It was pressed into the shape shown in the figure. Two types of punch shoulder radius R were used: 0.2 mm and 0.6 mm. Also,
The shape accuracy of the processed product is evaluated by the flatness of the flange after processing.The processed product is placed on a horizontal table, and the unevenness of wrinkles or undulations on the flange is measured over the entire circumference. It is shown as the difference between the height and the lowest height.

【表】【table】

【表】 第5表から明らかなように、本発明例による材
料のすべてはポンチ肩半径0.2mmおよび0.6mmのい
ずれの場合もプレス加工が可能であるとともに、
加工後の形状精度が良好で平坦度が20μm以下で
あつてリジングの発生も認められなかつた。 これに対し比較例No.1による材料はポンチ肩半
径0.2mmおよび0.6mmともにポンチ肩部分で破断し
てプレス加工ができないものであつた。また比較
例No.3および5による材料はポンチ肩半径0.2mm
ではプレス加工が不可能であり、ポンチ肩半径
0.6mmの場合にはプレス加工が可能であつたもの
の、形状精度が悪く且つリジングの発生が認めら
れた。なお、一般に加工品の形状精度はフランジ
の平坦度の値が小さい程好ましいことは当然であ
るが、通常の加工品の場合少なくともフランジの
平坦度が30μm以下であることが要求される。 以上の実施例に見られるように、第3表の鋼No.
1〜4の如き鋼成分のクロムステンレス鋼板には
本発明に伴う仕上熱処理を施した鋼板素材は、伸
びが9%以上で引張強さ80Kgf/mm2以上の延性−
強度バランスの良い高延性と高強度を兼備した材
料であるともに、延性および強度の面内異方性が
小さく且つ低耐力、低降伏比をもちプレス成形性
に優れた材料である。従来のクロムステンレス鋼
板の分野においてかような良好な加工性を兼備し
た高強度素材は鋼板または鋼帯の形で市場に出荷
された例は見ない。したがつて、本発明は従来の
クロムステンレス鋼板分野に新規素材鋼板または
鋼帯を提供するものである。本発明に従う材料は
電子部品、精密機械部品などへの加工性が要求さ
れる高強度材として特に有用であり、この分野に
おいて多大な成果が発揮され得る。
[Table] As is clear from Table 5, all of the materials according to the examples of the present invention can be press-formed with either a punch shoulder radius of 0.2 mm or 0.6 mm, and
The shape accuracy after processing was good, the flatness was 20 μm or less, and no ridging was observed. On the other hand, the material according to Comparative Example No. 1 broke at the punch shoulder portion with punch shoulder radii of 0.2 mm and 0.6 mm, and could not be pressed. In addition, the materials according to Comparative Examples No. 3 and 5 have a punch shoulder radius of 0.2 mm.
It is impossible to press the punch with the shoulder radius of the punch.
Although press working was possible in the case of 0.6 mm, the shape accuracy was poor and ridging was observed. In general, it goes without saying that the smaller the flatness value of the flange is, the better the shape accuracy of the processed product is, but in the case of a normal processed product, it is required that the flatness of the flange is at least 30 μm or less. As seen in the above examples, steel No. 3 in Table 3.
Chromium stainless steel sheets with steel compositions such as Nos. 1 to 4, which have been subjected to the finishing heat treatment according to the present invention, have an elongation of 9% or more and a tensile strength of 80 Kgf/mm 2 or more and ductility.
It is a material that has both high ductility and high strength with a good strength balance, and also has small in-plane anisotropy of ductility and strength, low proof stress, low yield ratio, and excellent press formability. In the field of conventional chrome stainless steel sheets, there has never been an example of a high-strength material with such good workability being shipped to the market in the form of steel plates or steel strips. Therefore, the present invention provides a new material steel plate or steel strip for the conventional chrome stainless steel plate field. The material according to the present invention is particularly useful as a high-strength material that requires processability into electronic parts, precision mechanical parts, etc., and can achieve great results in this field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従う仕上熱処理の加熱温度
とマルテンサイト量、硬さ、引張強さおよび伸び
との関係を調質圧延材と比較して示した図、第2
図は本発明に従う仕上熱処理材と調質圧延材につ
いて引張強さと伸びとの関係を示した図、第3図
は本発明に従う仕上熱処理を施したクロムステン
レス鋼の金属組織を示した顕微鏡写真、第4図は
明細書記載のプレス加工試験に供した円板状の加
工品をその中心線断面で見た説明図である。
Fig. 1 is a diagram showing the relationship between the heating temperature of the finishing heat treatment according to the present invention, the amount of martensite, hardness, tensile strength, and elongation in comparison with that of the temper-rolled material.
The figure is a diagram showing the relationship between tensile strength and elongation for finish heat-treated materials and temper-rolled materials according to the present invention, and FIG. 3 is a micrograph showing the metal structure of chromium stainless steel subjected to finish heat treatment according to the present invention. FIG. 4 is an explanatory view of a disk-shaped workpiece subjected to the press working test described in the specification, viewed in cross section along its center line.

Claims (1)

【特許請求の範囲】 1 必須成分として0.10重量%以下の炭素と10.0
〜18.0重量%のクロムを含有するクロムステンレ
ス鋼の冷延鋼板または鋼帯を通常の熱間圧延およ
び冷間圧延を経て製造し、得られた冷延鋼板また
は鋼帯をフエライト+オーステナイトの二相域と
なる温度に加熱し、この温度から5℃/sec以上、
1000℃/sec以下の冷却速度で冷却する仕上熱処
理に供することを特徴とする面内異方性の小さい
高延性高強度の複相組織クロムステレス鋼板また
は鋼帯の製造法。 2 クロムステンレス鋼はフエライト+オーステ
ナイトの二相域となる温度が800℃を超える温度
となるように成分調整された鋼である特許請求の
範囲第1項記載の製造法。 3 仕上熱処理の加熱温度は1100℃以下である特
許請求の範囲第1項または第2項記載の製造法。 4 仕上熱処理の加熱時間は10分以内である特許
請求の範囲第1項、第2項または第3項記載の製
造法。 5 仕上熱処理における冷却はオーステナイトが
マルテンサイトに変態するに十分な冷却速度と冷
却温度で行う特許請求の範囲第1項、第2項、第
3項または第4項記載の製造法。
[Claims] 1. 0.10% by weight or less of carbon and 10.0% by weight as essential components
A cold-rolled steel plate or steel strip of chromium stainless steel containing ~18.0% by weight of chromium is produced through normal hot rolling and cold rolling, and the obtained cold-rolled steel plate or steel strip is processed into two-phase ferrite + austenite. 5℃/sec or more from this temperature,
A method for producing a high ductility, high strength, dual-phase structure chromium stainless steel sheet or steel strip with small in-plane anisotropy, characterized by subjecting it to finishing heat treatment by cooling at a cooling rate of 1000°C/sec or less. 2. The manufacturing method according to claim 1, wherein the chromium stainless steel is a steel whose composition is adjusted so that the temperature in the two-phase region of ferrite + austenite exceeds 800°C. 3. The manufacturing method according to claim 1 or 2, wherein the heating temperature in the finishing heat treatment is 1100°C or less. 4. The manufacturing method according to claim 1, 2 or 3, wherein the heating time of the finishing heat treatment is 10 minutes or less. 5. The manufacturing method according to claim 1, 2, 3, or 4, wherein cooling in the finishing heat treatment is performed at a cooling rate and temperature sufficient to transform austenite into martensite.
JP14966286A 1986-06-27 1986-06-27 Production of composite phase structure chromium stainless steel sheet or steel strip having small intrasurface anisotropy and high ductility and high strength Granted JPS637338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14966286A JPS637338A (en) 1986-06-27 1986-06-27 Production of composite phase structure chromium stainless steel sheet or steel strip having small intrasurface anisotropy and high ductility and high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14966286A JPS637338A (en) 1986-06-27 1986-06-27 Production of composite phase structure chromium stainless steel sheet or steel strip having small intrasurface anisotropy and high ductility and high strength

Publications (2)

Publication Number Publication Date
JPS637338A JPS637338A (en) 1988-01-13
JPH0572449B2 true JPH0572449B2 (en) 1993-10-12

Family

ID=15480106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14966286A Granted JPS637338A (en) 1986-06-27 1986-06-27 Production of composite phase structure chromium stainless steel sheet or steel strip having small intrasurface anisotropy and high ductility and high strength

Country Status (1)

Country Link
JP (1) JPS637338A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2756549B2 (en) * 1989-07-22 1998-05-25 日新製鋼株式会社 Manufacturing method of high strength duplex stainless steel strip with excellent spring properties.
JPH07138704A (en) 1993-11-12 1995-05-30 Nisshin Steel Co Ltd High strength and high ductility dual-phase stainless steel and its production
JP4518645B2 (en) 2000-01-21 2010-08-04 日新製鋼株式会社 High strength and high toughness martensitic stainless steel sheet
JP5744575B2 (en) 2010-03-29 2015-07-08 新日鐵住金ステンレス株式会社 Double phase stainless steel sheet and strip, manufacturing method

Also Published As

Publication number Publication date
JPS637338A (en) 1988-01-13

Similar Documents

Publication Publication Date Title
KR950013187B1 (en) Process for the production of a strip of a chromium staimless steel of a duplex structure having high strength and elong tion as wellas reduced plane anisotropy
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JP3875725B2 (en) Method for producing cold-rolled sheet or strip with good formability
CN111500924A (en) High-strength wheel steel and production method thereof
JPH0814004B2 (en) Method for producing high-ductility and high-strength dual-phase chrome stainless steel strip with excellent corrosion resistance
CN108707823A (en) Ultrahigh-strength steel plates and preparation method thereof and unimach slab products
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
CN105102659B (en) Nitrogen treatment steel plate and its manufacture method
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JPH0572449B2 (en)
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JP2004124123A (en) Low yield ratio type high strength cold rolled steel sheet having excellent workability and shape fixability, and production method therefor
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property
JPH01172525A (en) Production of complex phase structure chromium stainless steel strip having excellent grain boundary corrosion resistance and high ductility and strength
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0394017A (en) Production of high strength sheet metal excellent in local elongation
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JPS5822327A (en) Production of superhigh-strength cold-rolled steel sheet by continuous annealing
JPH07100821B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
JP2000144244A (en) Production of steel having superfine structure
JP2004131754A (en) Cold rolled steel sheet excellent in workability and shape fixability and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees