EP3146083B1 - Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets - Google Patents

Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets Download PDF

Info

Publication number
EP3146083B1
EP3146083B1 EP15730241.5A EP15730241A EP3146083B1 EP 3146083 B1 EP3146083 B1 EP 3146083B1 EP 15730241 A EP15730241 A EP 15730241A EP 3146083 B1 EP3146083 B1 EP 3146083B1
Authority
EP
European Patent Office
Prior art keywords
metal sheet
temperature
rolled
annealing
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15730241.5A
Other languages
German (de)
French (fr)
Other versions
EP3146083A1 (en
Inventor
Artem ARLAZAROV
Jean-Christophe HELL
Frédéric KEGEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Priority to PL15730241T priority Critical patent/PL3146083T3/en
Publication of EP3146083A1 publication Critical patent/EP3146083A1/en
Application granted granted Critical
Publication of EP3146083B1 publication Critical patent/EP3146083B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • C21D8/0489Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention covers the manufacture of double-annealed steels with high strength, simultaneously having a mechanical strength and a deformation capacity for carrying out cold forming operations.
  • the invention more specifically relates to steels having a mechanical strength greater than or equal to 980 MPa, having a yield strength greater than or equal to 650 MPa, a uniform elongation greater than or equal to 15%, an elongation at break greater than or equal to 20%.
  • the microstructure of this steel comprises in terms of surface proportions 0-10% of ferrite, 0-10% of martensite, and 60-95% of martensite returned and containing, in proportions determined by X-ray diffraction: 5-20% d residual austenite. Nevertheless, the ductilities achieved by the steels according to this invention are low and it affects the shaping of the piece from the product obtained from the teachings of this application.
  • the microstructure of this steel has a TRIP effect with a high content of metastable residual austenite which suppresses the pre-cracks and their propagation because of plastic de-stressing and martensite formation during transformation from austenite
  • This article discloses a method for the production of steels with excellent resistance-ductility trade-offs, but the chemical compositions disclosed as well as the methods of production are not only not compatible with industrial production but they will give rise to difficulties of coating.
  • the object of the present invention is to solve the problems mentioned above. It aims to provide a cold-rolled steel having a mechanical strength greater than or equal to 980 MPa, a yield strength greater than or equal to 650 MPa together with a uniform elongation greater than or equal to 15%, a higher breaking elongation or equal to 20% and its manufacturing process.
  • the invention also aims to provide a steel with an ability to be produced stably.
  • the subject of the invention is a steel sheet whose composition comprises, the contents being expressed as a percentage of the weight, 0.20% ⁇ C ⁇ 0.40%, preferentially 0.22% ⁇ C ⁇ 0 , 32%, 0.8% ⁇ Mn ⁇ 1.4%, preferably 1.0% ⁇ Mn ⁇ 1.4%, 1.60% ⁇ Si ⁇ 3.00%, preferentially 1.8% ⁇ Si ⁇ 2 , 5%, 0.015 ⁇ Nb ⁇ 0.150%, preferably 0.020% ⁇ Nb ⁇ 0.13%, Al ⁇ 0.1%, Cr ⁇ 1.0%, preferentially Cr ⁇ 0.5%, S ⁇ 0.006%, P ⁇ 0.030%, Ti ⁇ 0.05%, V ⁇ 0.05%, Mo ⁇ 0.03%, B ⁇ 0.003%, N ⁇ 0.01%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration, the microstructure being constituted, in surface proportions, of 10 to 30% residual austenite
  • the steel sheet according to the invention comprises a coating of zinc or zinc alloy or a coating of Al or Al alloy.
  • These coatings may or may not be alloyed with iron, it will be called galvanized sheet (GI / GA)
  • the sheets according to the invention have a mechanical behavior such that the mechanical strength is greater than or equal to 980 MPa, the elastic limit is greater than or equal to 650 MPa, the uniform elongation greater than or equal to 15% and the elongation at break greater than or equal to 20%.
  • a so-called base annealing of said wound hot-rolled sheet is carried out before cold rolling so that the sheet is heated and then maintained at a temperature of between 400 ° C. and 700 ° C. for a period of between and 24 hours,
  • the sheet is maintained at the end of cooling temperature T OA isothermally between 420 and 480 ° C between 5 and 120 seconds.
  • the double annealed cold-rolled sheet is then cold-rolled with a cold rolling ratio of between 0.1 and 3% before depositing a coating.
  • the doubly annealed sheet is finally heated to a holding temperature T base of between 150 ° C and 190 ° C for a hold time t basis between 10h and 48h.
  • the sheet is coated by dipping in a liquid bath of one of the following elements: Al, Zn, Al alloy or Zn alloy.
  • the sheet according to the invention cold-rolled, doubly annealed and coated, or manufactured by a method according to the invention is used for the manufacture of parts for land motor vehicles.
  • the carbon content by weight, is between 0.20 and 0.40%. If the carbon content of the invention is below 0.20% by weight, the mechanical strength becomes insufficient and the residual austenite fraction is still insufficient and not stable enough to achieve a uniform elongation greater than 15%. Beyond 0.40%, the weldability becomes more and more reduced because low-tenacity microstructures are formed in the heat-affected zone (ZAT) or in the melted zone in the case of resistance welding. In a preferred embodiment, the carbon content is between 0.22 and 0.32%. Within this range, the weldability is satisfactory, the stabilization of the austenite is optimized and the fresh martensite fraction is within the target range of the invention.
  • Manganese is, according to the invention between 0.8 and 1.4%, it is a hardening element with a solid solution of substitution, it stabilizes the austenite and lowers the transformation temperature Ac3. Manganese therefore contributes to an increase in mechanical strength. According to the invention, a a minimum of 0.8% by weight is necessary to obtain the desired mechanical properties. However, beyond 1.4%, its gammagenic character leads to a slowing down of the bainitic transformation kinetics taking place during the maintenance at the end of cooling temperature T OA and the bainite fraction is still insufficient to reach a resistance. elasticity greater than 650 MPa.
  • a range of manganese content of between 1.0% and 1.4% is chosen, thus combining a satisfactory mechanical strength without increasing the risk of reducing the bainite fraction and thus reducing the elastic resistance, neither increase quenchability in welded alloys, which would adversely affect the weldability of the sheet according to the invention.
  • the silicon must be between 1.6 and 3.0%. In this range, the stabilization of the residual austenite is made possible by the addition of silicon, which considerably slows the precipitation of the carbides during the annealing cycle and more particularly during the bainitic transformation. This is because the solubility of silicon in cementite is very low and this element increases the carbon activity in the austenite. Any formation of cementite will therefore be preceded by a step of rejection of Si at the interface. The enrichment of carbon austenite therefore leads to its stabilization at room temperature on the double-annealed and coated steel sheet. Subsequently, the application of an external constraint, shaping for example, will lead to the transformation of this austenite martensite. This transformation has the result of also improving the resistance to damage.
  • Silicon is also a strongly hardening element with a solid solution and thus makes it possible to achieve the elastic and mechanical resistances targeted by the invention.
  • an addition of silicon in an amount greater than 3.0% will substantially promote the ferrite and the target strength would not be reached, in addition strongly adherent oxides would form which would lead to defects surface and non-adherence of the Zinc or Zinc alloy coating.
  • the minimum content must also be set at 1.6% by weight to obtain the stabilizing effect on the austenite. So preferentially, the silicon content will be between 1.8 and 2.5% in order to optimize the aforementioned effects.
  • the chromium content must be limited to 1.0%, this element makes it possible to control the formation of pro-eutectoid ferrite during cooling during annealing from said holding temperature T soaking1 or T soaking2 , because this ferrite, in a high quantity decreases the mechanical strength required for the sheet according to the invention.
  • This element also makes it possible to harden and refine the bainitic microstructure. However, this element considerably slows down the kinetics of bainitic transformation. However, for contents above 1.0%, the bainite fraction is still insufficient to reach a yield strength greater than 650 MPa.
  • Nickel and copper have effects substantially similar to that of manganese. These two elements will be in residual contents namely 0.05% for each element but only because their costs are much higher than that of manganese.
  • the aluminum content is limited to 0.1% by weight, this element is a powerful alphagene favoring the formation of ferrite.
  • a high aluminum content would increase the Ac3 point and thus make the industrial process expensive in terms of energetic annealing.
  • high levels of aluminum increase the erosion of refractories and the risk of clogging of the nozzles during the casting of the steel upstream of the rolling.
  • aluminum segregates negatively and, it can lead to macro-segregations. In excessive amounts, aluminum reduces hot ductility and increases the risk of defects in continuous casting. Without a strong control of the casting conditions, micro and macro segregation defects ultimately result in central segregation on the annealed steel sheet. This central band will be harder than its surrounding matrix and will damage the formability of the material.
  • the sulfur must be less than 0.006%, beyond which the ductility is reduced due to the excessive presence of sulphides such as MnS, so-called manganese sulphides, which reduce the ability to deform.
  • Phosphorus should be less than 0.030%, it is a hardening element in solid solution but significantly reduces spot weldability and hot ductility, particularly because of its ability to segregate at grain boundaries or its tendency to co-segregation with manganese. For these reasons, its content should be limited to 0.030% in order to obtain a good spot welding ability.
  • the niobium must be between 0.015 and 0.150%, it is a micro-alloy element which has the particularity of forming precipitates hardening with carbon and / or nitrogen. These precipitates, already present during the hot rolling operation, delay the recrystallization during annealing and thus refine the microstructure, which contributes to the hardening of the material. It also makes it possible to improve the elongation properties of the product, by allowing high temperature annealing without lowering the elongation performance by a refinement effect of the structures.
  • the niobium content must nevertheless be limited to 0.150% to avoid excessively high hot rolling forces.
  • the niobium content must be greater than or equal to 0.015%, which makes it possible to harden the ferrite when it is present and such hardening is sought and also a sufficiently important refinement for greater stabilizing the residual austenite and thus ensuring a uniform elongation in the scope of the invention, preferably the Nb content is between 0.020 and 0.13 to optimize the aforementioned effects.
  • micro-alloy elements such as titanium and vanadium are limited to a maximum content of 0.05% because these elements have the same advantages as niobium but they have the particularity of reducing the ductility of the product more strongly.
  • the nitrogen is limited to 0.01% in order to avoid phenomena of aging of the material and to minimize the precipitation of aluminum nitrides (AlN) during solidification and thus to weaken the semi-finished product.
  • Boron and molybdenum are at levels of impurities or, at levels individually lower than 0.003 for boron and 0.03 for Mo.
  • the rest of the composition consists of iron and unavoidable impurities resulting from the elaboration.
  • the microstructure of the steel after the first annealing must contain, in surface proportion, less than 10% of polygonal ferrite, the remainder of the microstructure being composed of fresh or returned martensite. If the polygonal ferrite content is greater than 10%, the strength and yield strength of the steel after the second annealing will be less than 980 MPa and 650 MPa respectively. In addition, a polygonal ferrite content greater than 10% after the first annealing will result in a polygonal ferrite content at the end of the second annealing greater than 10% which would lead to a yield strength and too much mechanical strength. low compared to the scope of the invention.
  • the microstructure of the steel after the second annealing must contain, in surface proportions, 10 to 30% residual austenite. If the residual austenite content is less than 10%, the uniform elongation will be less than 15% because the residual austenite will be too stable and can not be transformed into martensite during mechanical stresses bringing a significant gain on the work hardening. the steel actually delays the appearance of the necking which results in an increase of the uniform elongation.
  • the residual austenite content is greater than 30%, the residual austenite will be unstable because not sufficiently enriched in carbon during the second annealing and maintenance at the end of cooling temperature T OA , and the ductility of the steel after the Second annealing will be reduced, which will lead to a uniform elongation of less than 15% and / or a total elongation of less than 20%.
  • the steel according to the invention after the second annealing must contain, in surface proportions, from 30 to 60% of annealed martensite, which is a martensite resulting from the first annealing, annealed during the second annealing and which is distinguished from a fresh martensite by a smaller quantity of crystallographic defects, and which is distinguished from a martensite returned by the absence of carbides within its laths. If the annealed martensite content is less than 30%, the ductility of the steel will be too low because the residual austenite content will be too low because not enough enriched in carbon and the fresh martensite content will be too much this leads to a uniform elongation of less than 15%.
  • the ductility of the steel will be too low because the residual austenite will be too stable and can not be transformed into martensite under the effect of mechanical stresses, which will have the effect of to reduce the ductility of the steel according to the invention, and will lead to a uniform elongation of less than 15% and / or a total elongation of less than 20%.
  • the microstructure of the steel after the second annealing must contain, in surface proportions, from 5 to 30% of bainite.
  • the presence of bainite in the microstructure is justified by the role it plays in the carbon enrichment of the residual austenite. Indeed, during the bainitic transformation and thanks to the presence of silicon in significant amount, the carbon is redistributed from bainite to austenite which has the effect of stabilizing the latter at room temperature. If the bainite content is less than 5%, residual austenite will not be sufficiently enriched in carbon and the latter will not be stable enough, which will favor the presence of fresh martensite which will cause a significant decrease in ductility. The uniform elongation will then be less than 15%.
  • bainite content is greater than 30%, this will lead to a residual austenite which is too stable and can not be converted into martensite under the effect of mechanical stresses, which will lead to a uniform elongation of less than 15%. and / or a total elongation of less than 20%.
  • the steel according to the invention and after the second annealing must contain, in surface proportions, 10 to 30% fresh martensite. If the fresh martensite content is less than 10%, the strength of the steel will be less than 980 MPa. If it is greater than 30%, the residual austenite content will be too low and the steel will not be sufficiently ductile, moreover, the uniform elongation will be less than 15%.
  • the sheet according to the invention may be manufactured by any suitable method.
  • a steel of composition according to the invention is supplied. Then, one proceeds to the casting of a half-product from this steel. This casting can be carried out in ingots or continuously in the form of slabs.
  • the reheating temperature should be between 1100 and 1280 ° C.
  • the cast semifinished products must be heated to a temperature T rech at 1100 ° C to obtain a semi-finished product warmed in order to reach at any point a temperature favorable for the large deformations that the steel will undergo during rolling.
  • This temperature range also makes it possible to be in the austenitic range and to ensure complete dissolution of the precipitates resulting from the casting.
  • T rech is greater than 1280 ° C, the austenitic grains grow undesirably and will lead to a coarser final structure and the risks of surface defects related to the presence of liquid oxide are increased. It is of course also possible to hot roll directly after casting without heating the slab.
  • the semi-finished product is then hot-rolled in a temperature range in which the structure of the steel is totally austenitic: if the end-of-rolling temperature T f is less than 900 ° C., the rolling forces are very large and may cause significant energy consumption or even breakages of rolling mill. Preferably, a rolling end temperature greater than 950 ° C. will be observed in order to guarantee rolling in the austenitic range and thus to limit the rolling forces.
  • the hot-rolled product is then rolled at a temperature T bob of between 400 and 600 ° C.
  • T bob of between 400 and 600 ° C.
  • This temperature range makes it possible to obtain ferritic, bainitic or pearlitic transformations during the quasi-isothermal maintenance associated with the winding followed by slow cooling to minimize the martensite fraction after cooling.
  • a winding temperature above 600 ° C leads to the formation of unwanted surface oxides.
  • the winding temperature is too low, below 400 ° C, the hardness of the product after cooling is increased, which increases the efforts required during the subsequent cold rolling.
  • the hot-rolled product is then cleaned if necessary by a process known per se.
  • This heat treatment makes it possible to have a mechanical strength of less than 1000 MPa at any point of the hot-rolled sheet, the difference in hardness between the center of the sheet and the banks thus being minimized. This greatly facilitates the next step of cold rolling by softening the formed structure.
  • the first annealing of the cold-rolled product is then carried out, preferably in a continuous annealing installation, with a mean heating rate V C of between 2 and 50 ° C. per second.
  • V C a mean heating rate
  • T soaking1 this heating rate range makes it possible to obtain a recrystallization and an adequate refinement of the structure.
  • Below 2 ° C per second the risks of surface decarburization are considerably increased.
  • Above 50 ° C per second traces of non-recrystallization and insoluble carbides would appear during the maintenance which would have the effect of reducing the residual austenite fraction and thus adversely affect the ductility.
  • T soaking1 is lower than TS1, it promotes the presence of polygonal ferrite beyond 10% and therefore outside the scope of the invention.
  • T soaking1 is above 950 ° C, the austenitic grain sizes increase considerably which is detrimental to the refinement of the final microstructure and therefore to the yield strength levels which would be below 650 MPa .
  • a holding time t soaking1 of between 30 and 200 seconds at the temperature T soaking1 allows the dissolution of the previously formed carbides, and especially a sufficient transformation to austenite. Below 30 seconds the dissolution of the carbides would be insufficient. On the other hand, a holding time greater than 200 s is hardly compatible with productivity requirements. continuous annealing installations, in particular the speed of travel of the reel. In addition, the same risk of austenitic grain enlargement as in the case of T soaking1 above 950 ° C appears, with the same risk of having a yield strength of less than 650 MPa. The duration of maintenance t soaking1 is therefore between 30 and 200 s.
  • the sheet is cooled to room temperature, the cooling rate V ref1 being fast enough to prevent the formation of ferrite.
  • this cooling rate is greater than 30 ° C./s, which makes it possible to obtain a microstructure with less than 10% ferrite, the rest being martensite.
  • a fully martensitic microstructure will be favored after the first annealing.
  • the second annealing of the cold-rolled product is then carried out and annealed a first time, preferably in a continuous galvanization annealing installation, with an average heating rate V C greater than 2 ° C. per second in order to avoid the risks of surface decarburization.
  • V C an average heating rate
  • the average heating rate must be less than 50 ° C per second to avoid the presence of insoluble carbides during maintenance which would have the effect of reducing the residual austenite fraction.
  • T soaking2 is less than Ac1, it is not possible to obtain the microstructure targeted by the invention since only the income from the martensite resulting from the first annealing would take place.
  • T soaking2 is greater than TS2 the annealed martensite content will be less than 30% which will favor the presence of a large amount of fresh degrading martensite de facto strongly the ductility of the product.
  • a holding time t soaking 2 of between 30 and 200 seconds at the soaking temperature T 2 allows the dissolution of the previously formed carbides, and especially sufficient transformation into austenite. Below 30 seconds the dissolution of the carbides may be insufficient.
  • a hold time greater than 200 s is hardly compatible with the productivity requirements of continuous annealing equipment, in particular the speed of travel of the reel.
  • the soaking time t soaking2 is therefore between 30 and 200 s.
  • this cooling rate is greater than 20 ° C per second.
  • the holding time t OA in the temperature range T OA1 (° C) to T OA2 (° C) must be between 5 and 120 seconds in order to allow the bainitic transformation and thus the stabilization of the austenite by carbon enrichment. of said austenite. It must also be greater than 5 s to ensure a bainite content according to the invention without which the yield strength would be less than 650 MPa. It must also be less than 120 seconds to limit the bainite content to 30% as referred to in the invention, otherwise the residual austenite content would be less than 10% and the ductility of the steel would be too low, which would be manifest by a uniform elongation of less than 15% and / or a total elongation of less than 20%.
  • the doubly annealed sheet is coated with a deposit of Zinc or Zinc alloy (the Zn content in mass percentage being predominant) by hot dip coating before cooling to room temperature.
  • Zinc or Zinc alloy the Zn content in mass percentage being predominant
  • zinc or zinc alloy may also be coated by any electrolytic or physicochemical process known in itself bare annealed sheet.
  • a coating based on aluminum or aluminum-based alloy (the Al content in weight percentage being the majority) can also be deposited by hot quenching.
  • a post annealing heat treatment is then preferably carried out on the cold-rolled and doubly annealed and coated sheet at a holding temperature T base of between 150 ° C. and 190 ° C. for a hold time t base of between 10h and 48h to improve the elasticity limit and the pliability.
  • This treatment will be called: post annealing base.
  • Table 1 shows the chemical composition of the steel used to manufacture the sheets of the examples.
  • Table 1 Chemical compositions (% wt) and critical temperatures Ae1, TS1 and TS2 being in ° C.
  • references D and E are not in accordance with the invention because their compositions are free of Niobium, which will limit the yield strength and the mechanical strength of the final sheet by the absence of precipitation hardening.
  • references D and E are not in accordance with the invention because their silicon contents are outside the target range. Beyond 3.00%, the silicon will promote a quantity of ferrite which is too great and the intended mechanical strength would not be reached. Below 1.60% by weight, the stabilization of residual austenite will not be large enough to achieve the desired ductility.
  • the reference E is not in accordance with the invention because the carbon content is lower than the target which will limit the final strength and ductility of the sheet.
  • the Mn content is too high, which will limit the final amount of bainite in the sheet, which will have the effect of limiting the ductility of the sheet by an excessive presence of fresh martensite.
  • References A5 to A6, B1 to B4, C2 to C5, D1 and D2, E1 to E6 of Table 2 denote steel sheets manufactured under conditions not in accordance with the invention from steels whose compositions are given in Table 1. The parameters not in accordance with the invention are underlined.
  • references A5, A6, B2 to B4, C2 to C4, D1 and D2 are not in accordance with the invention since the holding temperature at the first annealing T soaking1 is lower than the calculated temperature TS1, which would favor a large quantity of ferrite at the first annealing thus limiting the mechanical strength of the sheet after the second annealing.
  • references E2, E3 and E4 are not in accordance with the invention by their chemical composition and by the fact that the holding temperature at the second annealing T soaking2 is greater than the calculated temperature TS2, which will have the effect to reduce the amount of annealed martensite after the second annealing, limiting the final ductility of the sheet due to too much fresh martensite.
  • the reference B1 is not in accordance with the invention because the temperature T OA is outside the range 420 ° C - 480 ° C, which will limit the amount of residual austenite after the second annealing and therefore limit the ductility of the sheet.
  • the reference C5 is not in accordance with the invention because only a single annealing, in accordance with the invention and the claims of the second annealing, has been applied to the sheet.
  • the absence of the first annealing leads to the absence of martensite annealed in the microstructure which greatly limits the yield strength and the ultimate strength of the sheet.
  • the cooling rate at the second annealing V Ref2 is less than 30 ° C / s which promotes the formation of ferrite cooling, which will have the effect to reduce the elastic limit and the mechanical strength of the sheet.
  • Examples A1 to A4, C1 are those according to the invention.
  • the mechanical properties are then measured using an ISO 12.5 ⁇ 50 specimen and the contents of each of the phases present in the microstructures developed by cross section of the material from the chemical compositions given in Table 1 following the methods described in Table 2.
  • the uni-axial tractions to obtain these mechanical properties are made in the direction parallel to that of the rolling to cold.
  • References A5 and A6, B1 to B4, C2 to C5, D1 and D2, E1 to E6 of Table 3 denote steel sheets manufactured under conditions described in Table 2 from steels whose compositions are given in the table. 1. Mechanical properties and phase fractions not in accordance with the invention are underlined.
  • Examples A1 to A4 and C1 are those according to the invention.
  • references A5, A6, D1 and D2 are not in accordance with the invention because the elastic limit is less than 650 MPa, which is explained by a large amount of ferrite at the end of the first annealing and a small fraction of martensite annealed at the end of the second annealing, which is due to a holding temperature T soaking1 lower than the calculated temperature TS1.
  • references B2 to B4 and C2 to C4 are not in accordance with the invention because the mechanical strength is less than 980 MPa, which is explained by an amount of ferrite greater than 10% after the first annealing, which will limit the fresh martensite fraction at the end of the second annealing, which is due to a holding temperature T soaking1 lower than the calculated temperature TS1.
  • the B1 reference is not in accordance with the invention because the elastic limit is less than 650 MPa and the mechanical strength is less than 980 MPa, which is explained by a quantity of fresh martensite too low to the result of the second annealing, which is due to an end-of-cooling temperature T OA of less than 420 ° C.
  • references E1 to E6 are not in accordance with the invention since the elastic limit is less than 650 MPa and the mechanical strength is less than 980 MPa.
  • the non-compliance of these examples reflects an unsuitable chemical composition, in particular the content of elements that harden too low (carbon, silicon) and the lack of precipitation hardening due to the absence of Niobium. This effect is all the more marked for the references E2 to E6, because the process with respect to the invention has not been respected and the quantities of phases obtained are outside the target ranges.
  • the invention also makes it possible to provide a steel sheet capable of depositing a coating of Zinc or Zn alloy, in particular by a hot-quenching process in a liquid Zn bath followed or not by a heat treatment of alliation.
  • the steel sheets according to the invention will be used with advantage for the manufacture of structural parts, reinforcing elements, security, anti abrasive or transmission discs for applications in land motor vehicles.

Description

La présente invention couvre la fabrication de tôles d'aciers doublement recuite à haute résistance, présentant simultanément une résistance mécanique et une capacité de déformation permettant de réaliser des opérations de mise en forme à froid. L'invention concerne plus précisément des aciers présentant une résistance mécanique supérieure ou égale à 980 MPa, présentant une limite d'élasticité supérieure ou égale à 650 MPa, un allongement uniforme supérieur ou égal à 15%, un allongement à rupture supérieur ou égal à 20%.The present invention covers the manufacture of double-annealed steels with high strength, simultaneously having a mechanical strength and a deformation capacity for carrying out cold forming operations. The invention more specifically relates to steels having a mechanical strength greater than or equal to 980 MPa, having a yield strength greater than or equal to 650 MPa, a uniform elongation greater than or equal to 15%, an elongation at break greater than or equal to 20%.

La forte demande de réduction d'émissions de gaz à effet de serre, associée à la croissance des exigences de sécurité automobile et les prix du carburant ont poussé les constructeurs de véhicules terrestres à moteur à utiliser de plus en plus d'aciers à résistance mécanique améliorée dans la carrosserie afin de réduire l'épaisseur des pièces et donc le poids des véhicules tout en maintenant les performances de résistance mécanique des structures. Dans cette perspective, les aciers alliant une résistance élevée à une formabilité suffisante pour la mise en forme sans apparition de fissures prennent une importance grandissante. Il a ainsi été proposé, dans le temps et de manière successive, plusieurs familles d'aciers offrant divers niveaux de résistance mécanique. Ces familles comprennent les aciers DP pour Dual Phase, les aciers TRIP pour Transformation Induced Plasticity, les aciers Multiphasés voire les aciers à basse densité (FeAl).Strong demand for reduced greenhouse gas emissions, coupled with growing automotive safety requirements and fuel prices, has led motor vehicle manufacturers to use more and more high strength steels improved in the bodywork to reduce the thickness of parts and thus the weight of vehicles while maintaining the mechanical strength performance of the structures. In this perspective, steels combining high strength with sufficient formability for shaping without the appearance of cracks are becoming increasingly important. It has thus been proposed, in time and successively, several families of steels offering various levels of mechanical strength. These families include DP steels for Dual Phase, TRIP steels for Transformation Induced Plasticity, multiphase steels or even low density steels (FeAl).

Afin de répondre à cette demande de véhicules de plus en plus légers, il est donc nécessaire d'avoir des aciers de plus en plus résistant pour compenser la baisse d'épaisseur. Cependant, il est connu que dans le domaine des aciers au carbone, une augmentation de la résistance mécanique s'accompagne généralement d'une perte de ductilité. En outre, les constructeurs de véhicules terrestres à moteur définissent des pièces de plus en plus complexes qui nécessitent des aciers présentant des niveaux élevés de ductilité.In order to meet this demand for increasingly light vehicles, it is therefore necessary to have steels increasingly resistant to compensate for the drop in thickness. However, it is known that in the field of carbon steels, an increase in mechanical strength is generally accompanied by a loss of ductility. In addition, motorized land vehicle manufacturers are defining increasingly complex parts that require steels with high levels of ductility.

On a pu prendre connaissance du brevet EP1365037A1 faisant état d'un acier contenant les composants chimiques suivants, en % en masse, C : de 0,06 à 0,25 % Si + Al : de 0,5 à 3 % Mn : de 0,5 à 3 % P : 0,15 ou moins, S : 0,02 % ou moins, et contenant en outre éventuellement au moins un des composants suivants en % en masse: Mo : 1 % ou moins, Ni : 0,5 % ou moins, Cu : 0,5 % ou moins, Cr : 1 % ou moins, Ti : 0,1 % ou moins, Nb : 0,1 % ou moins, V : 0,1 % au moins, Ca : 0,003 % ou moins, et/ou REM : 0,003 % ou moins associé à une microstructure composée principalement de martensite revenue ou de bainite revenue représentant 50 % ou plus en proportion surfacique, ou de martensite revenue ou bainite revenue qui représente 15 % ou plus en ce qui concerne un facteur d'encombrement par rapport à la structure entière et comprenant en outre de la ferrite, la martensite revenue ou la bainite revenue et une structure de seconde phase comprenant l'austénite revenue qui représente de 3 à 30 % en proportion surfacique et comprenant en outre éventuellement de la bainite et/ou de la martensite, l'austénite résiduelle ayant une concentration C (C gamma R) de 0,8 % ou plus. Cette demande de brevet ne permet pas d'atteindre des niveaux de résistance suffisamment élevés et nécessaires pour réduire considérablement les épaisseurs et donc le poids des tôles utilisées dans l'industrie automobile par exemple.We were able to read the patent EP1365037A1 showing a steel containing the following chemical components, in% by weight, C: 0.06 to 0.25% Si + Al: 0.5 to 3% Mn: 0.5 to 3% P: 0.15 or less, S: 0.02% or less, and optionally additionally containing at least one of the following components in% by weight: Mo: 1% or less, Ni: 0.5% or less, Cu: 0 , 5% or less, Cr: 1% or less, Ti: 0.1% or less, Nb: 0.1% or less, V: 0.1% or less, Ca: 0.003% or less, and / or REM: 0.003% or less associated with a microstructure composed mainly of returned martensite or bainite revenue representing 50% or more in surface proportion, or of returned martensite or bainite revenue which represents 15% or more with respect to a congestion factor with respect to the entire structure and further comprising ferrite, the returned martensite or the bainite returned and a second phase structure comprising the austenite back which represents from 3 to 30% in surface proportion and comprising in particular in addition to possibly bainite and / or martensite, residual austenite having a C (C gamma R) concentration of 0.8% or more. This patent application does not achieve sufficiently high levels of resistance and necessary to significantly reduce the thicknesses and therefore the weight of the sheets used in the automotive industry for example.

D'autre part, on a connaissance du brevet US20110198002A1 qui présente un acier à haute résistance et revêtu à chaud avec une résistance mécanique supérieure à 1200 MPa, un allongement supérieur à 13% et une expansion de trou supérieure à 50% ainsi que le procédé de fabrication de cet acier à partir de la composition chimique suivante : 0.05-0,5% de carbone, 0.01-2,5% de silicium, 0.5-3,5% de manganèse, 0,003-0,100% de phosphore, jusque 0,02% de soufre, et 0,010-0.5% d'aluminium, le reste étant des impuretés. La microstructure de cet acier comprend en termes de proportions surfaciques 0-10% de ferrite, 0-10% de martensite, et 60-95% de martensite revenue et contenant, en proportions déterminées par diffraction de rayons X : 5-20% d'austénite résiduelle. Néanmoins, les ductilités atteintes par les aciers selon cette invention sont faibles et cela nuit à la mise en forme de la pièce à partir du produit obtenu à partir des enseignements de cette demande.On the other hand, we know about the patent US20110198002A1 which has a high-strength, hot-coated steel with a strength greater than 1200 MPa, an elongation of more than 13% and a hole expansion of more than 50% and the method of manufacturing such steel from the chemical composition following: 0.05-0.5% carbon, 0.01-2.5% silicon, 0.5-3.5% manganese, 0.003-0.100% phosphorus, up to 0.02% sulfur, and 0.010-0.5% d aluminum, the rest being impurities. The microstructure of this steel comprises in terms of surface proportions 0-10% of ferrite, 0-10% of martensite, and 60-95% of martensite returned and containing, in proportions determined by X-ray diffraction: 5-20% d residual austenite. Nevertheless, the ductilities achieved by the steels according to this invention are low and it affects the shaping of the piece from the product obtained from the teachings of this application.

Enfin, on connait aussi la publication « fatigue strength of newly developed high-strength low alloy TRIP-aided steels with good hardenability" presentant l'étude d'un acier avec la composition suivante : 0,4%C, 1,5%Si, 1,5%Mn, 0-1,0%Cr, 0-0,2%Mo, 0,05%Nb, 0-18ppm B pour application automobile. Cet acier présente un très bon comportement en fatigue, surpassant celui des aciers conventionnels. Ce comportement étant d'autant plus marqué avec des ajouts de B, Cr et Mo. La microstructure de cet acier présente un effet TRIP avec une forte teneur d'austénite résiduelle métastable qui supprime les pré-fissures et leur propagation du fait de la décontrainte plastique et de la formation de martensite lors de la transformation à partir de l'austénite. Cet article divulgue une méthode de production d'aciers présentant d'excellents compromis résistance-ductilité mais les compositions chimiques divulguées ainsi que les méthodes de production ne sont non seulement pas compatibles avec une production industrielle mais elles donneront lieu à des difficultés de revêtabilité.Finally, we also know the publication "fatigue strength of newly developed high-strength low alloy TRIP-steered steels with good hardenability" presenting the study of a steel with the following composition: 0.4% C, 1.5% Si , 1.5% Mn, 0-1.0% Cr, 0-0.2% Mo, 0.05% Nb, 0-18ppm B for automotive application This steel has a very good fatigue behavior, surpassing that of This behavior is all the more marked with additions of B, Cr and Mo. The microstructure of this steel has a TRIP effect with a high content of metastable residual austenite which suppresses the pre-cracks and their propagation because of plastic de-stressing and martensite formation during transformation from austenite This article discloses a method for the production of steels with excellent resistance-ductility trade-offs, but the chemical compositions disclosed as well as the methods of production are not only not compatible with industrial production but they will give rise to difficulties of coating.

Le but de la présente invention est de résoudre les problèmes évoqués ci-dessus. Elle vise à mettre à disposition un acier laminé à froid présentant une résistance mécanique supérieure ou égale à 980 MPa, une limite d'élasticité supérieure ou égale à 650 MPa conjointement avec un allongement uniforme supérieur ou égal à 15%, un allongement à rupture supérieur ou égal à 20% ainsi que son procédé de fabrication. L'invention vise également à mettre à disposition un acier avec une aptitude à être produit de manière stable.The object of the present invention is to solve the problems mentioned above. It aims to provide a cold-rolled steel having a mechanical strength greater than or equal to 980 MPa, a yield strength greater than or equal to 650 MPa together with a uniform elongation greater than or equal to 15%, a higher breaking elongation or equal to 20% and its manufacturing process. The invention also aims to provide a steel with an ability to be produced stably.

A cet effet, l'invention a pour objet une tôle d'acier dont la composition comprend, les teneurs étant exprimées en pourcentage du poids, 0,20% ≤ C ≤ 0,40%, préférentiellement 0,22% ≤ C ≤ 0,32%, 0,8% ≤ Mn ≤ 1,4% , préférentiellement 1,0% ≤ Mn ≤ 1,4%, 1,60% ≤ Si ≤ 3,00%, préférentiellement 1,8% ≤ Si ≤ 2,5%,
0,015 ≤ Nb ≤ 0,150% , préférentiellement 0,020% ≤ Nb ≤ 0,13%, Al ≤ 0,1 %, Cr ≤ 1,0 % , préférentiellement Cr ≤ 0,5%, S ≤0,006% , P ≤ 0,030% , Ti ≤ 0,05% , V ≤ 0,05% , Mo<0,03%, B ≤0,003% , N ≤ 0,01% , le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la microstructure étant constituée, en proportions surfaciques, de 10 à 30 % d'austénite résiduelle, de 30 à 60% de martensite recuite, de 5 à 30% de bainite, de 10 à 30% de martensite fraîche et de moins de 10% de ferrite.
For this purpose, the subject of the invention is a steel sheet whose composition comprises, the contents being expressed as a percentage of the weight, 0.20% ≤ C ≤ 0.40%, preferentially 0.22% ≤ C ≤ 0 , 32%, 0.8% ≤ Mn ≤ 1.4%, preferably 1.0% ≤ Mn ≤ 1.4%, 1.60% ≤ Si ≤ 3.00%, preferentially 1.8% ≤ Si ≤ 2 , 5%,
0.015 ≤ Nb ≤ 0.150%, preferably 0.020% ≤ Nb ≤ 0.13%, Al ≤ 0.1%, Cr ≤ 1.0%, preferentially Cr ≤ 0.5%, S ≤ 0.006%, P ≤ 0.030%, Ti ≤ 0.05%, V ≤ 0.05%, Mo <0.03%, B ≤0.003%, N ≤ 0.01%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration, the microstructure being constituted, in surface proportions, of 10 to 30% residual austenite, 30 to 60% annealed martensite, 5 to 30% bainite, 10 to 30% fresh martensite and less than 10% ferrite.

De manière préférentielle, la tôle d'acier selon l'invention comporte un revêtement de Zinc ou d'alliage de zinc ou encore un revêtement d'Al ou d'alliage d'Al. Ces revêtement pouvant ou non être alliés au fer, on parlera de tôle galvanisée (GI/GA)Preferably, the steel sheet according to the invention comprises a coating of zinc or zinc alloy or a coating of Al or Al alloy. These coatings may or may not be alloyed with iron, it will be called galvanized sheet (GI / GA)

Idéalement les tôles selon l'invention présentent un comportement mécanique tel que la résistance mécanique est supérieure ou égale à 980 MPa, la limite d'élasticité est supérieure ou égale à 650 MPa, l'allongement uniforme supérieur ou égal à 15% et l'allongement à rupture supérieur ou égal à 20%.Ideally the sheets according to the invention have a mechanical behavior such that the mechanical strength is greater than or equal to 980 MPa, the elastic limit is greater than or equal to 650 MPa, the uniform elongation greater than or equal to 15% and the elongation at break greater than or equal to 20%.

L'invention a aussi pour objet un procédé de fabrication d'une tôle d'acier laminée à froid, doublement recuite et optionnellement revêtue comprenant les étapes successives suivantes :

  • on approvisionne un acier de composition selon l'invention
  • on coule ledit acier sous forme de demi-produit, puis
  • on porte ledit demi-produit à une température Trech comprise entre 1100°C et 1280°C pour obtenir un demi-produit réchauffé, puis
  • on lamine à chaud ledit demi-produit réchauffé, la température de fin de laminage à chaud Tfl étant supérieure ou égale à 900°C pour obtenir une tôle laminée à chaud, puis,
  • on bobine ladite tôle laminée à chaud à une température Tbob comprise entre 400 et 600°C pour obtenir une tôle laminée à chaud bobinée, puis,
  • on refroidit ladite tôle laminée à chaud bobinée jusqu'à la température ambiante, puis,
  • on débobine et on décape ladite tôle laminée à chaud bobinée, puis,
  • on lamine à froid ladite tôle laminée à chaud avec un taux de réduction compris entre 30 et 80% de façon à obtenir une tôle laminée à froid, puis,
  • on recuit une première fois ladite tôle laminée à froid en la réchauffant à une vitesse VC1 comprise entre 2 et 50°C/s jusqu'à une température Tsoaking1 comprise entre TS1= 910,7 - 431,4*C - 45,6*Mn + 54,4*Si - 13,5*Cr + 52,2*Nb, les teneurs étant exprimées en pourcentage du poids, et 950°C, pendant une durée tsoaking1 comprise entre 30 et 200 secondes, puis :
    • on refroidit ladite tôle en la soumettant à un refroidissement jsuqu'à la température ambiante à une vitesse supérieure ou égale à 30°C/s, puis,
    • on recuit une seconde fois ladite tôle en la réchauffant à une vitesse VC2 comprise entre 2 et 50°C/s jusqu'à une température Tsoaking2 comprise entre Ac1 et TS2=906,5 - 440,6*C - 44,5*Mn + 49,2*Si - 12,4*Cr + 55,9*Nb, pendant une durée tsoaking2 comprise entre 30 et 200 secondes, puis,
    • on refroidit ladite tôle en la soumettant à un refroidissement à une vitesse supérieure ou égale à 30°C/s jusqu'à la température de fin de refroidissement TOA comprise entre 420°C et 480°C, puis,
    • on maintient ladite tôle dans la plage de température allant de 420 à 480°C pendant une durée tOA comprise entre 5 et 120 secondes, puis,
    • optionnellement on dépose un revêtement sur ladite tôle avant de refroidir ladite tôle jusqu'à l'ambiante.
The subject of the invention is also a method for producing a cold-rolled, doubly annealed and optionally coated steel sheet comprising the following successive stages:
  • supplying a composition steel according to the invention
  • said steel is cast as a semi-finished product and
  • said half-product is brought to a temperature T rech between 1100 ° C and 1280 ° C to obtain a heated half-product, then
  • said heated half-product is hot-rolled, the hot-rolling end temperature T f being greater than or equal to 900 ° C to obtain a hot-rolled sheet, and then
  • said hot-rolled sheet is reeled at a temperature T bob of between 400 and 600 ° C to obtain a rolled hot-rolled sheet, then,
  • said hot-rolled rolled sheet is cooled to room temperature, and then
  • said wound hot-rolled sheet is uncoiled and stripped, then,
  • said hot-rolled sheet is cold-rolled with a reduction ratio of between 30 and 80% so as to obtain a cold-rolled sheet, and then
  • said cold-rolled sheet is first annealed by heating it at a speed V C1 of between 2 and 50 ° C / s to a T soaking1 temperature of between TS1 = 910.7 and 431.4 ° C-45, 6 * Mn + 54.4 * Si - 13.5 * Cr + 52.2 * Nb, the contents being expressed as a percentage of the weight, and 950 ° C, for a duration t soaking1 of between 30 and 200 seconds, then:
    • said sheet is cooled by subjecting it to cooling to ambient temperature at a speed greater than or equal to 30 ° C / s, then,
    • said sheet is re-annealed a second time by heating it at a speed V C2 of between 2 and 50 ° C./s up to a temperature T soaking 2 between Ac1 and TS2 = 906.5 - 440.6 ° C - 44.5 * Mn + 49.2 * Si - 12.4 * Cr + 55.9 * Nb, for a duration t soaking2 between 30 and 200 seconds, then,
    • said sheet is cooled by subjecting it to cooling at a speed greater than or equal to 30 ° C / s to the end-of-cooling temperature T OA of between 420 ° C and 480 ° C, and then
    • said sheet is maintained in the temperature range of 420 to 480 ° C for a period t OA of between 5 and 120 seconds, then,
    • optionally, a coating is deposited on said sheet before cooling said sheet to ambient.

Dans un mode préféré, on effectue un recuit dit base de ladite tôle laminée à chaud bobinée avant laminage à froid de telle sorte que la tôle soit chauffée puis maintenue à une température comprise entre 400°C et 700°C pendant une durée comprise entre 5 et 24 heures,In a preferred embodiment, a so-called base annealing of said wound hot-rolled sheet is carried out before cold rolling so that the sheet is heated and then maintained at a temperature of between 400 ° C. and 700 ° C. for a period of between and 24 hours,

De manière préférentielle, on maintient la tôle à la température de fin de refroidissement TOA de manière isotherme entre 420 et 480°C entre 5 et 120 secondes.Preferably, the sheet is maintained at the end of cooling temperature T OA isothermally between 420 and 480 ° C between 5 and 120 seconds.

Préférentiellement, la tôle laminée à froid, doublement recuite est ensuite laminée à froid avec un taux de laminage à froid compris entre 0,1 et 3% avant dépôt d'un revêtement.Preferably, the double annealed cold-rolled sheet is then cold-rolled with a cold rolling ratio of between 0.1 and 3% before depositing a coating.

Dans un mode préféré, la tôle doublement recuite est finalement chauffée à une température de maintien Tbase comprise entre 150°C et 190°C pendant un temps de maintien tbase compris entre 10h et 48h.In a preferred embodiment, the doubly annealed sheet is finally heated to a holding temperature T base of between 150 ° C and 190 ° C for a hold time t basis between 10h and 48h.

Préférentiellement, à l'issue du maintien à TOA la tôle est revêtue au trempé dans un bain liquide d'un des éléments suivants : Al, Zn, alliage d'Al ou alliage de Zn.Preferably, after maintaining the T OA the sheet is coated by dipping in a liquid bath of one of the following elements: Al, Zn, Al alloy or Zn alloy.

La tôle selon l'invention, laminée à froid, doublement recuite et revêtue, ou fabriquée par un procédé selon l'invention sert pour la fabrication de pièces pour véhicules terrestres à moteur.The sheet according to the invention, cold-rolled, doubly annealed and coated, or manufactured by a method according to the invention is used for the manufacture of parts for land motor vehicles.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessousOther features and advantages of the invention will become apparent from the description below

Selon l'invention, la teneur en carbone, en poids, est comprise entre 0,20 et 0,40%. Si la teneur en carbone de l'invention est au-dessous de 0,20% en poids, la résistance mécanique devient insuffisante et la fraction d'austénite résiduelle est toujours insuffisante et pas assez stable pour atteindre un allongement uniforme supérieur à 15%. Au-delà de 0,40%, la soudabilité devient de plus en plus réduite car on forme des microstructures de faible ténacité dans la Zone Affectée Thermiquement (ZAT) ou dans la zone fondue en cas de soudage par résistance. Selon un mode préféré, la teneur en carbone est comprise entre 0,22 et 0,32%. Au sein de cette plage, la soudabilité est satisfaisante, la stabilisation de l'austénite est optimisée et la fraction de martensite fraîche est dans la gamme visée de l'invention.According to the invention, the carbon content, by weight, is between 0.20 and 0.40%. If the carbon content of the invention is below 0.20% by weight, the mechanical strength becomes insufficient and the residual austenite fraction is still insufficient and not stable enough to achieve a uniform elongation greater than 15%. Beyond 0.40%, the weldability becomes more and more reduced because low-tenacity microstructures are formed in the heat-affected zone (ZAT) or in the melted zone in the case of resistance welding. In a preferred embodiment, the carbon content is between 0.22 and 0.32%. Within this range, the weldability is satisfactory, the stabilization of the austenite is optimized and the fresh martensite fraction is within the target range of the invention.

Le manganèse est, selon l'invention compris entre 0,8 et 1,4%, c'est un élément durcissant par solution solide de substitution, il stabilise l'austénite et abaisse la température de transformation Ac3. Le manganèse contribue donc à une augmentation de la résistance mécanique. Selon l'invention, une teneur minimale de 0,8% en poids est nécessaire pour obtenir les propriétés mécaniques désirées. Cependant, au-delà de 1,4%, son caractère gammagène conduit à un ralentissement de la cinétique de transformation bainitique ayant lieu lors du maintien à la température de fin de refroidissement TOA et la fraction de bainite est toujours insuffisante pour atteindre une résistance d'élasticité supérieure à 650 MPa. A titre préférentiel on choisit un intervalle de teneur en manganèse compris entre 1,0% et 1,4%, on combine ainsi une résistance mécanique satisfaisante sans accroître le risque de diminuer la fraction de bainite et donc de diminuer la résistance élastique, ni d'augmenter la trempabilité dans les alliages soudés, ce qui nuirait à la capacité au soudage de la tôle selon l'invention.Manganese is, according to the invention between 0.8 and 1.4%, it is a hardening element with a solid solution of substitution, it stabilizes the austenite and lowers the transformation temperature Ac3. Manganese therefore contributes to an increase in mechanical strength. According to the invention, a a minimum of 0.8% by weight is necessary to obtain the desired mechanical properties. However, beyond 1.4%, its gammagenic character leads to a slowing down of the bainitic transformation kinetics taking place during the maintenance at the end of cooling temperature T OA and the bainite fraction is still insufficient to reach a resistance. elasticity greater than 650 MPa. Preferably, a range of manganese content of between 1.0% and 1.4% is chosen, thus combining a satisfactory mechanical strength without increasing the risk of reducing the bainite fraction and thus reducing the elastic resistance, neither increase quenchability in welded alloys, which would adversely affect the weldability of the sheet according to the invention.

Le silicium doit être compris entre 1,6 et 3,0%. Dans cette fourchette, la stabilisation de l'austénite résiduelle est rendue possible par l'addition de silicium qui ralentit considérablement la précipitation des carbures lors du cycle de recuit et plus particulièrement lors de la transformation bainitique. Ceci provient du fait que la solubilité du silicium dans la cémentite est très faible et que cet élément augmente l'activité du carbone dans l'austénite. Toute formation de cémentite sera donc précédée d'une étape de rejet de Si à l'interface. L'enrichissement de l'austénite en carbone mène donc à sa stabilisation à la température ambiante sur la tôle d'acier doublement recuite et revêtue. Par la suite, l'application d'une contrainte extérieure, de mise en forme par exemple, va conduire à la transformation de cette austénite en martensite. Cette transformation a pour résultat d'améliorer aussi la résistance à l'endommagement. Le silicium est également un élément fortement durcissant par solution solide et permet donc d'atteindre les résistances élastiques et mécaniques visées par l'invention. Au regard des propriétés visées par l'invention, une addition de silicium en quantité supérieure à 3,0% va promouvoir sensiblement la ferrite et la résistance mécanique visée ne serait pas atteinte, de plus on formerait des oxydes fortement adhérents qui mèneraient à des défauts de surface et à une non adhérence du revêtement en Zinc ou en alliage de Zinc. La teneur minimale doit aussi être fixée à 1,6% en poids pour obtenir l'effet stabilisant sur l'austénite. De manière préférentielle, la teneur en silicium sera comprise entre 1,8 et 2,5% afin d'optimiser les effets susmentionnés.The silicon must be between 1.6 and 3.0%. In this range, the stabilization of the residual austenite is made possible by the addition of silicon, which considerably slows the precipitation of the carbides during the annealing cycle and more particularly during the bainitic transformation. This is because the solubility of silicon in cementite is very low and this element increases the carbon activity in the austenite. Any formation of cementite will therefore be preceded by a step of rejection of Si at the interface. The enrichment of carbon austenite therefore leads to its stabilization at room temperature on the double-annealed and coated steel sheet. Subsequently, the application of an external constraint, shaping for example, will lead to the transformation of this austenite martensite. This transformation has the result of also improving the resistance to damage. Silicon is also a strongly hardening element with a solid solution and thus makes it possible to achieve the elastic and mechanical resistances targeted by the invention. In view of the properties targeted by the invention, an addition of silicon in an amount greater than 3.0% will substantially promote the ferrite and the target strength would not be reached, in addition strongly adherent oxides would form which would lead to defects surface and non-adherence of the Zinc or Zinc alloy coating. The minimum content must also be set at 1.6% by weight to obtain the stabilizing effect on the austenite. So preferentially, the silicon content will be between 1.8 and 2.5% in order to optimize the aforementioned effects.

La teneur en chrome doit être limitée à 1,0 %, cet élément permet de contrôler la formation de ferrite pro-eutectoïde au refroidissement lors des recuits à partir de ladite température de maintien Tsoaking1 ou Tsoaking2, car cette ferrite, en quantité élevée diminue la résistance mécanique nécessaire à la tôle selon l'invention. Cet élément permet en outre de durcir et d'affiner la microstructure bainitique. Cependant, cet élément ralentit considérablement la cinétique de la transformation bainitique. Néanmoins pour des teneurs supérieures à 1,0 %, la fraction de bainite est toujours insuffisante pour atteindre une limite d'élasticité supérieure à 650 MPa.The chromium content must be limited to 1.0%, this element makes it possible to control the formation of pro-eutectoid ferrite during cooling during annealing from said holding temperature T soaking1 or T soaking2 , because this ferrite, in a high quantity decreases the mechanical strength required for the sheet according to the invention. This element also makes it possible to harden and refine the bainitic microstructure. However, this element considerably slows down the kinetics of bainitic transformation. However, for contents above 1.0%, the bainite fraction is still insufficient to reach a yield strength greater than 650 MPa.

Le nickel et le cuivre ont des effets sensiblement similaires à celui du manganèse. Ces deux éléments seront en teneurs résiduelles à savoir 0.05 % pour chaque élément mais uniquement car leurs coûts sont beaucoup plus élevés que celui du manganèse.Nickel and copper have effects substantially similar to that of manganese. These two elements will be in residual contents namely 0.05% for each element but only because their costs are much higher than that of manganese.

La teneur en aluminium est limitée à 0,1% en poids, cet élément est un puissant alphagène favorisant la formation de ferrite. Une teneur élevée en aluminium augmenterait le point Ac3 et rendrait ainsi le procédé industriel couteux en termes d'apport énergétique au recuit. On considère, en outre, que des teneurs élevées en aluminium accroissent l'érosion des réfractaires et le risque de bouchage des busettes lors de la coulée de l'acier en amont du laminage. De plus l'aluminium ségrége négativement et, il peut mener à des macro-ségrégations. En quantité excessive, l'aluminium diminue la ductilité à chaud et augmente le risque d'apparition de défauts en coulée continue. Sans un contrôle poussé des conditions de coulée, les défauts de type micro et macro ségrégation donnent, in fine, une ségrégation centrale sur la tôle d'acier recuite. Cette bande centrale sera plus dure que sa matrice circonvoisine et nuira à la formabilité du matériau.The aluminum content is limited to 0.1% by weight, this element is a powerful alphagene favoring the formation of ferrite. A high aluminum content would increase the Ac3 point and thus make the industrial process expensive in terms of energetic annealing. In addition, it is considered that high levels of aluminum increase the erosion of refractories and the risk of clogging of the nozzles during the casting of the steel upstream of the rolling. In addition aluminum segregates negatively and, it can lead to macro-segregations. In excessive amounts, aluminum reduces hot ductility and increases the risk of defects in continuous casting. Without a strong control of the casting conditions, micro and macro segregation defects ultimately result in central segregation on the annealed steel sheet. This central band will be harder than its surrounding matrix and will damage the formability of the material.

Le soufre doit être inférieur à 0,006%, au-delà, la ductilité est réduite en raison de la présence excessive de sulfures tels que MnS, dits sulfures de manganèse, qui diminuent l'aptitude à la déformation.The sulfur must be less than 0.006%, beyond which the ductility is reduced due to the excessive presence of sulphides such as MnS, so-called manganese sulphides, which reduce the ability to deform.

Le phosphore doit être inférieur à 0,030%, c'est un élément qui durcit en solution solide mais qui diminue considérablement la soudabilité par points et la ductilité à chaud, particulièrement en raison de son aptitude à la ségrégation aux joints de grains ou à sa tendance à la co-ségrégation avec le manganèse. Pour ces raisons, sa teneur doit être limitée à 0,030% afin d'obtenir une bonne aptitude au soudage par points.Phosphorus should be less than 0.030%, it is a hardening element in solid solution but significantly reduces spot weldability and hot ductility, particularly because of its ability to segregate at grain boundaries or its tendency to co-segregation with manganese. For these reasons, its content should be limited to 0.030% in order to obtain a good spot welding ability.

Le niobium doit être compris entre 0,015 et 0,150%, c'est un élément de micro-alliage qui a la particularité de former des précipités durcissant avec le carbone et/ou l'azote. Ces précipités, déjà présents lors de l'opération de laminage à chaud, retardent la recristallisation lors du recuit et affinent donc la microstructure, ce qui permet de contribuer au durcissement du matériau. Il permet en outre d'améliorer les propriétés d'allongement du produit, en permettant des recuits à hautes température sans abaissement des performances d'allongement par un effet d'affinement des structures. La teneur en niobium doit néanmoins être limitée à 0,150% pour éviter des efforts de laminage à chaud trop importants. En outre, au-delà de 0,150%, un effet saturant est attendu sur les effets positifs du Niobium notamment sur l'effet durcissant par affinement de la microstructure. D'autre part, la teneur en niobium doit être supérieure ou égale à 0,015% ce qui permet d'avoir un durcissement de la ferrite lorsque celle-ci est présente et un tel durcissement est recherché et également un affinement suffisamment important pour une plus grande stabilisation de l'austénite résiduelle et ainsi garantir un allongement uniforme dans la visée de l'invention, préférentiellement la teneur en Nb est comprise entre 0,020 et 0,13 pour optimiser les effets susmentionnés.The niobium must be between 0.015 and 0.150%, it is a micro-alloy element which has the particularity of forming precipitates hardening with carbon and / or nitrogen. These precipitates, already present during the hot rolling operation, delay the recrystallization during annealing and thus refine the microstructure, which contributes to the hardening of the material. It also makes it possible to improve the elongation properties of the product, by allowing high temperature annealing without lowering the elongation performance by a refinement effect of the structures. The niobium content must nevertheless be limited to 0.150% to avoid excessively high hot rolling forces. In addition, above 0.150%, a saturating effect is expected on the positive effects of Niobium, particularly on the effect of hardening by refinement of the microstructure. On the other hand, the niobium content must be greater than or equal to 0.015%, which makes it possible to harden the ferrite when it is present and such hardening is sought and also a sufficiently important refinement for greater stabilizing the residual austenite and thus ensuring a uniform elongation in the scope of the invention, preferably the Nb content is between 0.020 and 0.13 to optimize the aforementioned effects.

Les autres éléments de micro-alliage tels que le titane et le vanadium sont limités à une teneur maximale de 0,05% car ces éléments possèdent les mêmes avantages que le niobium mais ils ont la particularité de réduire plus fortement la ductilité du produit.The other micro-alloy elements such as titanium and vanadium are limited to a maximum content of 0.05% because these elements have the same advantages as niobium but they have the particularity of reducing the ductility of the product more strongly.

L'azote est limité à 0,01% afin d'éviter des phénomènes de vieillissement du matériau et de minimiser la précipitation de nitrures d'aluminium (AIN) lors de la solidification et donc de fragiliser le demi-produit.The nitrogen is limited to 0.01% in order to avoid phenomena of aging of the material and to minimize the precipitation of aluminum nitrides (AlN) during solidification and thus to weaken the semi-finished product.

Le bore et molybdène sont à des niveaux d'impuretés soit, à des teneurs inférieures individuellement inférieures à 0,003 pour le bore et 0,03 pour le Mo.Boron and molybdenum are at levels of impurities or, at levels individually lower than 0.003 for boron and 0.03 for Mo.

Le reste de la composition est constitué de fer et d'impuretés inévitables résultant de l'élaboration.The rest of the composition consists of iron and unavoidable impurities resulting from the elaboration.

Selon l'invention, la microstructure de l'acier après le premier recuit doit contenir, en proportion surfaciques, moins de 10% de ferrite polygonale, le reste de la microstructure étant composée de martensite fraîche ou revenue. Si la teneur en ferrite polygonale est supérieure à 10%, la résistance mécanique et la limite d'élasticité de l'acier après le second recuit sera inférieure à 980 MPa et 650 MPa respectivement. En outre, une teneur en ferrite polygonale supérieure à 10% à l'issue du premier recuit entrainera une teneur en ferrite polygonale à l'issue du second recuit supérieure à 10% ce qui mènerait à une limite d'élasticité et une résistance mécanique trop basses par rapport aux visées de l'invention.According to the invention, the microstructure of the steel after the first annealing must contain, in surface proportion, less than 10% of polygonal ferrite, the remainder of the microstructure being composed of fresh or returned martensite. If the polygonal ferrite content is greater than 10%, the strength and yield strength of the steel after the second annealing will be less than 980 MPa and 650 MPa respectively. In addition, a polygonal ferrite content greater than 10% after the first annealing will result in a polygonal ferrite content at the end of the second annealing greater than 10% which would lead to a yield strength and too much mechanical strength. low compared to the scope of the invention.

La microstructure de l'acier après le second recuit doit contenir, en proportions surfaciques, de 10 à 30% d'austénite résiduelle. Si la teneur en austénite résiduelle est inférieure à 10%, l'allongement uniforme sera inférieur à 15% car l'austénite résiduelle sera trop stable et ne pourra pas se transformer en martensite lors de sollicitations mécaniques amenant un gain significatif sur l'écrouissage de l'acier retardant de fait l'apparition de la striction qui se traduit par une hausse de l'allongement uniforme. Si la teneur en austénite résiduelle est supérieure à 30%, l'austénite résiduelle sera instable car pas assez enrichie en carbone lors du second recuit et du maintien à la température de fin de refroidissement TOA, et la ductilité de l'acier après le second recuit en sera réduite, ce qui mènera à un allongement uniforme inférieur à 15% et/ou un allongement total inférieur à 20%.The microstructure of the steel after the second annealing must contain, in surface proportions, 10 to 30% residual austenite. If the residual austenite content is less than 10%, the uniform elongation will be less than 15% because the residual austenite will be too stable and can not be transformed into martensite during mechanical stresses bringing a significant gain on the work hardening. the steel actually delays the appearance of the necking which results in an increase of the uniform elongation. If the residual austenite content is greater than 30%, the residual austenite will be unstable because not sufficiently enriched in carbon during the second annealing and maintenance at the end of cooling temperature T OA , and the ductility of the steel after the Second annealing will be reduced, which will lead to a uniform elongation of less than 15% and / or a total elongation of less than 20%.

En outre, l'acier selon l'invention, après le second recuit doit contenir, en proportions surfaciques, de 30 à 60% de martensite recuite, qui est une martensite issue du premier recuit, recuite lors du second recuit et qui se distingue d'une martensite fraîche par une quantité de défauts cristallographiques plus faible, et qui se distingue d'une martensite revenue par l'absence de carbures au sein de ses lattes. Si la teneur en martensite recuite est inférieure à 30%, la ductilité de l'acier sera trop faible car la teneur en austénite résiduelle sera trop faible car pas assez enrichie en Carbone et la teneur en martensite fraîche sera de fait trop importante ce qui amène à un allongement uniforme inférieure à 15%. Si la teneur en martensite recuite est supérieure à 60%, la ductilité de l'acier sera trop faible car l'austénite résiduelle sera trop stable et ne pourra pas se transformer en martensite sous l'effet de sollicitations mécaniques, ce qui aura pour effet de diminuer la ductilité de l'acier selon l'invention, et mènera à un allongement uniforme inférieur à 15% et/ou un allongement total inférieur à 20%.In addition, the steel according to the invention after the second annealing must contain, in surface proportions, from 30 to 60% of annealed martensite, which is a martensite resulting from the first annealing, annealed during the second annealing and which is distinguished from a fresh martensite by a smaller quantity of crystallographic defects, and which is distinguished from a martensite returned by the absence of carbides within its laths. If the annealed martensite content is less than 30%, the ductility of the steel will be too low because the residual austenite content will be too low because not enough enriched in carbon and the fresh martensite content will be too much this leads to a uniform elongation of less than 15%. If the annealed martensite content is greater than 60%, the ductility of the steel will be too low because the residual austenite will be too stable and can not be transformed into martensite under the effect of mechanical stresses, which will have the effect of to reduce the ductility of the steel according to the invention, and will lead to a uniform elongation of less than 15% and / or a total elongation of less than 20%.

Toujours selon l'invention, la microstructure de l'acier après le second recuit doit contenir, en proportions surfaciques, de 5 à 30% de bainite. La présence de bainite dans la microstructure est justifiée par le rôle qu'elle tient dans l'enrichissement en carbone de l'austénite résiduelle. En effet, lors de la transformation bainitique et grâce à la présence de Silicium en quantité importante, le carbone est redistribué de la bainite vers l'austénite ce qui a pour effet de stabiliser cette dernière à température ambiante. Si la teneur en bainite est inférieure à 5%, l'austénite résiduelle ne sera pas assez enrichie en Carbone et cette dernière ne sera pas assez stable, ce qui favorisera la présence de martensite fraîche qui entrainera une baisse significative de la ductilité. L'allongement uniforme sera alors inférieur à 15%. Si la teneur en bainite est supérieure à 30%, cela mènera à une austénite résiduelle trop stable qui ne pourra pas se transformer en martensite sous l'effet de sollicitations mécaniques, ce qui aura pour effet de mener à un allongement uniforme inférieur à 15% et/ou un allongement total inférieur à 20%.Still according to the invention, the microstructure of the steel after the second annealing must contain, in surface proportions, from 5 to 30% of bainite. The presence of bainite in the microstructure is justified by the role it plays in the carbon enrichment of the residual austenite. Indeed, during the bainitic transformation and thanks to the presence of silicon in significant amount, the carbon is redistributed from bainite to austenite which has the effect of stabilizing the latter at room temperature. If the bainite content is less than 5%, residual austenite will not be sufficiently enriched in carbon and the latter will not be stable enough, which will favor the presence of fresh martensite which will cause a significant decrease in ductility. The uniform elongation will then be less than 15%. If the bainite content is greater than 30%, this will lead to a residual austenite which is too stable and can not be converted into martensite under the effect of mechanical stresses, which will lead to a uniform elongation of less than 15%. and / or a total elongation of less than 20%.

Enfin, l'acier selon l'invention et après le second recuit doit contenir, en proportions surfaciques, de 10 à 30% de martensite fraîche. Si la teneur en martensite fraîche est inférieure à 10% la résistance mécanique de l'acier sera inférieure à 980 MPa. Si elle est supérieure à 30%, la teneur en austénite résiduelle sera trop faible et l'acier ne sera pas assez ductile, en outre, l'allongement uniforme sera inférieur à 15%.Finally, the steel according to the invention and after the second annealing must contain, in surface proportions, 10 to 30% fresh martensite. If the fresh martensite content is less than 10%, the strength of the steel will be less than 980 MPa. If it is greater than 30%, the residual austenite content will be too low and the steel will not be sufficiently ductile, moreover, the uniform elongation will be less than 15%.

La tôle selon l'invention pourra être fabriquée par tout procédé adapté.The sheet according to the invention may be manufactured by any suitable method.

On approvisionne tout d'abord un acier de composition selon l'invention. Puis, on procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots ou en continu sous forme de brames.First, a steel of composition according to the invention is supplied. Then, one proceeds to the casting of a half-product from this steel. This casting can be carried out in ingots or continuously in the form of slabs.

La température de réchauffage devra être entre 1100 et 1280°C. Les demi-produits coulés doivent être portés à une température Trech supérieure à 1100°C pour obtenir un demi-produit réchauffé afin d'atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage. Cet intervalle de température permet également d'être dans le domaine austénitique et d'assurer la dissolution complète des précipités issus de la coulée. Cependant, si la température Trech est supérieure à 1280°C, les grains austénitiques croissent de façon indésirable et mèneront à une structure finale plus grossière et les risques de défauts de surface liés à la présence d'oxyde liquide sont accru. Il est bien sûr également possible de laminer à chaud directement après la coulée sans réchauffer la brame.The reheating temperature should be between 1100 and 1280 ° C. The cast semifinished products must be heated to a temperature T rech at 1100 ° C to obtain a semi-finished product warmed in order to reach at any point a temperature favorable for the large deformations that the steel will undergo during rolling. This temperature range also makes it possible to be in the austenitic range and to ensure complete dissolution of the precipitates resulting from the casting. However, if the temperature T rech is greater than 1280 ° C, the austenitic grains grow undesirably and will lead to a coarser final structure and the risks of surface defects related to the presence of liquid oxide are increased. It is of course also possible to hot roll directly after casting without heating the slab.

On lamine ensuite à chaud le demi-produit dans un domaine de température où la structure de l'acier est totalement austénitique : si la température de fin de laminage Tfl est inférieure à 900°C, les efforts de laminage sont très importants pouvant entrainer des consommations énergétiques importantes voire des casses de laminoir. Préférentiellement, on respectera une température de fin de laminage supérieure à 950°C afin de garantir le laminage dans le domaine austénitique et donc de limiter les efforts de laminage.The semi-finished product is then hot-rolled in a temperature range in which the structure of the steel is totally austenitic: if the end-of-rolling temperature T f is less than 900 ° C., the rolling forces are very large and may cause significant energy consumption or even breakages of rolling mill. Preferably, a rolling end temperature greater than 950 ° C. will be observed in order to guarantee rolling in the austenitic range and thus to limit the rolling forces.

On bobine ensuite le produit laminé à chaud à une température Tbob comprise entre 400 et 600°C. Cette gamme de température permet d'obtenir des transformations ferritiques, bainitiques ou perlitiques pendant le maintien quasi-isotherme associé au bobinage suivi d'un refroidissement lent afin de minimiser la fraction de martensite après refroidissement. Une température de bobinage supérieure à 600°C conduit à la formation d'oxydes de surface non désirés. Lorsque la température de bobinage est trop basse, en dessous de 400°C, la dureté du produit après refroidissement est augmentée, ce qui augmente les efforts nécessaires lors du laminage à froid ultérieur.The hot-rolled product is then rolled at a temperature T bob of between 400 and 600 ° C. This temperature range makes it possible to obtain ferritic, bainitic or pearlitic transformations during the quasi-isothermal maintenance associated with the winding followed by slow cooling to minimize the martensite fraction after cooling. A winding temperature above 600 ° C leads to the formation of unwanted surface oxides. When the winding temperature is too low, below 400 ° C, the hardness of the product after cooling is increased, which increases the efforts required during the subsequent cold rolling.

On décape ensuite si nécessaire le produit laminé à chaud selon un procédé connu en lui-même.The hot-rolled product is then cleaned if necessary by a process known per se.

Optionnellement, on effectue un recuit base intermédiaire de la tôle laminée à chaud bobinée entre TRB1 et TRB2 avec TRB1=400°C et TRB2=700°C pendant une durée comprise entre 5 et 24 heures. Ce traitement thermique permet d'avoir une résistance mécanique inférieure à 1000 MPa en tout point de la tôle laminée à chaud, l'écart de dureté entre le centre de la tôle et les rives étant ainsi minimisé. Ceci facilite considérablement l'étape suivante de laminage à froid par un adoucissement de la structure formée.Optionally, an intermediate base annealing of the hot-rolled sheet wound between T RB1 and T RB2 is carried out with T RB1 = 400 ° C and T RB2 = 700 ° C for a period of between 5 and 24 hours. This heat treatment makes it possible to have a mechanical strength of less than 1000 MPa at any point of the hot-rolled sheet, the difference in hardness between the center of the sheet and the banks thus being minimized. This greatly facilitates the next step of cold rolling by softening the formed structure.

On effectue ensuite un laminage à froid avec un taux de réduction compris préférentiellement entre 30 et 80%.Cold rolling is then carried out with a reduction ratio preferably comprised between 30 and 80%.

On effectue ensuite le premier recuit du produit laminé à froid, préférentiellement au sein d'une installation de recuit continu, avec une vitesse moyenne de chauffage VC comprise entre 2 et 50°C par seconde. En relation avec la température de recuit Tsoaking1, cette gamme de vitesse de chauffage permet d'obtenir une recristallisation et un affinement adéquat de la structure. En dessous de 2°C par seconde, on augmente considérablement les risques de décarburation de surface. Au dessus de 50°C par seconde, on ferait apparaître des traces de non recristallation et de carbures insolubles lors du maintien ce qui aurait pour effet de réduire la fraction d'austénite résiduelle et nuirait donc à la ductilité.
Le chauffage est effectué jusqu'à une température de recuit Tsoaking1 comprise entre la température TS1 et 950°C où TS1= 910,7 - 431,4*C- 45,6*Mn + 54,4*Si - 13,5*Cr + 52,2*Nb avec les températures en °C et les compositions chimiques en pourcent massique, Lorsque Tsoaking1 est inférieure à TS1, on promeut la présence de ferrite polygonale au delà de 10% et donc en dehors de la visée de l'invention. Inversement, si Tsoaking1 est au dessus de 950°C, les tailles de grains austénitiques augmentent considérablement ce qui est dommageable pour l'affinement de la microstructure finale et donc pour les niveaux de limite d'élasticité qui se retrouverait en dessous de 650 MPa.
The first annealing of the cold-rolled product is then carried out, preferably in a continuous annealing installation, with a mean heating rate V C of between 2 and 50 ° C. per second. In relation to the annealing temperature T soaking1 , this heating rate range makes it possible to obtain a recrystallization and an adequate refinement of the structure. Below 2 ° C per second, the risks of surface decarburization are considerably increased. Above 50 ° C per second, traces of non-recrystallization and insoluble carbides would appear during the maintenance which would have the effect of reducing the residual austenite fraction and thus adversely affect the ductility.
The heating is carried out up to a soaking temperature of annealing T between temperature TS1 and 950 ° C where TS1 = 910.7 - 431.4 * C- 45.6 * Mn + 54.4 * Si - 13.5 * Cr + 52.2 * Nb with temperatures in ° C and chemical compositions in percent by mass, When T soaking1 is lower than TS1, it promotes the presence of polygonal ferrite beyond 10% and therefore outside the scope of the invention. Conversely, if T soaking1 is above 950 ° C, the austenitic grain sizes increase considerably which is detrimental to the refinement of the final microstructure and therefore to the yield strength levels which would be below 650 MPa .

Une durée de maintien tsoaking1 comprise entre 30 et 200 secondes à la température Tsoaking1 permet la dissolution des carbures préalablement formés, et surtout une transformation suffisante en austénite. En dessous de 30 s la dissolution des carbures serait insuffisante. D'autre part, un temps de maintien supérieur à 200 s est difficilement compatible avec les exigences de productivité des installations de recuit continu, en particulier la vitesse de défilement de la bobine. De plus, le même risque de grossissement de grain austénitique que dans le cas de Tsoaking1 au dessus de 950°C apparaît, avec le même risque d'avoir une limite d'élasticité inférieure à 650 MPa. La durée de maintien tsoaking1 est donc comprise entre 30 et 200 s.A holding time t soaking1 of between 30 and 200 seconds at the temperature T soaking1 allows the dissolution of the previously formed carbides, and especially a sufficient transformation to austenite. Below 30 seconds the dissolution of the carbides would be insufficient. On the other hand, a holding time greater than 200 s is hardly compatible with productivity requirements. continuous annealing installations, in particular the speed of travel of the reel. In addition, the same risk of austenitic grain enlargement as in the case of T soaking1 above 950 ° C appears, with the same risk of having a yield strength of less than 650 MPa. The duration of maintenance t soaking1 is therefore between 30 and 200 s.

A la fin du maintien du premier recuit, on refroidit la tôle jusqu'à température ambiante, la vitesse de refroidissement Vref1 étant suffisamment rapide pour éviter la formation de la ferrite. A cet effet, cette vitesse de refroidissement est supérieure à 30°C/s, ce qui permet d'obtenir une microstructure avec moins de 10% de ferrite, le reste étant de la martensite. Préférentiellement, on privilégiera une microstructure entièrement martensitique à l'issue du premier recuit.At the end of maintaining the first annealing, the sheet is cooled to room temperature, the cooling rate V ref1 being fast enough to prevent the formation of ferrite. For this purpose, this cooling rate is greater than 30 ° C./s, which makes it possible to obtain a microstructure with less than 10% ferrite, the rest being martensite. Preferentially, a fully martensitic microstructure will be favored after the first annealing.

On effectue ensuite le second recuit du produit laminé à froid et recuit une première fois, préférentiellement au sein d'une installation de recuit continu de galvanisation, avec une vitesse moyenne de chauffage VC supérieure à 2°C par seconde pour éviter les risques de décarburation de surface. Préférentiellement, la vitesse moyenne de chauffage doit être inférieure à 50°C par seconde pour éviter la présence de carbures insolubles lors du maintien ce qui aurait pour effet de réduire la fraction d'austénite résiduelle.
Le chauffage est effectué jusqu'à une température de recuit Tsoaking2 comprise entre la température Ac1 = 728 - 23,3*C - 40,5*Mn + 26,9*Si + 3,3*Cr + 13,8*Nb
et TS2 = 906,5 - 440,6*C - 44,5*Mn + 49,2*Si - 12,4*Cr + 55,9*Nb avec les températures en °C et les compositions chimiques en pourcent massique. Lorsque Tsoaking2 est inférieure à Ac1, on ne peut pas obtenir la microstructure visée par l'invention car seul le revenu de la martensite issue du premier recuit aurait lieu. Lorsque Tsoaking2 est supérieure à TS2 la teneur en martensite recuite sera inférieure à 30% ce qui favorisera la présence d'une grande quantité de martensite fraiche dégradant de fait fortement la ductilité du produit.
The second annealing of the cold-rolled product is then carried out and annealed a first time, preferably in a continuous galvanization annealing installation, with an average heating rate V C greater than 2 ° C. per second in order to avoid the risks of surface decarburization. Preferably, the average heating rate must be less than 50 ° C per second to avoid the presence of insoluble carbides during maintenance which would have the effect of reducing the residual austenite fraction.
The heating is carried out up to a soaking 2 annealing temperature T between the temperature Ac1 = 728 - 23.3 * C - 40.5 * Mn + 26.9 * Si + 3.3 * Cr + 13.8 * Nb
and TS2 = 906.5 - 440.6 * C - 44.5 * Mn + 49.2 * Si - 12.4 * Cr + 55.9 * Nb with temperatures in ° C and chemical compositions in percent by weight. When T soaking2 is less than Ac1, it is not possible to obtain the microstructure targeted by the invention since only the income from the martensite resulting from the first annealing would take place. When T soaking2 is greater than TS2 the annealed martensite content will be less than 30% which will favor the presence of a large amount of fresh degrading martensite de facto strongly the ductility of the product.

Une durée de maintien tsoaking2 comprise entre 30 et 200 secondes à la température Tsoaking2 permet la dissolution des carbures préalablement formés, et surtout une transformation suffisante en austénite. En dessous de 30 s la dissolution des carbures peut être insuffisante. D'autre part, un temps de maintien supérieur à 200 s est difficilement compatible avec les exigences de productivité des installations de recuit continu, en particulier la vitesse de défilement de la bobine. De plus, le même risque de grossissement de grain austénitique que dans le cas de tsoaking1 au delà de 200s apparaît, avec le même risque d'avoir une limite d'élasticité inférieure à 650 MPa. La durée de maintien tsoaking2 est donc comprise entre 30 et 200 s.A holding time t soaking 2 of between 30 and 200 seconds at the soaking temperature T 2 allows the dissolution of the previously formed carbides, and especially sufficient transformation into austenite. Below 30 seconds the dissolution of the carbides may be insufficient. On the other hand, a hold time greater than 200 s is hardly compatible with the productivity requirements of continuous annealing equipment, in particular the speed of travel of the reel. In addition, the same risk of austenitic grain enlargement as in the case of t soaking1 beyond 200s appears, with the same risk of having a yield strength of less than 650 MPa. The soaking time t soaking2 is therefore between 30 and 200 s.

A la fin du maintien du second recuit, on refroidit la tôle jusqu'à atteindre une température de fin de refroidissement TOA comprise entre TOA1=420°C et TOA2=480°C, la vitesse de refroidissement Vref2 étant suffisamment rapide pour éviter la formation massive de la ferrite i.e. une teneur supérieure à 10%. A cet effet, cette vitesse de refroidissement est supérieure à 20°C par seconde.At the end of the maintenance of the second annealing, the sheet is cooled until a temperature of end of cooling T OA between T OA1 = 420 ° C and T OA2 = 480 ° C is reached , the cooling rate V ref2 being sufficiently fast to avoid the massive formation of ferrite ie a content greater than 10%. For this purpose, this cooling rate is greater than 20 ° C per second.

La température de fin de refroidissement doit être comprise entre TOA1=420°C et TOA2=480°C. En dessous de 420°C, la bainite formée sera dure et cela risque de nuire à la ductilité qui pourrait être inférieure à 15% pour l'allongement uniforme, de plus, cette température est trop basse pour le cas où l'on souhaite entrer dans un bain de Zn qui est généralement à 460°C, on refroidirait donc en continu le bain. Si la température TOA est supérieure à 480°C, on risque de précipiter de la cementite, phase carburée qui va diminuer le carbone disponible pour stabiliser l'austénite. De plus, en cas de revêtement galvanisé au trempé, on risquerait de faire évaporer du Zn liquide tout en perdant le contrôle de la réaction entre le bain et l'acier si on est trop haut en température, soit au dessus de 480°CThe end of cooling temperature must be between T OA1 = 420 ° C and T OA2 = 480 ° C. Below 420 ° C, the bainite formed will be hard and this may affect the ductility which could be less than 15% for the uniform elongation, moreover, this temperature is too low for the case where it is desired to enter in a bath of Zn which is generally at 460 ° C, the bath would therefore be continuously cooled. If the temperature T OA is greater than 480 ° C, it is likely to precipitate carbonite, carbide phase which will reduce the available carbon to stabilize the austenite. In addition, in the case of dip galvanized coating, there is a risk of evaporating liquid Zn while losing control of the reaction between the bath and the steel if it is too high in temperature, ie above 480 ° C.

Le temps de maintien tOA dans la gamme de température TOA1 (°C) à TOA2 (°C) doit être compris entre 5 et 120 secondes afin de permettre la transformation bainitique et ainsi la stabilisation de l'austénite par enrichissement en carbone de ladite austénite. Elle doit aussi être supérieure à 5 s de façon à garantir une teneur en bainite conforme à l'invention sans quoi la limite d'élasticité serait inférieure à 650 MPa. Elle doit aussi être inférieure à 120 s pour limiter la teneur en bainite à 30% comme visée dans l'invention sans quoi la teneur en austénite résiduelle serait inférieure à 10% et la ductilité de l'acier serait trop faible, ce qui se manifesterait par un allongement uniforme inférieur à 15% et/ou un allongement total inférieur à 20%.The holding time t OA in the temperature range T OA1 (° C) to T OA2 (° C) must be between 5 and 120 seconds in order to allow the bainitic transformation and thus the stabilization of the austenite by carbon enrichment. of said austenite. It must also be greater than 5 s to ensure a bainite content according to the invention without which the yield strength would be less than 650 MPa. It must also be less than 120 seconds to limit the bainite content to 30% as referred to in the invention, otherwise the residual austenite content would be less than 10% and the ductility of the steel would be too low, which would be manifest by a uniform elongation of less than 15% and / or a total elongation of less than 20%.

A la fin de ce maintien entre TOA1 (°C) et TOA2 (°C), on revêt la tôle doublement recuite d'un dépôt de Zinc ou d'alliage de Zinc (la teneur en Zn en pourcentage massique étant majoritaire) par revêtement au trempé à chaud avant refroidissement à l'ambiante. Préférentiellement, on pourra aussi revêtir de Zinc ou d'alliage de Zinc par tout procédé électrolytique ou physico-chimique connus en eux-mêmes la tôle recuite nue. Un revêtement à base d'aluminium ou d'alliage à base d'aluminium (la teneur en Al en pourcentage massique étant majoritaire) peut aussi être déposé par trempe à chaud.At the end of this hold between T OA1 (° C) and T OA2 (° C), the doubly annealed sheet is coated with a deposit of Zinc or Zinc alloy (the Zn content in mass percentage being predominant) by hot dip coating before cooling to room temperature. Preferably, zinc or zinc alloy may also be coated by any electrolytic or physicochemical process known in itself bare annealed sheet. A coating based on aluminum or aluminum-based alloy (the Al content in weight percentage being the majority) can also be deposited by hot quenching.

On effectue ensuite, préférentiellement, un traitement thermique de post recuit base sur la tôle laminée à froid et doublement recuite et revêtue, à une température de maintien Tbase comprise entre 150°C et 190°C pendant un temps de maintien tbase compris entre 10h et 48h afin d'améliorer la limite d'élasticité et la pliabilité. Ce traitement sera appelé : post recuit base.A post annealing heat treatment is then preferably carried out on the cold-rolled and doubly annealed and coated sheet at a holding temperature T base of between 150 ° C. and 190 ° C. for a hold time t base of between 10h and 48h to improve the elasticity limit and the pliability. This treatment will be called: post annealing base.

La présente invention va maintenant être illustrée à partir des exemples, non limitatifs, suivants.The present invention will now be illustrated from the following nonlimiting examples.

ExemplesExamples

On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral. Le tableau 1 indique la composition chimique de l'acier ayant servi à la fabrication des tôles des exemples. Tableau 1 : Compositions chimiques (% poids) et températures critiques Ae1, TS1 et TS2 étant en °C. Acier C Mn Si Al Cr Mo Cu Ni V Nb S P B Ti N Ae1 TS1 TS2 A 0,26 1,3 2,12 0,027 0,002 0,002 0,005 0,006 0,002 0,124 0,0027 0,019 0,0005 0,004 0,002 728 862 846 B 0,28 1,17 1,99 0,03 0,003 0,003 0,007 0,008 0,003 0,017 0,0036 0,014 0,00042 0,007 0,0014 727 844 829 C 0,29 1,17 1,98 0,029 0,003 0,003 0,007 0,008 0,003 0,068 0,0036 0,014 0,0004 0,006 0,0016 728 845 830 D 0,21 1,25 3,04 0,023 0,004 0,005 0,005 0,004 0,002 0,00 0,0033 0,018 0,0006 0,004 0,0015 754 927 907 E 0,19 1,68 1,55 0,053 0,024 0,006 0,007 0,017 0,004 0,001 0,002 0,009 0,0007 0,003 0,004 697 836 824 Steels have been developed, the composition of which is given in the table below, expressed in percentage by weight. Table 1 shows the chemical composition of the steel used to manufacture the sheets of the examples. Table 1: Chemical compositions (% wt) and critical temperatures Ae1, TS1 and TS2 being in ° C. Steel VS mn Yes al Cr MB Cu Or V Nb S P B Ti NOT Ae1 TS1 TS2 AT 0.26 1.3 2.12 0,027 0,002 0,002 0.005 0.006 0,002 0.124 0.0027 0,019 0.0005 0,004 0,002 728 862 846 B 0.28 1.17 1.99 0.03 0,003 0,003 0,007 0,008 0,003 0,017 0.0036 0.014 0.00042 0,007 0.0014 727 844 829 VS 0.29 1.17 1.98 0,029 0,003 0,003 0,007 0,008 0,003 0.068 0.0036 0.014 0.0004 0.006 0.0016 728 845 830 D 0.21 1.25 3.04 0,023 0,004 0.005 0.005 0,004 0,002 0.00 0.0033 0,018 0.0006 0,004 0.0015 754 927 907 E 0.19 1.68 1.55 0.053 0,024 0.006 0,007 0,017 0,004 0,001 0,002 0,009 0.0007 0,003 0,004 697 836 824

Les références D et E du tableau 1 désignent des aciers dont les compositions ne sont pas conformes à l'invention. Les teneurs non conformes à l'invention sont soulignées.The references D and E of Table 1 denote steels whose compositions do not conform to the invention. The contents not in accordance with the invention are underlined.

On note notamment que les références D et E ne sont pas conformes à l'invention car leurs compositions sont exemptes de Niobium, ce qui limitera la limite d'élasticité et la résistance mécanique de la tôle finale par l'absence de durcissement par précipitation.Note in particular that the references D and E are not in accordance with the invention because their compositions are free of Niobium, which will limit the yield strength and the mechanical strength of the final sheet by the absence of precipitation hardening.

On note également que les références D et E ne sont pas conformes à l'invention car leurs teneurs en Silicium sont en dehors de la fourchette visée. Au-delà de 3,00% le silicium va promouvoir une quantité de ferrite trop importante et la résistance mécanique visée ne serait pas atteinte. En deçà de 1,60% en poids, la stabilisation de l'austénite résiduelle ne sera pas assez importante pour obtenir la ductilité souhaitée.It is also noted that the references D and E are not in accordance with the invention because their silicon contents are outside the target range. Beyond 3.00%, the silicon will promote a quantity of ferrite which is too great and the intended mechanical strength would not be reached. Below 1.60% by weight, the stabilization of residual austenite will not be large enough to achieve the desired ductility.

On note encore que la référence E est non conforme à l'invention car la teneur en carbone est inférieure à la visée ce qui limitera la résistance finale et la ductilité de la tôle. De plus, la teneur en Mn est trop élevée, ce qui limitera la quantité finale de bainite dans la tôle, ce qui aura pour effet de limiter la ductilité de la tôle par une présence trop importante de martensite fraîche.It is also noted that the reference E is not in accordance with the invention because the carbon content is lower than the target which will limit the final strength and ductility of the sheet. In addition, the Mn content is too high, which will limit the final amount of bainite in the sheet, which will have the effect of limiting the ductility of the sheet by an excessive presence of fresh martensite.

Des tôles correspondant aux compositions ci-dessus ont été produites suivant des conditions de fabrication rassemblées dans le tableau 2.Plates corresponding to the above compositions were produced according to manufacturing conditions compiled in Table 2.

A partir de ces compositions, certains aciers ont fait l'objet de différentes conditions de recuit. Les conditions avant laminage à chaud sont identiques avec un réchauffage compris entre 1200°C et 1250°C, une température de fin de laminage comprise entre 930°C et 990°C et un bobinage compris entre 540°C et 560°C. Les produits laminés à chaud sont ensuite tous décapés puis, directement laminés à froid avec un taux de réduction compris entre 50 et 70 %.From these compositions, some steels have been subjected to different annealing conditions. The conditions before hot rolling are identical with a reheating of between 1200 ° C. and 1250 ° C., an end-of-rolling temperature of between 930 ° C. and 990 ° C. and a winding of between 540 ° C. and 560 ° C. The hot rolled products are then all stripped and then directly cold rolled with a reduction rate of between 50 and 70%.

Le tableau 2 indique aussi les conditions de fabrication des tôles recuites après laminage à froid avec les dénominations suivantes :

  • température de réchauffage : Trech
  • température de fin de laminage : Tfl
  • température de bobinage : TBOB
  • taux de réduction au laminage à froid
  • vitesse de chauffe au premier recuit : VC1
  • température de maintien au premier recuit : Tsoaking1
  • temps de maintien au premier recuit à Tsoaking1 : tsoaking1
  • vitesse de refroidissement au premier recuit : Vref1
  • vitesse de chauffe au deuxième recuit : VC2
  • température de maintien au deuxième recuit : Tsoaking2
  • temps de maintien au deuxième recuit à Tsoaking1 : tsoaking2
  • vitesse de refroidissement au deuxième recuit : Vref2
  • température de fin de refroidissement TOA
  • temps de maintien à la température TOA : tOA
  • les températures calculées Ac1, TS1 et TS2 (en °C)
Tableau 2 :Condition de recuit des exemples et rérérences Acier ID Trech (°C) Tfl(°C) TBOB (°C) Taux de réduction (%) VC1 (°C/s) T Soaking 1(°C) tSoaking1 (s) Vref1 (°C/s) VC2 (°C/s) TSoaking 2 (°C) tSoaking2 (s) Vref2 (°C/s) TOA (°C) tOA (s) Ac1 TS1 TS2 A A_1 1240 963 551 62 15 900 120 800 15 770 120 95 460 15 728 862 847 A A_2 1240 963 551 62 15 900 120 800 15 770 120 95 460 20 728 862 847 A A_3 1240 963 551 62 15 900 120 800 15 770 120 95 450 25 728 862 847 A A_4 1240 963 551 62 15 900 120 300 15 770 120 95 450 30 723 862 847 A A_5 1240 963 551 62 15 800 120 800 15 770 120 95 460 15 728 862 847 A A_6 1240 963 551 62 15 800 120 800 15 770 120 95 460 20 728 862 847 B B_1 1245 951 546 59 15 900 120 800 15 750 120 95 400 15 728 845 829 B B_2 1245 951 546 59 15 840 120 800 15 750 120 95 450 30 728 845 829 B B_3 1245 951 546 59 15 840 120 800 15 770 120 95 450 30 728 845 829 B B_4 1245 951 546 59 15 840 120 800 15 790 120 95 450 30 728 845 829 c C_1 1245 951 546 59 15 900 120 800 15 750 120 95 450 15 728 846 830 C C_2 1245 951 546 59 15 840 120 800 15 750 120 95 450 30 728 846 830 C C_3 1245 951 546 59 15 840 120 800 15 770 120 95 450 30 728 846 830 C C_4 1245 951 546 59 15 840 120 800 15 790 120 95 450 30 726 846 830 C C_5 1245 951 546 59 - - - - 15 770 120 95 450 30 728 846 830 D D_1 1243 965 553 61.5 15 850 120 800 15 800 120 95 460 30 754 927 907 D D_2 1243 965 553 61.5 15 850 120 800 15 800 120 95 460 30 754 927 907 E E_1 1210 952 541 52 15 870 120 800 5 820 87 36 450 25 697 837 825 E E_2 1210 952 541 52 15 870 120 800 5 840 87 36 450 25 697 837 825 E E_3 1210 952 541 52 15 870 120 800 5 850 87 36 450 25 697 837 825 E E_4 1210 952 541 52 15 870 120 800 5 860 87 36 450 25 697 837 825 E E_5 1210 952 541 52 15 870 120 800 3 800 110 23 450 38 697 837 825 E E_6 1210 952 541 52 15 870 120 800 3 820 110 24 450 38 697 837 825 Table 2 also indicates the manufacturing conditions for the cold-rolled sheet after the following denominations:
  • reheating temperature: T rech
  • end of rolling temperature: T fl
  • winding temperature: T BOB
  • reduction rate at cold rolling
  • heating rate at first annealing: V C1
  • holding temperature at first annealing: T soaking1
  • hold time at first annealing at T soaking1 : t soaking1
  • cooling rate at first annealing: V ref1
  • heating rate at second annealing: V C2
  • holding temperature at second annealing: T soaking2
  • hold time at second annealing at T soaking1 : t soaking2
  • cooling rate at the second annealing: V ref2
  • end of cooling temperature T OA
  • hold time at temperature T OA : t OA
  • the calculated temperatures Ac1, TS1 and TS2 (in ° C)
Table 2: Annealing condition of examples and rerérences Steel ID T rech (° C) T fl (° C) T BOB (° C) Reduction rate (%) V C1 (° C / s) T Soaking 1 (° C) t Soaking1 (s) V ref1 (° C / s) V C2 (° C / s) T Soaking 2 (° C) t Soaking2 (s) V ref2 (° C / s) T OA (° C) t OA (s) Ac1 TS1 TS2 AT A_1 1240 963 551 62 15 900 120 800 15 770 120 95 460 15 728 862 847 AT A_2 1240 963 551 62 15 900 120 800 15 770 120 95 460 20 728 862 847 AT A_3 1240 963 551 62 15 900 120 800 15 770 120 95 450 25 728 862 847 AT A_4 1240 963 551 62 15 900 120 300 15 770 120 95 450 30 723 862 847 AT AT 5 1240 963 551 62 15 800 120 800 15 770 120 95 460 15 728 862 847 AT A_6 1240 963 551 62 15 800 120 800 15 770 120 95 460 20 728 862 847 B B_1 1245 951 546 59 15 900 120 800 15 750 120 95 400 15 728 845 829 B B_2 1245 951 546 59 15 840 120 800 15 750 120 95 450 30 728 845 829 B B_3 1245 951 546 59 15 840 120 800 15 770 120 95 450 30 728 845 829 B B_4 1245 951 546 59 15 840 120 800 15 790 120 95 450 30 728 845 829 vs C_1 1245 951 546 59 15 900 120 800 15 750 120 95 450 15 728 846 830 VS C_2 1245 951 546 59 15 840 120 800 15 750 120 95 450 30 728 846 830 VS C_3 1245 951 546 59 15 840 120 800 15 770 120 95 450 30 728 846 830 VS C_4 1245 951 546 59 15 840 120 800 15 790 120 95 450 30 726 846 830 VS C_5 1245 951 546 59 - - - - 15 770 120 95 450 30 728 846 830 D D_1 1243 965 553 61.5 15 850 120 800 15 800 120 95 460 30 754 927 907 D D_2 1243 965 553 61.5 15 850 120 800 15 800 120 95 460 30 754 927 907 E E_1 1210 952 541 52 15 870 120 800 5 820 87 36 450 25 697 837 825 E E_2 1210 952 541 52 15 870 120 800 5 840 87 36 450 25 697 837 825 E E_3 1210 952 541 52 15 870 120 800 5 850 87 36 450 25 697 837 825 E E_4 1210 952 541 52 15 870 120 800 5 860 87 36 450 25 697 837 825 E E_5 1210 952 541 52 15 870 120 800 3 800 110 23 450 38 697 837 825 E E_6 1210 952 541 52 15 870 120 800 3 820 110 24 450 38 697 837 825

Les références A5 à A6, B1 à B4, C2 à C5, D1 et D2, E1 à E6 du tableau 2 désignent les tôles d'acier fabriquées selon des conditions non conformes à l'invention à partir d'aciers dont les compositions sont données dans le tableau 1. Les paramètres non conformes à l'invention sont soulignés.References A5 to A6, B1 to B4, C2 to C5, D1 and D2, E1 to E6 of Table 2 denote steel sheets manufactured under conditions not in accordance with the invention from steels whose compositions are given in Table 1. The parameters not in accordance with the invention are underlined.

On note que les références A5, A6, B2 à B4, C2 à C4, D1 et D2 sont non conformes à l'invention car la température de maintien au premier recuit Tsoaking1 est inférieure à la température calculée TS1, ce qui favoriserait une grande quantité de ferrite au premier recuit limitant ainsi la résistance mécanique de la tôle après le second recuit.It will be noted that the references A5, A6, B2 to B4, C2 to C4, D1 and D2 are not in accordance with the invention since the holding temperature at the first annealing T soaking1 is lower than the calculated temperature TS1, which would favor a large quantity of ferrite at the first annealing thus limiting the mechanical strength of the sheet after the second annealing.

On note également que les références E2, E3 et E4 sont non conformes à l'invention de par leur composition chimique et par le fait que la température de maintien au second recuit Tsoaking2 est supérieure à la température calculée TS2, ce qui aura pour effet de diminuer la quantité de martensite recuite après le second recuit, limitant la ductilité finale de la tôle en raison d'une quantité de martensite fraîche trop importante.It is also noted that the references E2, E3 and E4 are not in accordance with the invention by their chemical composition and by the fact that the holding temperature at the second annealing T soaking2 is greater than the calculated temperature TS2, which will have the effect to reduce the amount of annealed martensite after the second annealing, limiting the final ductility of the sheet due to too much fresh martensite.

On note encore que la référence B1 est non conforme à l'invention car la température TOA est en dehors de la gamme 420°C - 480°C, ce qui limitera la quantité d'austénite résiduelle après le second recuit et limitera donc la ductilité de la tôle.Note also that the reference B1 is not in accordance with the invention because the temperature T OA is outside the range 420 ° C - 480 ° C, which will limit the amount of residual austenite after the second annealing and therefore limit the ductility of the sheet.

On note également que la référence C5 est non conforme à l'invention car seul un unique recuit, conforme à l'invention et aux revendications du second recuit, a été appliqué à la tôle. L'absence du premier recuit conduit à l'absence de martensite recuite dans la microstructure ce qui limite fortement la limite d'élasticité et la résistance mécanique finales de la tôle.Note also that the reference C5 is not in accordance with the invention because only a single annealing, in accordance with the invention and the claims of the second annealing, has been applied to the sheet. The absence of the first annealing leads to the absence of martensite annealed in the microstructure which greatly limits the yield strength and the ultimate strength of the sheet.

On note enfin que les deux références E5 et E6 sont non conformes à l'invention la vitesse de refroidissement au second recuit VRef2 est inférieure à 30°C/s ce qui favorise la formation de la ferrite au refroidissement, ce qui aura pour effet de réduire la limite d'élasticité et la résistance mécanique de la tôle.Note finally that the two references E5 and E6 are not in accordance with the invention the cooling rate at the second annealing V Ref2 is less than 30 ° C / s which promotes the formation of ferrite cooling, which will have the effect to reduce the elastic limit and the mechanical strength of the sheet.

Les exemples A1 à A4, C1 sont ceux selon l'invention.Examples A1 to A4, C1 are those according to the invention.

On mesure ensuite les propriétés mécaniques en utilisant une éprouvette de type ISO 12,5x50 et les teneurs de chacune des phases présentes dans les microstructures élaborées par coupe transversale du matériau à partir des compositions chimiques données dans le tableau 1 en suivant les procédés décrits dans le tableau 2. Les tractions uni-axiales permettant d'obtenir ces propriétés mécaniques sont faites dans le sens parallèle à celui du laminage à froid.The mechanical properties are then measured using an ISO 12.5 × 50 specimen and the contents of each of the phases present in the microstructures developed by cross section of the material from the chemical compositions given in Table 1 following the methods described in Table 2. The uni-axial tractions to obtain these mechanical properties are made in the direction parallel to that of the rolling to cold.

Les teneurs de chacune des phases après chaque recuit et les propriétés mécaniques de traction obtenues ont été portées au tableau 3 ci-dessous avec les abréviations suivantes :

  • %M1 : fraction surfacique de martensite après le premier recuit
  • %F1 : fraction surfacique de ferrite après le premier recuit
  • %M2 : fraction surfacique de martensite après le deuxième recuit
  • %F2 : fraction surfacique de ferrite après le deuxième recuit
  • %RA : fraction surfacique d'austénite résiduelle après le deuxième recuit
  • %AM : fraction surfacique de martensite recuite après le deuxième recuit
  • %B : fraction surfacique de bainite après le deuxième recuit
  • la limite d'élasticité : Re
  • la résistance mécanique : Rm
  • l'allongement uniforme : Al. Unif.
  • Allongement total : Al. Total.
Tableau 3 : Fractions surfaciques de chacune des phases des microstructures et des propriétés mécaniques des références et de l'invention Acier ID %M1 %F1 %M2 %F2 %RA %AM %B Re (MPa) Rm (MPa) Al. Unif. (%) Al. Total. (%) Re/Rm A A_1 97 3 22 3 17 48 10 667 1000 20,6 24,1 0,67 A A_2 96 4 21 4 18 45 12 723 992 17,3 24,3 0,73 A A_3 97 3 17 3 19 46 15 671 984 22,3 28,3 0,68 A A_4 98 2 15 2 21 45 17 684 986 21,5 26,7 0,69 A A_5 59 41 22 41 17 11 9 496 1018 20,1 21,7 0,49 A A_6 60 40 20 40 19 10 11 511 1007 21,5 23,3 0,51 B B_1 98 2 6 2 14 56 22 634 881 16,8 20,5 0,72 B B_2 86 14 8 14 16 48 14 682 925 24,7 30,7 0,74 B B_3 85 15 13 15 19 41 12 662 926 23,8 29,4 0,71 B B_4 84 16 18 16 19 36 11 679 917 25,8 31,3 0,74 C C_1 97 3 14 3 18 53 12 694 981 23,2 29,0 0,71 C C_2 83 17 6 17 17 45 15 714 905 13,7 16,6 0,79 C C_3 81 19 10 19 19 38 14 703 928 24,0 29,4 0,76 C C_4 81 19 19 19 16 33 13 692 916 21,4 26,5 0,76 C C_5 - - 25 48 15 - 12 469 850 17,4 22,2 0,55 D D_1 64 36 17 36 15 26 6 488 999 16,6 22,0 0,49 D D_2 63 37 18 37 14 22 9 500 1039 17,3 19,9 0,48 E E_1 98 2 8 14 21 31 26 600 893 16 20,6 0,67 E E_2 97 3 17 16 18 15 34 550 899 18,8 23,5 0,61 E E_3 98 2 19 17 16 8 40 551 904 18,9 23,6 0,61 E E_4 96 4 15 19 15 3 48 483 872 19,7 25 0,55 E E_5 98 2 13 21 14 43 9 472 925 16,9 20,5 0,51 E E_6 99 1 19 19 16 32 14 545 897 16,3 20,1 0,61 The contents of each of the phases after each annealing and the tensile mechanical properties obtained are given in Table 3 below with the following abbreviations:
  • % M1: surface fraction of martensite after first annealing
  • % F1: surface fraction of ferrite after the first annealing
  • % M2: surface fraction of martensite after the second annealing
  • % F2: surface fraction of ferrite after the second annealing
  • % RA: surface fraction of residual austenite after the second annealing
  • % AM: surface fraction of martensite annealed after the second annealing
  • % B: surface fraction of bainite after the second annealing
  • the yield strength: Re
  • mechanical resistance: Rm
  • uniform elongation: Al. Unif.
  • Total elongation: Al. Total.
Table 3: Fraction fractions of each of the microstructure phases and the mechanical properties of the references and the invention Steel ID M1% F1% M2% % F2 % RA % AM % B Re (MPa) Rm (MPa) Al. Unif. (%) Al. Total. (%) Re / Rm AT A_1 97 3 22 3 17 48 10 667 1000 20.6 24.1 0.67 AT A_2 96 4 21 4 18 45 12 723 992 17.3 24.3 0.73 AT A_3 97 3 17 3 19 46 15 671 984 22.3 28.3 0.68 AT A_4 98 2 15 2 21 45 17 684 986 21.5 26.7 0.69 AT AT 5 59 41 22 41 17 11 9 496 1018 20.1 21.7 0.49 AT A_6 60 40 20 40 19 10 11 511 1007 21.5 23.3 0.51 B B_1 98 2 6 2 14 56 22 634 881 16.8 20.5 0.72 B B_2 86 14 8 14 16 48 14 682 925 24.7 30.7 0.74 B B_3 85 15 13 15 19 41 12 662 926 23.8 29.4 0.71 B B_4 84 16 18 16 19 36 11 679 917 25.8 31.3 0.74 VS C_1 97 3 14 3 18 53 12 694 981 23.2 29.0 0.71 VS C_2 83 17 6 17 17 45 15 714 905 13.7 16.6 0.79 VS C_3 81 19 10 19 19 38 14 703 928 24.0 29.4 0.76 VS C_4 81 19 19 19 16 33 13 692 916 21.4 26.5 0.76 VS C_5 - - 25 48 15 - 12 469 850 17.4 22.2 0.55 D D_1 64 36 17 36 15 26 6 488 999 16.6 22.0 0.49 D D_2 63 37 18 37 14 22 9 500 1039 17.3 19.9 0.48 E E_1 98 2 8 14 21 31 26 600 893 16 20.6 0.67 E E_2 97 3 17 16 18 15 34 550 899 18.8 23.5 0.61 E E_3 98 2 19 17 16 8 40 551 904 18.9 23.6 0.61 E E_4 96 4 15 19 15 3 48 483 872 19.7 25 0.55 E E_5 98 2 13 21 14 43 9 472 925 16.9 20.5 0.51 E E_6 99 1 19 19 16 32 14 545 897 16.3 20.1 0.61

Les références A5 et A6, B1 à B4, C2 à C5, D1 et D2, E1 à E6 du tableau 3 désignent les tôles d'acier fabriquées selon des conditions décrites au tableau 2 à partir d'aciers dont les compositions sont données au tableau 1. Les propriétés mécaniques et les fractions de phases non conformes à l'invention sont soulignées.References A5 and A6, B1 to B4, C2 to C5, D1 and D2, E1 to E6 of Table 3 denote steel sheets manufactured under conditions described in Table 2 from steels whose compositions are given in the table. 1. Mechanical properties and phase fractions not in accordance with the invention are underlined.

Les exemples A1 à A4 et C1 sont ceux selon l'invention.Examples A1 to A4 and C1 are those according to the invention.

On note que les références A5, A6, D1 et D2 sont non conformes à l'invention car la limite d'élasticité est inférieure à 650 MPa, ce qui s'explique par une forte quantité de ferrite à l'issue du premier recuit et une faible fraction de martensite recuite à l'issue du second recuit, ce qui est du à une température de maintien Tsoaking1 inférieure à la température calculée TS1.Note that the references A5, A6, D1 and D2 are not in accordance with the invention because the elastic limit is less than 650 MPa, which is explained by a large amount of ferrite at the end of the first annealing and a small fraction of martensite annealed at the end of the second annealing, which is due to a holding temperature T soaking1 lower than the calculated temperature TS1.

On note encore que les références B2 à B4 et C2 à C4 sont non conformes à l'invention car la résistance mécanique est inférieure à 980 MPa, ce qui s'explique par une quantité de ferrite supérieure à 10% après le premier recuit, ce qui limitera la fraction de martensite fraîche à l'issue du second recuit, ce qui est du à une température de maintien Tsoaking1 inférieure à la température calculée TS1.It is also noted that the references B2 to B4 and C2 to C4 are not in accordance with the invention because the mechanical strength is less than 980 MPa, which is explained by an amount of ferrite greater than 10% after the first annealing, which will limit the fresh martensite fraction at the end of the second annealing, which is due to a holding temperature T soaking1 lower than the calculated temperature TS1.

On note également que la référence B1 est non conforme à l'invention car la limite d'élasticité est inférieure à 650 MPa et la résistance mécanique est inférieure à 980 MPa, ce qui s'explique par une quantité de martensite fraîche trop faible à l'issue du second recuit, ce qui est du à une température de fin de refroidissement TOA inférieure à 420°C.Note also that the B1 reference is not in accordance with the invention because the elastic limit is less than 650 MPa and the mechanical strength is less than 980 MPa, which is explained by a quantity of fresh martensite too low to the result of the second annealing, which is due to an end-of-cooling temperature T OA of less than 420 ° C.

On note également que les références E1 à E6 sont non conformes à l'invention car la limite d'élasticité est inférieure à 650 MPa et la résistance mécanique est inférieure à 980 MPa. La non-conformité de ces exemples traduit une composition chimique inadaptée, notamment des teneurs en éléments durcissant trop faible (carbone, silicium) et le manque de durcissement par précipitation du à l'absence de Niobium. Cet effet est d'autant plus marqué pour les références E2 à E6, car le procédé au regard de l'invention n'a pas été respecté et les quantités de phases obtenus sont en dehors des fourchettes visées.It is also noted that the references E1 to E6 are not in accordance with the invention since the elastic limit is less than 650 MPa and the mechanical strength is less than 980 MPa. The non-compliance of these examples reflects an unsuitable chemical composition, in particular the content of elements that harden too low (carbon, silicon) and the lack of precipitation hardening due to the absence of Niobium. This effect is all the more marked for the references E2 to E6, because the process with respect to the invention has not been respected and the quantities of phases obtained are outside the target ranges.

On note enfin que la référence C5 n'est pas conforme à l'invention car seul un unique recuit, correspondant au procédé du second recuit au regard de l'invention, a été appliqué, ce qui traduit l'absence de martensite recuite nécessaire pour obtenir la limite d'élasticité et la résistance mécanique visée dans l'invention.Note finally that the C5 reference is not in accordance with the invention because only a single annealing, corresponding to the method of the second annealing in view of the invention, has been applied, which reflects the absence of annealed martensite necessary for obtain the elastic limit and the mechanical strength referred to in the invention.

L'invention permet aussi de mettre à disposition une tôle d'acier apte au dépôt d'un revêtement de Zinc ou d'alliage de Zn, en particulier par un procédé de trempe à chaud dans un bain de Zn liquide suivi ou pas d'un traitement thermique d'alliation.The invention also makes it possible to provide a steel sheet capable of depositing a coating of Zinc or Zn alloy, in particular by a hot-quenching process in a liquid Zn bath followed or not by a heat treatment of alliation.

Elle permet enfin de mettre à disposition un acier présentant une bonne aptitude au soudage au moyen des procédés d'assemblage usuels tels que, par exemple et à titre non limitatif, le soudage par résistance par points.Finally, it makes it possible to provide a steel having a good weldability by means of the usual assembly methods such as, for example and without limitation, spot resistance welding.

Les tôles d'aciers selon l'invention seront utilisées avec profit pour la fabrication de pièces de structures, éléments de renforts, de sécurité, anti abrasives ou de disques de transmissions pour applications dans les véhicules terrestres à moteur.The steel sheets according to the invention will be used with advantage for the manufacture of structural parts, reinforcing elements, security, anti abrasive or transmission discs for applications in land motor vehicles.

Claims (16)

  1. Steel sheet, the composition of which comprises, the contents being expressed in percentage by weight, 0.20 % C 0.40 %
    Figure imgb0038
    0.8 % Mn 1.4 %
    Figure imgb0039
    1.60 % Si 3.00 %
    Figure imgb0040
    0.015 Nb 0.150 %
    Figure imgb0041
    Al 0.1 %
    Figure imgb0042
    Cr 1.0 %
    Figure imgb0043
    S 0.006 %
    Figure imgb0044
    P 0.030 %
    Figure imgb0045
    Ti 0.05 %
    Figure imgb0046
    V 0.05 %
    Figure imgb0047
    Mo < 0.03 %
    Figure imgb0048
    B 0.003 %
    Figure imgb0049
    N 0.01 %
    Figure imgb0050
    the remainder of the composition being formed from iron and inevitable impurities resulting from manufacture, the microstructure being formed, in surface proportions, from 10 to 30% of residual austenite, from 30 to 60% of annealed martensite, from 5 to 30% of bainite, from 10 to 30% of fresh martensite and from less than 10% of ferrite.
  2. Steel sheet according to claim 1, the composition of which comprises, the content being expressed in weight 0.22 % C 0.32 %
    Figure imgb0051
  3. Steel sheet according to claim 1 or 2, the composition of which comprises, the content being expressed in weight 1.0 % Mn 1.4 %
    Figure imgb0052
  4. Steel sheet according to any of the claims 1 to 3, the composition of which comprises, the content being expressed in weight 1.80 % Si 2.5 %
    Figure imgb0053
  5. Steel sheet according to any of the claims 1 to 4, the composition of which comprises, the content being expressed in weight Cr 0.5 %
    Figure imgb0054
  6. Steel sheet according to any of the claims 1 to 5, the composition of which comprises, the content being expressed in weight 0.020 % Nb 0.13 %
    Figure imgb0055
  7. Steel sheet according to any of the claims 1 to 6, comprising a coating of zinc or of zinc alloy.
  8. Steel sheet according to any of the claims 1 to 6, comprising a coating of aluminium or of aluminium alloy.
  9. Steel sheet according to any of the claims 1 to 8, the mechanical strength of which is greater than or equal to 980 MPa, the limit of elasticity is greater than or equal to 650 MPa, the uniform elongation greater than or equal to 15% and the breaking elongation greater than or equal to 20%.
  10. Method for manufacture of a twice-annealed, cold-rolled steel sheet, comprising the following successive steps:
    - making available a steel of composition according to any of the claims 1 to 6, then
    - casting said steel in the form of a semifinished product, then
    - bringing said semifinished product to a temperature Trech between 1,100°C and 1,280°C in order to obtain a reheated semifinished product, then
    - hot-rolling said reheated semifinished product, the temperature at the end of the hot-rolling Tfl being greater than or equal to 900°C in order to obtain a hot-rolled metal sheet, then
    - coiling said hot-rolled sheet at a temperature Tbob between 400 and 600°C in order to obtain a coiled hot-rolled metal sheet, then
    - cooling said coiled hot-rolled metal sheet to ambient temperature, then
    - uncoiling and pickling said coiled hot-rolled metal sheet, then
    - cold-rolling said hot-rolled metal sheet with a reduction ratio between 30 and 80% in order to obtain a cold-rolled metal sheet, then
    - annealing, for a first time, said cold-rolled metal sheet by reheating it at a speed Vci between 2 and 50°C/s up to a temperature Tsoaking1 between TS1 = 910.7 - 431.4*C - 45.6*Mn + 54.4*Si - 13.5*Cr + 52.2*Nb and 950°C, the contents being expressed in percentage by weight, for a duration tsoaking1 between 30 and 200 seconds, then:
    - cooling said metal sheet by subjecting it to cooling to ambient temperature at a speed greater than or equal to 30°C/s, then
    - annealing, for a second time, said metal sheet by reheating it at a speed VC2 between 2 and 50°C/s up to a temperature Tsoaking2 between Ac1 and TS2 = 906.5 - 440.6*C - 44.5*Mn + 49.2*Si - 12.4*Cr + 55.9*Nb, the contents being expressed in percentage by weight, for a duration tsoaking2 between 30 and 200 seconds, then
    - cooling said metal sheet by subjecting it to cooling at a speed greater than or equal to 30°C/s to the end cooling temperature TOA between 420°C and 480°C, then
    - soaking said metal sheet within the temperature range from 420 to 480°C for a duration tOA between 5 and 120 seconds, then
    - optionally depositing a coating on the cold-rolled and annealed metal sheet
    - cooling said metal sheet to ambient temperature.
  11. Method for manufacture according to claim 10, in which furthermore, annealing, termed basic, of said coiled hot-rolled metal sheet is effected before cold-rolling such that the metal sheet is heated then soaked at a temperature between 400°C and 700°C for a duration between 5 and 24 hours.
  12. Method for manufacture according to any of the claims 10 or 11, in which said metal sheet is soaked isothermally at the end cooling temperature TOA between 420 and 480°C between 5 and 120 seconds.
  13. Method for manufacture according to any of the claims 10 to 12, in which the twice-annealed, cold-rolled metal sheet is then cold-rolled with a cold-rolling ratio between 0.1 and 3% before deposition of a coating.
  14. Method for manufacture according to any of the claims 10 to 13, in which the metal sheet is finally heated to a soaking temperature Tbase between 150°C and 190°C for a soaking time tbase between 10 h and 48 h.
  15. Method for manufacture according to any of the claims 10 to 12, in which, at the end of the soaking at TOA, the metal sheet is dip-coated in a liquid bath of one of the following elements: aluminium, zinc, alloy of aluminium or alloy of zinc.
  16. Use of a metal sheet according to any of the claims 1 to 9, or a metal sheet manufactured by a method according to any of the claims 10 to 15 for manufacture of parts for vehicles.
EP15730241.5A 2014-05-20 2015-05-07 Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets Active EP3146083B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15730241T PL3146083T3 (en) 2014-05-20 2015-05-07 Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2014/000785 WO2015177582A1 (en) 2014-05-20 2014-05-20 Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
PCT/IB2015/000651 WO2015177615A1 (en) 2014-05-20 2015-05-07 Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets

Publications (2)

Publication Number Publication Date
EP3146083A1 EP3146083A1 (en) 2017-03-29
EP3146083B1 true EP3146083B1 (en) 2018-07-25

Family

ID=50981580

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15730241.5A Active EP3146083B1 (en) 2014-05-20 2015-05-07 Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets

Country Status (16)

Country Link
US (1) US10995386B2 (en)
EP (1) EP3146083B1 (en)
JP (1) JP6433512B2 (en)
KR (2) KR101987572B1 (en)
CN (1) CN106604999B (en)
BR (1) BR112016026883B1 (en)
CA (1) CA2949855C (en)
ES (1) ES2692848T3 (en)
HU (1) HUE039794T2 (en)
MA (1) MA39417B1 (en)
MX (1) MX2016014990A (en)
PL (1) PL3146083T3 (en)
RU (1) RU2667947C2 (en)
TR (1) TR201815496T4 (en)
UA (1) UA114877C2 (en)
WO (2) WO2015177582A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473160B2 (en) * 2017-12-21 2022-10-18 Voestalpine Stahl Gmbh Cold-rolled flat steel product having metal anti-corrosion layer and method for producing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786318B1 (en) * 2016-03-28 2017-10-18 주식회사 포스코 Cold-rolled steel sheet and plated steel sheet having excellent yield strength and ductility and method for manufacturing thereof
WO2019092483A1 (en) * 2017-11-10 2019-05-16 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2019092482A1 (en) * 2017-11-10 2019-05-16 Arcelormittal Cold rolled heat treated steel sheet and a method of manufacturing thereof
WO2019092481A1 (en) 2017-11-10 2019-05-16 Arcelormittal Cold rolled steel sheet and a method of manufacturing thereof
WO2019111028A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steal sheet and method of manufacturing the same
WO2019111029A1 (en) * 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
MA54266B1 (en) * 2018-11-30 2023-03-31 Arcelormittal Hot rolled annealed steel sheet with high hole expansion ratio and method for producing same
WO2020229877A1 (en) * 2019-05-15 2020-11-19 Arcelormittal A cold rolled martensitic steel and a method for it's manufacture
WO2020262651A1 (en) * 2019-06-28 2020-12-30 日本製鉄株式会社 Steel sheet
CN110438407B (en) * 2019-09-16 2020-11-03 益阳紫荆福利铸业有限公司 Alloy steel and preparation method and application thereof
MX2022002303A (en) * 2019-10-09 2022-03-25 Nippon Steel Corp Steel sheet and method for manufacturing same.
DE102021128327A1 (en) 2021-10-29 2023-05-04 Voestalpine Stahl Gmbh COLD ROLLED STEEL FLAT PRODUCT WITH METALLIC ANTI-CORROSION COATING AND PROCESS FOR MANUFACTURING SUCH

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110611A (en) 1974-07-16 1976-01-28 Kunimasa Ooide KENCHIKUYO SHITAJIZAI
JPS5821260B2 (en) 1974-08-23 1983-04-28 京セラミタ株式会社 Kamizu Mario Boushita Fushiyaki
JPH01272720A (en) 1988-04-22 1989-10-31 Kobe Steel Ltd Production of high ductility and high strength steel sheet with composite structure
KR100572179B1 (en) * 1999-10-22 2006-04-18 제이에프이 스틸 가부시키가이샤 Hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
DE60127879T2 (en) 2000-02-29 2007-09-06 Jfe Steel Corp. High strength hot rolled steel sheet with excellent stretch aging properties
EP1365037B1 (en) 2001-01-31 2008-04-02 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
JP4188581B2 (en) 2001-01-31 2008-11-26 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
EP1288322A1 (en) 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP4400079B2 (en) 2002-03-29 2010-01-20 Jfeスチール株式会社 Method for producing cold-rolled steel sheet having ultrafine grain structure
JP4681290B2 (en) * 2004-12-03 2011-05-11 本田技研工業株式会社 High strength steel plate and manufacturing method thereof
EP2679699A3 (en) 2005-03-31 2014-08-20 Kabushiki Kaisha Kobe Seiko Sho High strength cold-rolled steel sheet and automobile components of steel having excellent properties in coating film adhesion, workability, and hydrogen embrittlement resistivity
JP5095958B2 (en) * 2006-06-01 2012-12-12 本田技研工業株式会社 High strength steel plate and manufacturing method thereof
EP2465962B1 (en) 2006-07-14 2013-12-04 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
JP5402007B2 (en) 2008-02-08 2014-01-29 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5418047B2 (en) * 2008-09-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5400484B2 (en) * 2009-06-09 2014-01-29 株式会社神戸製鋼所 High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
CA2802033C (en) 2010-06-14 2015-11-24 Nippon Steel & Sumitomo Metal Corporation Hot-stamped steel, method of producing of steel sheet for hot stamping, and method of producing hot-stamped steel
JP5821260B2 (en) * 2011-04-26 2015-11-24 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
UA112771C2 (en) 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS
EP2524970A1 (en) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
US9745639B2 (en) * 2011-06-13 2017-08-29 Kobe Steel, Ltd. High-strength steel sheet excellent in workability and cold brittleness resistance, and manufacturing method thereof
EP2730666B1 (en) 2011-07-06 2018-06-13 Nippon Steel & Sumitomo Metal Corporation Method for producing a cold-rolled steel sheet
EP2730672B1 (en) * 2011-07-06 2018-02-14 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
JP5413539B2 (en) 2011-09-30 2014-02-12 新日鐵住金株式会社 High-strength hot-dip galvanized steel sheet excellent in bake hardenability, high-strength galvannealed steel sheet, and methods for producing them
JP5764549B2 (en) * 2012-03-29 2015-08-19 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability and shape freezing property, and methods for producing them
WO2015011511A1 (en) * 2013-07-24 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473160B2 (en) * 2017-12-21 2022-10-18 Voestalpine Stahl Gmbh Cold-rolled flat steel product having metal anti-corrosion layer and method for producing same

Also Published As

Publication number Publication date
EP3146083A1 (en) 2017-03-29
RU2016149784A3 (en) 2018-06-21
RU2016149784A (en) 2018-06-21
MX2016014990A (en) 2017-03-31
KR101846116B1 (en) 2018-04-05
MA39417A1 (en) 2017-04-28
JP6433512B2 (en) 2018-12-05
RU2667947C2 (en) 2018-09-25
CN106604999A (en) 2017-04-26
US20170101695A1 (en) 2017-04-13
HUE039794T2 (en) 2019-02-28
CA2949855A1 (en) 2015-11-26
KR101987572B1 (en) 2019-06-10
MA39417B1 (en) 2017-12-29
KR20170002652A (en) 2017-01-06
WO2015177582A1 (en) 2015-11-26
US10995386B2 (en) 2021-05-04
TR201815496T4 (en) 2018-11-21
UA114877C2 (en) 2017-08-10
JP2017519107A (en) 2017-07-13
CN106604999B (en) 2018-04-10
CA2949855C (en) 2018-05-01
WO2015177615A1 (en) 2015-11-26
PL3146083T3 (en) 2019-05-31
ES2692848T3 (en) 2018-12-05
KR20170126512A (en) 2017-11-17
BR112016026883B1 (en) 2021-02-09

Similar Documents

Publication Publication Date Title
EP3146083B1 (en) Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
EP3024951B1 (en) Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets
EP2707514B1 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
CA3071136C (en) Process for manufacturing steel sheets for press hardening, and parts obtained by means of this process
EP2291547B1 (en) Method for manufacturing very high strength, cold-rolled, dual phase steel sheets, and sheets thus produced
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
RU2684655C1 (en) Extra high strength multiphase steel and method for production of cold-rolled steel strip from it
CA2847809C (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
TWI445829B (en) Hot-dip galvanized steel sheet and producing method thereof
CN111433380A (en) High-strength galvanized steel sheet and method for producing same
FR2833617A1 (en) PROCESS FOR MANUFACTURING COLD ROLLED SHEATHES WITH HIGH RESISTANCE OF MICRO-ALLOY DUAL PHASE STEELS
JP5434787B2 (en) Hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180216

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015014035

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2692848

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20181205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E039794

Country of ref document: HU

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 29020

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015014035

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1021838

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230508

Year of fee payment: 9

Ref country code: IT

Payment date: 20230420

Year of fee payment: 9

Ref country code: FR

Payment date: 20230420

Year of fee payment: 9

Ref country code: ES

Payment date: 20230601

Year of fee payment: 9

Ref country code: DE

Payment date: 20230419

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230421

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230427

Year of fee payment: 9

Ref country code: SK

Payment date: 20230424

Year of fee payment: 9

Ref country code: SE

Payment date: 20230419

Year of fee payment: 9

Ref country code: PL

Payment date: 20230421

Year of fee payment: 9

Ref country code: HU

Payment date: 20230426

Year of fee payment: 9

Ref country code: FI

Payment date: 20230419

Year of fee payment: 9

Ref country code: AT

Payment date: 20230420

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 9