EP2155915B2 - Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced - Google Patents

Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced Download PDF

Info

Publication number
EP2155915B2
EP2155915B2 EP08805523.1A EP08805523A EP2155915B2 EP 2155915 B2 EP2155915 B2 EP 2155915B2 EP 08805523 A EP08805523 A EP 08805523A EP 2155915 B2 EP2155915 B2 EP 2155915B2
Authority
EP
European Patent Office
Prior art keywords
steel
sheet
composition
rolled
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08805523.1A
Other languages
German (de)
French (fr)
Other versions
EP2155915A2 (en
EP2155915B1 (en
Inventor
Javier Gil Otin
Antoine Moulin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38596874&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2155915(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Priority to PL08805523.1T priority Critical patent/PL2155915T5/en
Publication of EP2155915A2 publication Critical patent/EP2155915A2/en
Publication of EP2155915B1 publication Critical patent/EP2155915B1/en
Application granted granted Critical
Publication of EP2155915B2 publication Critical patent/EP2155915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel

Definitions

  • the invention relates to the manufacture of cold-rolled and annealed thin sheets of steel having a strength greater than 1200 MPa and an elongation at break greater than 8%.
  • the automotive sector and general industry are in particular fields of application for these steel sheets.
  • the patent EP1559798 describes the manufacture of steels of composition: 0.10-0.25% C, 1.0-2.0% Si, 1.5-3% Mn, the microstructure consisting of at least 60% bainitic ferrite and at least 5% residual austenite, polygonal ferrite being less than 20%.
  • the embodiments presented in this document show that the resistance does not exceed 1200 MPa.
  • the patent EP 1589126 also describes the manufacture of cold-rolled thin sheets, the product of which (strength x elongation) is greater than 20,000 MPa%.
  • the composition of steels contains: 0.10-0.28%C, 1.0-2.0%Si, 1-3%Mn, less than 0.10%Nb.
  • the structure consists of more than 50% bainitic ferrite, 5 to 20% residual austenite, and less than 30% polygonal ferrite.
  • the examples presented show that the resistance is still less than 1200 MPa.
  • JP10280090 describes a steel sheet and the method of manufacturing very high strength cold rolled steel sheet, the sheet comprising by weight between 0.13-0.20% C, ⁇ 0.6% Si, 1.8-2.8% Mn, ⁇ 0.02% P, ⁇ 0.015% S, 0.005-0.1% Al, ⁇ 0.0060% N, and possibly 0.01-0.15% Mo and 0.0005-0.0020% B, the remainder being iron and unavoidable residual impurities.
  • the microstructure denotes steel comprising bainite and martensite.
  • the microstructure can be achieved by checking hot rolling, coiling, pickling, cold rolling, heat treatment; the steel sheet will be of tensile strength of about 780-1470 MPa.
  • the present invention aims to solve the problems mentioned above.
  • the invention aims to provide a cold-rolled and annealed thin steel sheet having a mechanical strength greater than 1200 MPa together with an elongation at break greater than 8% and good cold formability.
  • the invention also aims to provide a steel that is not very sensitive to damage during cutting by a mechanical process.
  • the invention aims to provide a process for the manufacture of thin sheets in which small variations in the parameters do not lead to significant modifications of the microstructure or of the mechanical properties.
  • the invention also aims to provide a steel sheet that can be easily manufactured by cold rolling, that is to say the hardness of which after the hot rolling step is limited so that the rolling forces remain moderate during of the cold rolling step.
  • the subject of the invention is a sheet according to one of claims 1 to 3.
  • the composition comprises: 0.19% ⁇ C ⁇ 0.23% According to a preferred mode, the composition comprises: 1.5% ⁇ Mn ⁇ 2.5% Preferably, the composition comprises: 1.2% ⁇ Si ⁇ 1.8% Preferably, the composition comprises: 1.2% ⁇ Al ⁇ 1.8% According to a particular mode, the composition comprises: 0.05% ⁇ V ⁇ 0.15% 0.004 ⁇ N ⁇ 0.008%.
  • the composition comprises: 0.12% ⁇ V ⁇ 0.15% According to a preferred mode, the composition comprises: 0.0005 ⁇ B ⁇ 0.003%.
  • the average size of the islands of residual martensite and austenite is less than 1 micrometer, the average distance between the islands being less than 6 micrometers.
  • a semi-finished product is cast from this steel, then the semi-finished product is brought to a temperature above 1150° C. and the semi-finished product is hot rolled to obtain a hot rolled sheet.
  • the sheet is coiled and pickled, then it is cold rolled with a reduction rate of between 30 and 80% so as to obtain a cold rolled sheet.
  • the cold-rolled sheet is heated at a speed V c of between 5 and 15°C/s up to a temperature T 1 of between Ac3 and Ac3+20°C, for a time t 1 of between 50 and 150s, then cools the sheet at a rate V R1 greater than 40°C/s and less than 100°C/s down to a temperature T 2 of between (M s -30°C and M s +30°C).
  • the sheet is maintained at said temperature T 2 for a time t 2 of between 150 and 350 s then cooling is carried out at a speed V R2 of less than 30° C./s down to ambient temperature.
  • the invention also relates to a method for manufacturing a cold-rolled steel sheet with a strength greater than 1200 MPa, an elongation at break greater than 8%, according to which a steel of composition: 0.10 % ⁇ C ⁇ 0.25%, 1% ⁇ Mn ⁇ 3% , Al ⁇ 0.010%, Si ⁇ 2.990%, provided that 1% ⁇ Si+Al ⁇ 3%, S ⁇ 0.015%, P ⁇ 0.1 %, N ⁇ 0.008%, Mo ⁇ 0.25%, Cr ⁇ 1.65%, it being understood that Cr+(3 x Mo) ⁇ 0.3%, optionally 0.05% ⁇ V ⁇ 0.15%, B ⁇ 0.005%, Ti in an amount such that Ti/N ⁇ 4 and Ti ⁇ 0.040%.
  • a semi-finished product is cast from this steel, the semi-finished product is brought to a temperature above 1150° C., then the semi-finished product is hot rolled to obtain a hot rolled sheet.
  • the sheet is coiled, it is pickled, then the sheet is cold rolled with a reduction rate of between 30 and 80% so as to obtain a cold rolled sheet.
  • the cold-rolled sheet is heated at a speed V c of between 5 and 15°C/s up to a temperature T 1 of between Ac3 and Ac3+20°C, for a time t 1 of between 50 and 150 s then it is cooled at a speed V R1 greater than 25°C/s and less than 100°C/s to a temperature T 2 of between B s and (M s - 20° C.)
  • the sheet is maintained at the temperature T 2 for a time t 2 comprised between 150 and 350 s then cooling is carried out at a speed V R2 of less than 30° C./s down to ambient temperature.
  • the temperature T 1 is preferably between Ac3+10°C and Ac3+20°C.
  • the invention also relates to the use of a steel sheet cold rolled and annealed according to one of the above modes, or manufactured by a process according to one of the above modes, for the manufacture structural parts or reinforcing elements, in the automotive field.
  • the inventors have demonstrated that the above problems are solved when the cold-rolled and annealed thin steel sheet exhibits a bainitic microstructure, with, in addition, islands of martensite and residual austenite, or "M-A" islands.
  • M-A martensite and residual austenite
  • carbon plays a very important role in the formation of the microstructure and in the mechanical properties: in connection with other elements of the composition (Cr, Mo, Mn) and with the annealing heat treatment after cold rolling, it increases the hardenability and makes it possible to obtain a bainitic transformation.
  • the carbon contents according to the invention also lead to the formation of islands of residual martensite and austenite, the quantity, morphology and composition of which make it possible to obtain the properties referred to above.
  • Carbon also delays the formation of pro-eutectoid ferrite after annealing heat treatment after cold rolling: otherwise, the presence of this phase of low hardness would cause excessive local damage at the interface with the matrix, the hardness is higher. The presence of proeutectoid ferrite resulting from the annealing must therefore be avoided to obtain high levels of mechanical resistance.
  • the carbon content is between 0.10 and 0.25% by weight: Below 0.10%, sufficient strength cannot be obtained and the stability of the residual austenite is not not satisfactory. Above 0.25%, weldability is reduced due to the formation of quench microstructures in the Heat Affected Zone.
  • the carbon content is between 0.19 and 0.23%: within this range, the weldability is very satisfactory, and the quantity, stability and morphology of the M-A islands are particularly suitable for obtaining a favorable pair of mechanical properties (strength-elongation)
  • an addition of manganese an element with a gammagenic nature, makes it possible to avoid the formation of proeutectoid ferrite during annealing cooling after cold rolling.
  • Manganese also contributes to deoxidize the steel during the development in the liquid phase.
  • the addition of manganese also aids in effective solid solution hardening and increased strength.
  • the manganese is between 1.5 and 2.5% so that these effects are obtained, and this without the risk of formation of a harmful banded structure.
  • Silicon and aluminum jointly play an important role according to the invention.
  • Silicon retards the precipitation of cementite on cooling from austenite after annealing.
  • An addition of silicon according to the invention therefore contributes to stabilizing a sufficient quantity of residual austenite in the form of islands which subsequently and gradually transform into martensite under the effect of deformation. Another part of the austenite is transformed directly into martensite during cooling after annealing.
  • Aluminum is a very effective element for the deoxidation of steel. As such, its content is greater than or equal to 0.010%. Like silicon, it stabilizes residual austenite.
  • the silicon content is preferably between 1.2 and 1.8% to stabilize a sufficient quantity of residual austenite and to avoid intergranular oxidation during the hot coiling step preceding the cold rolling. This also avoids the formation of strongly adherent oxides and the possible appearance of surface defects leading in particular to a lack of wettability in dip galvanizing operations.
  • the aluminum content is preferably between 1.2 and 1.8%.
  • the effects of aluminum are in fact similar to those described above for silicon, but the risk of appearance of surface defects is however less.
  • the steels according to the invention optionally comprise molybdenum and/or chromium: the molybdenum increases the hardenability, prevents the formation of pro-eutectoid ferrite and effectively refines the bainitic microstructure. However, a content greater than 0.25% by weight increases the risk of forming a predominantly martensitic microstructure to the detriment of the formation of bainite.
  • Chromium also contributes to avoid the formation of pro-eutectoid ferrite and to the refinement of the bainitic microstructure. Beyond 1.65%, the risk of obtaining a predominantly martensitic structure is high. Compared to molybdenum, however, its effect is less marked; according to the invention, the chromium and molybdenum contents are such that: Cr+(3 ⁇ Mo) ⁇ 0.3%.
  • the coefficients of chromium and molybdenum in this relationship reflect their influence on the hardenability, in particular the respective ability of these elements to avoid the formation of pro-eutectoid ferrite under the particular cooling conditions of the invention.
  • the steel can comprise very low or zero molybdenum and chromium contents, that is to say contents of less than 0.005% by weight for these two elements, and 0% boron.
  • the phosphorus content is limited to 0.1% in order to maintain sufficient hot ductility.
  • the nitrogen content is limited to 0.008% to avoid possible ageing.
  • the steel according to the invention optionally contains vanadium in an amount of between 0.05 and 0.15%.
  • vanadium in an amount of between 0.05 and 0.15%.
  • the nitrogen content is jointly between 0.004 and 0.008%, the precipitation of vanadium can occur during annealing after cold rolling in the form of fine carbonitrides which confer additional hardening.
  • the uniform or breaking elongation is particularly increased.
  • the steel may optionally comprise boron in an amount less than or equal to 0.005%.
  • the steel preferentially contains between 0.0005 and 0.003% boron, which contributes to the suppression of pro-eutectoid ferrite in the presence of chromium and/or molybdenum.
  • the addition of boron in the quantity mentioned above makes it possible to obtain a resistance greater than 1400 MPa.
  • the steel may optionally comprise titanium in an amount such that Ti/N ⁇ 4 and Ti ⁇ 0.040%, which allows the formation of titanium carbonitrides and increases the hardening.
  • the rest of the composition consists of unavoidable impurities resulting from the elaboration.
  • the contents of these impurities, such as Sn, Sb, As, are less than 0.005%.
  • the microstructure of the steel is composed of 65 to 90% bainite, these contents referring to surface percentages, the balance consists of islands of residual martensite and austenite (islands of M-A compounds)
  • This predominantly bainitic structure not comprising proeutectoid ferrite of low hardness, has an elongation capacity at break greater than 10%.
  • the M-A islands regularly dispersed in the matrix have an average size of less than 1 micrometer.
  • the figure 1 presents an example of the microstructure of a steel sheet according to the invention.
  • the morphology of the MA islands was revealed by means of appropriate chemical reagents: after attack, the MA islands appear in white on a more or less dark bainitic matrix. Some small islands are located between the bainitic ferrite slats.
  • the islets are observed at magnifications ranging from approximately 500 to 1500x on a statistically representative surface and the mean size of the islets and the mean distance between these islets are measured using image analysis software. In the case of the figure 1 , the areal percentage of the islands is 12% and the average size of the MA islands is less than 1 micrometer.
  • the microstructure is composed of 45 to 65% bainite, the balance being consisting of islands of martensite and residual austenite.
  • the microstructure is composed of 15 to 45% bainite, the balance being consisting of martensite and residual austenite.
  • the cast semi-finished products are first of all brought to a temperature above 1150°C in order to reach at all points a temperature favorable to the high deformations that the steel will undergo during rolling.
  • the hot rolling step of these semi-finished products starting at more than 1150°C can be done directly after casting so that an intermediate reheating step is not necessary in this case.
  • the semi-finished product is hot rolled.
  • An advantage of the invention is that the final characteristics and the microstructure of the cold-rolled and annealed sheet are relatively little dependent on the end-of-rolling temperature and of the cooling following the hot-rolling.
  • the hot sheet is then coiled.
  • the coiling temperature is preferably below 550° C. to limit the hardness of the hot-rolled sheet and the intergranular oxidation on the surface. Excessive hardness of the hot-rolled sheet leads to excessive stresses during the subsequent cold rolling as well as possibly to edge defects.
  • the hot-rolled sheet is then pickled according to a process known per se so as to give it a surface condition suitable for cold rolling.
  • the latter is carried out by reducing the thickness of the hot-rolled sheet by 30-80%.
  • the temperature T 1 is between A c3 and A c3 +20° C., the temperature A c3 corresponding to the total transformation into austenite during heating.
  • a c3 depends on the composition of the steel and the heating rate and can be determined for example by dilatometry. Total austenitization makes it possible to limit the subsequent formation of proeutectoid ferrite. It is important that the temperature T 1 be lower than A c3 +20°C in order to avoid an exaggerated magnification of the austenitic grain. Within this range (A c3 -A c3 +20°C), the characteristics of the final product are not very sensitive to a variation in temperature T 1 .
  • composition of steel I-1 does not comply with claims 1 to 3.
  • the fracture energy at -40°C has been determined from impact specimens of the Charpy V type with a thickness reduced to 1.4 mm.
  • the sheets manufactured according to the conditions of the invention have a particularly advantageous combination of mechanical properties: on the one hand a mechanical resistance greater than 1200 MPa, on the other hand an elongation at break always greater than or equal to 10%.
  • the steels according to the invention also have a Charpy fracture energy V at -40° C. greater than 40 Joules/cm 2 . This allows the manufacture of parts resistant to the sudden propagation of a defect, in particular in the event of dynamic stresses.
  • the microstructures of steels with a minimum strength of 1200 MPa and a minimum elongation at break of 10% according to the invention comprise a bainite content of between 65 and 90%, the balance consisting of MA islands.
  • the figure 1 thus presents the microstructure of the I3a steel sheet comprising 88% bainite and 12% MA islands, revealed by an attack with the LePera reagent.
  • the figure 2 presents this microstructure revealed by a Nital attack.
  • the steels according to the invention have a bainite content of between 45 and 65%, the balance being islands MA.
  • the steels according to the invention have a bainite content of between 15 and 35%, the balance being martensite and residual austenite.
  • the steel sheets according to the invention have an island size MA of less than 1 micrometer, the inter-island distance being less than 6 micrometers.
  • the steels according to the invention also have good resistance to damage in the event of cutting since the damage factor ⁇ is limited to ⁇ 23%.
  • a steel sheet that does not have these characteristics (R5) can have a damage factor of 43%.
  • the laminations according to the invention have good aptitude for hole expansion.
  • the steels according to the invention also have good aptitude for homogeneous welding: for welding parameters adapted to the thicknesses reported above, the welded joints are free of cold or hot cracks.
  • the steel sheets I1-b and I1-c were annealed at too low a temperature T 1 , the austenitic transformation is not complete. Consequently, the microstructure contains proeutectoid ferrite (40% for I1b, 20% for I1-c) and an excessive content of MA islands. The mechanical resistance is then reduced by the presence of proeutectoid ferrite.
  • the holding temperature T 2 is greater than Ms+30° C.: the bainitic transformation which occurs at higher temperature gives rise to a coarser structure and leads to insufficient mechanical strength.
  • the cooling rate V R1 after annealing is not sufficient, the microstructure formed is more heterogeneous and the elongation at break is reduced to below 10%.
  • the holding temperature T 2 is lower than Ms-20°C: consequently, cooling V R1 causes the appearance of bainite formed at low temperature and martensite, associated with insufficient elongation .
  • the steel R1 has an insufficient (silicon+aluminum) content, the holding temperature T 2 is lower than Ms-20°C. Due to the insufficient content of (Si+Al), the amount of MA islands formed is insufficient to obtain a strength greater than or equal to 1200MPa.
  • R2 and R3 steels have insufficient carbon, manganese, silicon+aluminum contents.
  • the amount of MA compounds formed is less than 10%.
  • the annealing temperature T 1 lower than A c3 leads to an excessive content of proeutectoid ferrite and of cementite, and to insufficient strength.
  • the steel R4 has an insufficient content of (Si+Al)
  • the cooling rate V R1 is in particular too low.
  • the enrichment of the austenite with carbon on cooling is then insufficient to allow the formation of martensite and to obtain the strength and elongation properties targeted by the invention.
  • Steel R5 also has an insufficient content of (Si+Al).
  • the insufficiently rapid cooling rate after annealing leads to an excessive content of proeutectoid ferrite and insufficient mechanical strength.
  • a steel sheet I2-d was manufactured according to a process having identical characteristics, with the exception of the temperature T 1 equal to 830°C, i.e. the temperature A c3 .
  • the capacity for conical hole expansion is 25%.
  • the temperature T 1 is equal to 850°C (A c3 +20°C)
  • the ability to expand is increased by up to 31%.
  • the invention allows the manufacture of steel sheets combining very high strength and high ductility.
  • the steel sheets according to the invention are used with profit for the manufacture of structural parts or reinforcing elements in the automotive field and in general industry.

Description

L'invention concerne la fabrication de tôles minces laminées à froid et recuites d'aciers présentant une résistance supérieure à 1200 MPa et un allongement à rupture supérieur à 8%. Le secteur automobile et l'industrie générale constituent notamment des domaines d'application de ces tôles d'aciers.The invention relates to the manufacture of cold-rolled and annealed thin sheets of steel having a strength greater than 1200 MPa and an elongation at break greater than 8%. The automotive sector and general industry are in particular fields of application for these steel sheets.

Il existe en particulier dans l'industrie automobile un besoin continu d'allègement des véhicules et d'accroissement de la sécurité. On a proposé successivement différentes familles d'aciers pour répondre à ce besoin de résistance accrue : on a tout d'abord proposé des aciers comportant des éléments de micro-alliage. Leur durcissement est dû à la précipitation de ces éléments et à l'affinement de la taille de grains. On a ensuite assisté au développement d'aciers « Dual-Phase » où la présence de martensite, constituant d'une grande dureté, au sein d'une matrice ferritique plus douce, permet d'obtenir une résistance supérieure à 450MPa associée à une bonne aptitude au formage à froid.In the automotive industry in particular, there is a continuous need to make vehicles lighter and to increase safety. Different families of steels have successively been proposed to meet this need for increased resistance: first of all, steels comprising micro-alloy elements have been proposed. Their hardening is due to the precipitation of these elements and the refinement of the grain size. We then witnessed the development of "Dual-Phase" steels where the presence of martensite, a very hard constituent, within a softer ferritic matrix, makes it possible to obtain a resistance greater than 450MPa associated with a good suitability for cold forming.

Afin d'accroître encore la résistance, on a développé des aciers présentant un comportement « TRIP » (Transformation Induced Plasticity ») avec des combinaisons de propriétés (résistance-aptitude à la déformation) très avantageuses : ces propriétés sont liées à la structure de ces aciers constituée d'une matrice ferritique comportant de la bainite et de l'austénite résiduelle. La présence de ce dernier constituant confère une ductilité élevée à une tôle non déformée. Sous l'effet d'une déformation ultérieure, par exemple lors d'une sollicitation uniaxiale, l'austénite résiduelle d'une pièce en acier TRIP se transforme progressivement en martensite, ce qui se traduit par une consolidation importante et retarde l'apparition d'une déformation localisée.In order to further increase resistance, steels have been developed which exhibit "TRIP" (Transformation Induced Plasticity) behavior with very advantageous combinations of properties (resistance-ability to deformation): these properties are linked to the structure of these steels consisting of a ferritic matrix comprising bainite and residual austenite. The presence of this last constituent confers a high ductility to an undeformed sheet. Under the effect of a subsequent deformation, for example during a uniaxial stress, the residual austenite of a TRIP steel part is gradually transformed into martensite, which results in significant consolidation and delays the appearance of a localized deformation.

Des tôles d'aciers Dual Phase ou TRIP ont été proposées, avec un niveau de résistance maximal de l'ordre de 1000MPa. L'obtention de niveaux de résistance significativement supérieurs, par exemple 1200-1400MPa se heurte à différentes difficultés :

  • L'accroissement de résistance mécanique nécessite une analyse chimique nettement plus chargée en éléments d'alliage, au détriment de l'aptitude au soudage de ces aciers.
  • On observe un accroissement de la différence de dureté entre la matrice ferritique et les constituants durcissants : ceci a pour conséquence une concentration locale des contraintes et des déformations et un endommagement plus précoce, comme en témoigne la baisse de l'allongement.
  • On observe également un accroissement de la fraction des constituants durcissants au sein de la matrice ferritique : dans ce cas, les îlots, initialement isolés et de petite taille lorsque la résistance est faible, deviennent progressivement connexes et forment des constituants de grande taille qui favorisent là encore un endommagement précoce.
Dual Phase or TRIP steel sheets have been proposed, with a maximum resistance level of around 1000MPa. Obtaining significantly higher resistance levels, for example 1200-1400MPa, comes up against various difficulties:
  • The increase in mechanical resistance requires a chemical analysis that is much more loaded with alloying elements, to the detriment of the weldability of these steels.
  • An increase in the difference in hardness between the ferritic matrix and the hardening constituents is observed: this results in a local concentration of stresses and deformations and earlier damage, as shown by the drop in elongation.
  • An increase in the fraction of hardening constituents within the ferritic matrix is also observed: in this case, the islands, initially isolated and of small size when the resistance is low, gradually become connected and form large constituents which promote yet another early damage.

Les possibilités d'obtenir simultanément de très hauts niveaux de résistance et certaines autres propriétés d'usage au moyen d'aciers TRIP ou à microstructure Dual Phase, semblent ainsi limitées. Pour atteindre une résistance encore plus élevée, c'est à dire un niveau supérieur à 800-1000 MPa, on a développé des aciers dits « multiphasés » à structure majoritairement bainitique. Dans l'industrie automobile ou dans l'industrie générale, des tôles d'aciers multiphasés de moyenne épaisseur sont utilisées avec profit pour des pièces structurales telles que traverses de pare-chocs, montants, renforts divers.The possibilities of simultaneously obtaining very high levels of resistance and certain other usage properties by means of TRIP or Dual Phase microstructure steels thus seem limited. To achieve even higher strength, ie a level above 800-1000 MPa, so-called “multiphase” steels with a predominantly bainitic structure have been developed. In the automotive industry or in general industry, medium-thick multiphase steel sheets are used with profit for structural parts such as bumper crosspieces, uprights, various reinforcements.

En particulier, dans le domaine des tôles d'acier multiphasés laminées à froid de plus de 980MPa, le brevet EP1559798 décrit la fabrication d'aciers de composition : 0,10-0,25% C, 1,0-2,0% Si, 1,5-3%Mn, la microstructure étant constituée d'au moins 60% de ferrite bainitique et d'au moins 5% d'austénite résiduelle, la ferrite polygonale étant inférieure à 20%. Les exemples de réalisation présentés dans ce document montrent que la résistance ne dépasse pas 1200MPa.Especially, in the field of multi-phase cold-rolled steel sheets over 980MPa, the patent EP1559798 describes the manufacture of steels of composition: 0.10-0.25% C, 1.0-2.0% Si, 1.5-3% Mn, the microstructure consisting of at least 60% bainitic ferrite and at least 5% residual austenite, polygonal ferrite being less than 20%. The embodiments presented in this document show that the resistance does not exceed 1200 MPa.

Le brevet EP 1589126 décrit également la fabrication de tôles minces laminées à froid, dont le produit (résistance x allongement) est supérieur à 20000 MPa%. La composition des aciers contient : 0,10-0,28%C, 1,0-2,0%Si, 1-3%Mn, moins de 0,10%Nb. La structure est constituée de plus de 50% de ferrite bainitique, de 5 à 20% d'austénite résiduelle, et de moins de 30% de ferrite polygonale. Là encore, les exemples présentés montrent que la résistance est encore inférieure à 1200MPa. JP10280090 décrit une tôle d'acier et le procède de fabrication de tôles d'acier laminée à froid a très haute résistance, la tôle comprenant en poids entre 0.13-0.20% C,≤0.6% Si, 1.8-2.8% Mn, ≤0.02% P, ≤0.015% S, 0.005-0.1% Al, ≤0.0060% N, et éventuellement 0.01-0.15% Mo et 0.0005-0.0020% B, le reste étant du fer et des impuretés résiduelles inévitables. La microstructure dédit acier comprenant bainite et martensite. La microstructure peut être atteinte par le contrôle à laminage à chaud, bobinage, décapage, laminage à froid, traitement thermique ; la tôle d'acier sera de résistance à la traction de environ 780-1470 MPa. La présente invention vise à résoudre les problèmes évoqués ci-dessus. Elle vise à mettre à disposition une tôle d'acier mince laminée à froid et recuite présentant une résistance mécanique supérieure à 1200 MPa conjointement avec un allongement à rupture supérieur à 8% et une bonne aptitude au formage à froid. L'invention vise également à mettre à disposition un acier peu sensible à l'endommagement lors de la découpe par un procédé mécanique.The patent EP 1589126 also describes the manufacture of cold-rolled thin sheets, the product of which (strength x elongation) is greater than 20,000 MPa%. The composition of steels contains: 0.10-0.28%C, 1.0-2.0%Si, 1-3%Mn, less than 0.10%Nb. The structure consists of more than 50% bainitic ferrite, 5 to 20% residual austenite, and less than 30% polygonal ferrite. Here again, the examples presented show that the resistance is still less than 1200 MPa. JP10280090 describes a steel sheet and the method of manufacturing very high strength cold rolled steel sheet, the sheet comprising by weight between 0.13-0.20% C, ≤0.6% Si, 1.8-2.8% Mn, ≤0.02% P, ≤0.015% S, 0.005-0.1% Al, ≤0.0060% N, and possibly 0.01-0.15% Mo and 0.0005-0.0020% B, the remainder being iron and unavoidable residual impurities. The microstructure denotes steel comprising bainite and martensite. The microstructure can be achieved by checking hot rolling, coiling, pickling, cold rolling, heat treatment; the steel sheet will be of tensile strength of about 780-1470 MPa. The present invention aims to solve the problems mentioned above. It aims to provide a cold-rolled and annealed thin steel sheet having a mechanical strength greater than 1200 MPa together with an elongation at break greater than 8% and good cold formability. The invention also aims to provide a steel that is not very sensitive to damage during cutting by a mechanical process.

Par ailleurs, l'invention vise à mettre à disposition un procédé de fabrication de tôles minces dont de faibles variations des paramètres n'entraînent pas de modifications importantes de la microstructure ou des propriétés mécaniques. L'invention vise également à mettre à disposition une tôle d'acier aisément fabricable par laminage à froid, c'est à dire dont la dureté après l'étape de laminage à chaud est limitée de telle sorte que les efforts de laminage restent modérés lors de l'étape de laminage à froid.Furthermore, the invention aims to provide a process for the manufacture of thin sheets in which small variations in the parameters do not lead to significant modifications of the microstructure or of the mechanical properties. The invention also aims to provide a steel sheet that can be easily manufactured by cold rolling, that is to say the hardness of which after the hot rolling step is limited so that the rolling forces remain moderate during of the cold rolling step.

Elle vise également à disposer d'une tôle d'acier mince apte au dépôt éventuel d'un revêtement métallique selon les procédés usuels.It also aims to have a thin sheet of steel suitable for the possible deposition of a metal coating according to the usual methods.

Elle vise également à disposer d'une tôle d'acier peu sensible à un endommagement par découpe et apte à l'expansion de trou.It also aims to have a steel sheet that is not very sensitive to damage by cutting and capable of hole expansion.

Elle vise encore à disposer d'un acier présentant une bonne aptitude au soudage au moyen des procédés d'assemblage usuels tels que le soudage par résistance par points.It also aims to have a steel having good weldability by means of the usual assembly methods such as spot resistance welding.

Dans ce but, l'invention a pour objet une tôle selon l'une des revendications 1 à 3.For this purpose, the subject of the invention is a sheet according to one of claims 1 to 3.

Selon un mode particulier, la composition comprend : 0,19% ≤ C ≤ 0,23% Selon un mode préféré, la composition comprend : 1,5% ≤Mn ≤ 2,5% Préférentiellement, la composition comprend : 1,2% ≤Si ≤ 1,8% A titre préféré, la composition comprend : 1,2% ≤Al ≤ 1,8% Selon un mode particulier, la composition comprend : 0,05% ≤ V ≤ 0,15% 0,004 ≤N ≤ 0,008%.According to a particular mode, the composition comprises: 0.19% ≤ C ≤ 0.23% According to a preferred mode, the composition comprises: 1.5% ≤Mn ≤ 2.5% Preferably, the composition comprises: 1.2% ≤Si ≤ 1.8% Preferably, the composition comprises: 1.2% ≤Al ≤ 1.8% According to a particular mode, the composition comprises: 0.05% ≤ V ≤ 0.15% 0.004 ≤N ≤ 0.008%.

A titre préférentiel, la composition comprend : 0,12% ≤ V ≤ 0,15% Selon un mode préféré, la composition comprend : 0,0005≤ B≤ 0,003%.Preferably, the composition comprises: 0.12%≤V≤0.15% According to a preferred mode, the composition comprises: 0.0005≤B≤0.003%.

Préférentiellement, la taille moyenne des îlots de martensite et d'austénite résiduelle est inférieure à 1 micromètre, la distance moyenne entre les îlots étant inférieure à 6 micromètres.Preferably, the average size of the islands of residual martensite and austenite is less than 1 micrometer, the average distance between the islands being less than 6 micrometers.

L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à froid de résistance supérieure à 1200 MPa, d'allongement à rupture supérieur à 10%, selon lequel on approvisionne un acier de composition : 0,10% ≤ C ≤ 0,25%, 1%≤ Mn ≤ 3%, Al ≥ 0,010 %, Si≤2,990%, étant entendu que :1% ≤Si+Al ≤3%, S ≤ 0,015%, P≤ 0,1%, N≤0,008%, Mo<0,005%, Cr<0,005%, B=0, la composition comprenant éventuellement : 0,05% ≤ V ≤ 0,15%, Ti en quantité telle que Ti/N≥4 et que Ti≤0,040%. On procède à la coulée d'un demi-produit à partir de cet acier, puis on porte le demi-produit à une température supérieure à 1150°C et on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud. On bobine et on décape la tôle, puis on lamine à froid celle-ci avec un taux de réduction compris entre 30 et 80% de façon à obtenir une tôle laminée à froid. On réchauffe la tôle laminée à froid à une vitesse Vc comprise entre 5 et 15°C/s jusqu'à une température T1 comprise entre Ac3 et Ac3+20°C, pendant un temps t1 compris entre 50 et 150s puis on refroidit la tôle à une vitesse VR1 supérieure à 40°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre (Ms-30°C et Ms+30°C). On maintient la tôle à ladite température T2 pendant un temps t2 compris entre 150 et 350s puis on effectue un refroidissement à une vitesse VR2 inférieure à 30°C /s jusqu'à la température ambiante. L'invention a également pour objet un procédé de fabrication d'une tôle d'acier laminée à froid de résistance supérieure à 1200 MPa, d'allongement à rupture supérieur à 8%, selon lequel on approvisionne un acier de composition :0,10% ≤ C ≤ 0,25%, 1%≤ Mn ≤ 3% , Al ≥ 0,010 %, Si≤2,990%, étant entendu que 1% ≤Si+Al ≤3%, S ≤ 0,015%, P≤ 0,1%, N≤0,008%, Mo ≤ 0,25%, Cr ≤ 1,65%, étant entendu que Cr+(3 x Mo) ≥0,3%, éventuellement 0,05% ≤ V ≤ 0,15%, B≤0,005%, Ti en quantité telle que Ti/N≥4 et que Ti≤0,040%. On procède à la coulée d'un demi-produit à partir de cet acier, on porte le demi-produit à une température supérieure à 1150°C, puis on lamine à chaud le demi-produit pour obtenir une tôle laminée à chaud. On bobine la tôle, on décape celle-ci, puis on lamine à froid la tôle avec un taux de réduction compris entre 30 et 80% de façon à obtenir une tôle laminée à froid. On réchauffe la tôle laminée à froid à une vitesse Vc comprise entre 5 et 15°C/s jusqu'à une température T1 comprise entre Ac3 et Ac3+20°C, pendant un temps t1 compris entre 50 et 150s puis on refroidit celle-ci à une vitesse VR1 supérieure à 25°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre Bs et (Ms - 20°C) On maintient la tôle à la température T2 pendant un temps t2 compris entre 150 et 350s puis on effectue un refroidissement à une vitesse VR2 inférieure à 30°C /s jusqu'à la température ambiante.The invention also relates to a method for manufacturing a cold-rolled steel sheet with a strength greater than 1200 MPa, an elongation at break greater than 10%, according to which a steel of composition: 0.10 % ≤ C ≤ 0.25%, 1%≤ Mn ≤ 3%, Al ≥ 0.010%, Si≤2.990%, it being understood that: 1% ≤Si+Al ≤3%, S ≤ 0.015%, P≤ 0, 1%, N≤0.008%, Mo<0.005%, Cr<0.005%, B=0, the composition optionally comprising: 0.05% ≤ V ≤ 0.15%, Ti in an amount such that Ti/N≥4 and that Ti≤0.040%. A semi-finished product is cast from this steel, then the semi-finished product is brought to a temperature above 1150° C. and the semi-finished product is hot rolled to obtain a hot rolled sheet. The sheet is coiled and pickled, then it is cold rolled with a reduction rate of between 30 and 80% so as to obtain a cold rolled sheet. The cold-rolled sheet is heated at a speed V c of between 5 and 15°C/s up to a temperature T 1 of between Ac3 and Ac3+20°C, for a time t 1 of between 50 and 150s, then cools the sheet at a rate V R1 greater than 40°C/s and less than 100°C/s down to a temperature T 2 of between (M s -30°C and M s +30°C). The sheet is maintained at said temperature T 2 for a time t 2 of between 150 and 350 s then cooling is carried out at a speed V R2 of less than 30° C./s down to ambient temperature. The invention also relates to a method for manufacturing a cold-rolled steel sheet with a strength greater than 1200 MPa, an elongation at break greater than 8%, according to which a steel of composition: 0.10 % ≤ C ≤ 0.25%, 1%≤ Mn ≤ 3% , Al ≥ 0.010%, Si≤2.990%, provided that 1% ≤Si+Al ≤3%, S ≤ 0.015%, P≤ 0.1 %, N≤0.008%, Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that Cr+(3 x Mo) ≥0.3%, optionally 0.05% ≤ V ≤ 0.15%, B ≤0.005%, Ti in an amount such that Ti/N≥4 and Ti≤0.040%. A semi-finished product is cast from this steel, the semi-finished product is brought to a temperature above 1150° C., then the semi-finished product is hot rolled to obtain a hot rolled sheet. The sheet is coiled, it is pickled, then the sheet is cold rolled with a reduction rate of between 30 and 80% so as to obtain a cold rolled sheet. The cold-rolled sheet is heated at a speed V c of between 5 and 15°C/s up to a temperature T 1 of between Ac3 and Ac3+20°C, for a time t 1 of between 50 and 150 s then it is cooled at a speed V R1 greater than 25°C/s and less than 100°C/s to a temperature T 2 of between B s and (M s - 20° C.) The sheet is maintained at the temperature T 2 for a time t 2 comprised between 150 and 350 s then cooling is carried out at a speed V R2 of less than 30° C./s down to ambient temperature.

La température T1 est préférentiellement comprise entre Ac3+10°C et Ac3+20°C.The temperature T 1 is preferably between Ac3+10°C and Ac3+20°C.

L'invention a également pour objet l'utilisation d'une tôle d'acier laminée à froid et recuite selon l'un des modes ci-dessus, ou fabriquée par un procédé selon l'un des modes ci-dessus, pour la fabrication de pièces de structure ou d'éléments de renfort, dans le domaine automobile.The invention also relates to the use of a steel sheet cold rolled and annealed according to one of the above modes, or manufactured by a process according to one of the above modes, for the manufacture structural parts or reinforcing elements, in the automotive field.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence aux figures annexées ci-jointes :

  • La figure 1 présente un exemple de structure d'une tôle d'acier selon l'invention, la structure étant révélée par réactif LePera.
  • La figure 2 présente un exemple de structure d'une tôle d'acier selon l'invention, la structure étant révélée par réactif Nital.
Other characteristics and advantages of the invention will appear during the description below, given by way of example and made with reference to the appended figures attached hereto:
  • The figure 1 presents an example of the structure of a steel sheet according to the invention, the structure being revealed by LePera reagent.
  • The figure 2 presents an example of the structure of a steel sheet according to the invention, the structure being revealed by Nital reagent.

Les inventeurs ont mis en évidence que des problèmes ci-dessus étaient résolus lorsque la tôle d'acier mince laminée à froid et recuite présentait une microstructure bainitique, avec en complément des îlots de martensite et d'austénite résiduelle, ou îlots « M-A ». Pour les aciers dont la résistance est la plus élevée, supérieure à 1600MPa, la microstructure comporte une quantité plus importante de martensite et d'austénite résiduelle.The inventors have demonstrated that the above problems are solved when the cold-rolled and annealed thin steel sheet exhibits a bainitic microstructure, with, in addition, islands of martensite and residual austenite, or "M-A" islands. For steels with the highest resistance, greater than 1600 MPa, the microstructure contains a greater quantity of martensite and residual austenite.

En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle très important sur la formation de la microstructure et sur les propriétés mécaniques : en liaison d'autres éléments de la composition (Cr, Mo, Mn) et avec le traitement thermique de recuit après laminage à froid, il augmente la trempabilité et permet d'obtenir une transformation bainitique. Les teneurs en carbone selon l'invention conduisent également à la formation d'îlots de martensite et d'austénite résiduelle dont la quantité, la morphologie, la composition permettent d'obtenir les propriétés visées ci-dessus.With regard to the chemical composition of steel, carbon plays a very important role in the formation of the microstructure and in the mechanical properties: in connection with other elements of the composition (Cr, Mo, Mn) and with the annealing heat treatment after cold rolling, it increases the hardenability and makes it possible to obtain a bainitic transformation. The carbon contents according to the invention also lead to the formation of islands of residual martensite and austenite, the quantity, morphology and composition of which make it possible to obtain the properties referred to above.

Le carbone retarde également la formation de la ferrite pro-eutectoïde après traitement thermique de recuit après laminage à froid: dans le cas contraire, la présence de cette phase de faible dureté provoquerait un endommagement local trop important à l'interface avec la matrice dont la dureté est plus élevée. La présence de ferrite proeutectoïde issue du recuit doit donc être évitée pour obtenir des niveaux élevés de résistance mécanique.Carbon also delays the formation of pro-eutectoid ferrite after annealing heat treatment after cold rolling: otherwise, the presence of this phase of low hardness would cause excessive local damage at the interface with the matrix, the hardness is higher. The presence of proeutectoid ferrite resulting from the annealing must therefore be avoided to obtain high levels of mechanical resistance.

Selon l'invention, la teneur en carbone est comprise entre 0,10 et 0,25% en poids: Au dessous de 0,10%, une résistance suffisante ne peut pas être obtenue et la stabilité de l'austénite résiduelle n'est pas satisfaisante. Au delà de 0,25%, la soudabilité est réduite en raison de la formation de microstructures de trempe dans la Zone Affectée par la Chaleur.According to the invention, the carbon content is between 0.10 and 0.25% by weight: Below 0.10%, sufficient strength cannot be obtained and the stability of the residual austenite is not not satisfactory. Above 0.25%, weldability is reduced due to the formation of quench microstructures in the Heat Affected Zone.

Selon un mode préféré, la teneur en carbone est comprise entre 0,19 et 0,23% : au sein de cette plage, la soudabilité est très satisfaisante, et la quantité, la stabilité et la morphologie des îlots M-A sont particulièrement adaptées pour obtenir un couple favorable de propriétés mécaniques (résistance-allongement)According to a preferred embodiment, the carbon content is between 0.19 and 0.23%: within this range, the weldability is very satisfactory, and the quantity, stability and morphology of the M-A islands are particularly suitable for obtaining a favorable pair of mechanical properties (strength-elongation)

En quantité comprise entre 1 et 3% en poids, une addition de manganèse, élément à caractère gammagène, permet d'éviter la formation de ferrite proeutectoïde lors du refroidissement au recuit après laminage à froid. Le manganèse contribue également à désoxyder l'acier lors de l'élaboration en phase liquide. L'addition de manganèse participe également à un durcissement efficace en solution solide et à l'obtention d'une résistance accrue. Préférentiellement, le manganèse est compris entre 1,5 et 2,5% de façon à ce que ces effets soient obtenus, et ce sans risque de formation de structure en bandes néfaste.In an amount of between 1 and 3% by weight, an addition of manganese, an element with a gammagenic nature, makes it possible to avoid the formation of proeutectoid ferrite during annealing cooling after cold rolling. Manganese also contributes to deoxidize the steel during the development in the liquid phase. The addition of manganese also aids in effective solid solution hardening and increased strength. Preferably, the manganese is between 1.5 and 2.5% so that these effects are obtained, and this without the risk of formation of a harmful banded structure.

Le silicium et l'aluminium jouent de façon conjointe un rôle important selon l'invention.Silicon and aluminum jointly play an important role according to the invention.

Le silicium retarde la précipitation de la cémentite lors du refroidissement à partir de l'austénite après recuit. Une addition de silicium selon l'invention contribue donc à stabiliser une quantité suffisante d'austénite résiduelle sous forme d'îlots qui se transforment ultérieurement et progressivement en martensite sous l'effet d'une déformation. Une autre partie de l'austénite se transforme directement en martensite lors du refroidissement après recuit. L'aluminium est un élément très efficace pour la désoxydation de l'acier. A ce titre, sa teneur est supérieure ou égale à 0,010%. Comme le silicium, il stabilise l'austénite résiduelle.Silicon retards the precipitation of cementite on cooling from austenite after annealing. An addition of silicon according to the invention therefore contributes to stabilizing a sufficient quantity of residual austenite in the form of islands which subsequently and gradually transform into martensite under the effect of deformation. Another part of the austenite is transformed directly into martensite during cooling after annealing. Aluminum is a very effective element for the deoxidation of steel. As such, its content is greater than or equal to 0.010%. Like silicon, it stabilizes residual austenite.

Les effets de l'aluminium et du silicium sur la stabilisation de l'austénite sont voisins ; lorsque les teneurs en silicium et en aluminium sont telles que : 1%≤Si+Al≤3%, une stabilisation satisfaisante de l'austénite est obtenue, ce qui permet de former les microstructures recherchées tout en conservant des propriétés d'usage satisfaisantes. Compte tenu du fait que la teneur minimale en aluminium est de 0,010%, la teneur en silicium est inférieure ou égale à 2,990%.The effects of aluminum and silicon on austenite stabilization are similar; when the silicon and aluminum contents are such that: 1%≤Si+Al≤3%, satisfactory stabilization of the austenite is obtained, which makes it possible to form the desired microstructures while retaining satisfactory usage properties. Considering that the minimum aluminum content is 0.010%, the silicon content is less than or equal to 2.990%.

La teneur en silicium est de préférence comprise entre 1,2 et 1,8% pour stabiliser une quantité d'austénite résiduelle suffisante et pour éviter une oxydation intergranulaire lors de l'étape de bobinage à chaud précédant le laminage à froid. On évite aussi de la sorte la formation d'oxydes fortement adhérents et l'apparition éventuelle de défauts de surface conduisant notamment à un manque de mouillabilité dans les opérations de galvanisation au trempé.The silicon content is preferably between 1.2 and 1.8% to stabilize a sufficient quantity of residual austenite and to avoid intergranular oxidation during the hot coiling step preceding the cold rolling. This also avoids the formation of strongly adherent oxides and the possible appearance of surface defects leading in particular to a lack of wettability in dip galvanizing operations.

Ces effets sont également obtenus lorsque la teneur en aluminium est de préférence comprise entre 1,2 et 1,8%. A teneur équivalente, les effets de l'aluminium sont en effet semblables à ceux exposés ci-dessus pour le silicium, mais le risque d'apparition de défauts superficiels est cependant moindre.These effects are also obtained when the aluminum content is preferably between 1.2 and 1.8%. At an equivalent content, the effects of aluminum are in fact similar to those described above for silicon, but the risk of appearance of surface defects is however less.

Les aciers selon l'invention comportent éventuellement du molybdène et/ou du chrome : le molybdène augmente la trempabilité, évite la formation de ferrite pro-eutectoïde et affine efficacement la microstructure bainitique. Cependant, une teneur supérieure à 0,25% en poids augmente le risque de former une microstructure majoritairement martensitique au détriment de la formation de bainite.The steels according to the invention optionally comprise molybdenum and/or chromium: the molybdenum increases the hardenability, prevents the formation of pro-eutectoid ferrite and effectively refines the bainitic microstructure. However, a content greater than 0.25% by weight increases the risk of forming a predominantly martensitic microstructure to the detriment of the formation of bainite.

Le chrome contribue également à éviter la formation de ferrite pro-eutectoïde et à l'affinement de la microstructure bainitique. Au delà de 1,65%, le risque d'obtenir une structure majoritairement martensitique est important. Comparé au molybdène, son effet est cependant moins marqué ; selon l'invention, les teneurs en chrome et en molybdène sont telles que : Cr+(3 x Mo) ≥0,3%. Les coefficients du chrome et du molybdène dans cette relation traduisent leur influence sur la trempabilité, en particulier l'aptitude respective de ces éléments à éviter la formation de ferrite pro-eutectoïde dans les conditions de refroidissement particulières de l'invention.Chromium also contributes to avoid the formation of pro-eutectoid ferrite and to the refinement of the bainitic microstructure. Beyond 1.65%, the risk of obtaining a predominantly martensitic structure is high. Compared to molybdenum, however, its effect is less marked; according to the invention, the chromium and molybdenum contents are such that: Cr+(3×Mo)≥0.3%. The coefficients of chromium and molybdenum in this relationship reflect their influence on the hardenability, in particular the respective ability of these elements to avoid the formation of pro-eutectoid ferrite under the particular cooling conditions of the invention.

Selon un mode économique, l'acier peut comporter des teneurs en molybdène et en chrome très faibles ou nulles, c'est à dire des teneurs inférieures à 0,005% en poids pour ces deux éléments, et 0% de bore.According to an economical method, the steel can comprise very low or zero molybdenum and chromium contents, that is to say contents of less than 0.005% by weight for these two elements, and 0% boron.

Pour obtenir une résistance supérieure à 1400MPa, l'addition de chrome et/ou de molybdène est requise, dans des quantités mentionnées ci-dessus. Lorsque la teneur en soufre est supérieure à 0,015%, l'aptitude à la mise en forme est réduite en raison de la présence excessive de sulfures de manganèse.To obtain a resistance greater than 1400MPa, the addition of chromium and/or molybdenum is required, in the quantities mentioned above. When the sulfur content is more than 0.015%, the formability is reduced due to the excessive presence of manganese sulfides.

La teneur en phosphore est limitée à 0,1% de façon à maintenir une ductilité à chaud suffisante.The phosphorus content is limited to 0.1% in order to maintain sufficient hot ductility.

La teneur en azote est limitée à 0,008% pour éviter un vieillissement éventuel.The nitrogen content is limited to 0.008% to avoid possible ageing.

L'acier selon l'invention contient éventuellement du vanadium en quantité comprise entre 0,05 et 0,15%. En particulier, lorsque la teneur en azote est comprise conjointement entre 0,004 et 0,008%, la précipitation du vanadium peut intervenir lors du recuit après laminage à froid sous forme de fins carbonitrures qui confèrent un durcissement supplémentaire.The steel according to the invention optionally contains vanadium in an amount of between 0.05 and 0.15%. In particular, when the nitrogen content is jointly between 0.004 and 0.008%, the precipitation of vanadium can occur during annealing after cold rolling in the form of fine carbonitrides which confer additional hardening.

Lorsque la teneur en vanadium est comprise entre 0,12 et 0,15% en poids, l'allongement uniforme ou à rupture est particulièrement augmenté.When the vanadium content is between 0.12 and 0.15% by weight, the uniform or breaking elongation is particularly increased.

L'acier peut éventuellement comprendre du bore en quantité inférieure ou égale à 0,005%. Selon un mode préféré, l'acier contient préférentiellement entre 0,0005 et 0,003% de bore, ce qui contribue à la suppression de la ferrite pro-eutectoïde en présence de chrome et/ou de molybdène. En complément des autres éléments d'addition, l'ajout de bore en quantité mentionnée ci-dessus permet d'obtenir une résistance supérieure à 1400 MPa.The steel may optionally comprise boron in an amount less than or equal to 0.005%. According to a preferred embodiment, the steel preferentially contains between 0.0005 and 0.003% boron, which contributes to the suppression of pro-eutectoid ferrite in the presence of chromium and/or molybdenum. In addition to the other elements of addition, the addition of boron in the quantity mentioned above makes it possible to obtain a resistance greater than 1400 MPa.

L'acier peut éventuellement comprendre du titane en quantité telle que Ti/N≥4 et que Ti≤0,040%, ce qui permet la formation de carbonitrures de titane et augmente le durcissement.The steel may optionally comprise titanium in an amount such that Ti/N≥4 and Ti≤0.040%, which allows the formation of titanium carbonitrides and increases the hardening.

Le reste de la composition est constitué d'impuretés inévitables résultant de l'élaboration. Les teneurs de ces impuretés, telles que Sn, Sb, As, sont inférieures à 0,005%.The rest of the composition consists of unavoidable impurities resulting from the elaboration. The contents of these impurities, such as Sn, Sb, As, are less than 0.005%.

Selon un mode de réalisation de l'invention destiné à la fabrication de tôles d'acier de résistance supérieure à 1200MPa, la microstructure de l'acier est composée de 65 à 90% de bainite, ces teneurs se référant à des pourcentages surfaciques, le solde est constitué d'îlots de martensite et d'austénite résiduelle (îlots de composés M-A)According to an embodiment of the invention intended for the manufacture of steel sheets with a resistance greater than 1200 MPa, the microstructure of the steel is composed of 65 to 90% bainite, these contents referring to surface percentages, the balance consists of islands of residual martensite and austenite (islands of M-A compounds)

Cette structure en majorité bainitique, ne comportant pas de ferrite proeutectoïde de faible dureté, présente une capacité d'allongement à rupture supérieure à 10%.This predominantly bainitic structure, not comprising proeutectoid ferrite of low hardness, has an elongation capacity at break greater than 10%.

Selon l'invention, les îlots M-A régulièrement dispersés dans la matrice ont une taille moyenne inférieure à 1 micromètre.According to the invention, the M-A islands regularly dispersed in the matrix have an average size of less than 1 micrometer.

La figure 1 présente un exemple de microstructure d'une tôle d'acier selon l'invention. La morphologie des îlots M-A a été révélée au moyen de réactifs chimiques appropriés : après attaque, les îlots M-A apparaissent en blanc sur une matrice bainitique plus ou moins sombre. Certains îlots de petite taille sont localisés entre les lattes de ferrite bainitique. On observe les îlots à des grandissements allant de 500 à 1500x environ sur une surface statistiquement représentative et on mesure grâce à un logiciel d'analyse d'images la taille moyenne des îlots ainsi que la distance moyenne entre ces îlots. Dans le cas de la figure 1, le pourcentage surfacique des îlots est de 12% et la taille moyenne des îlots M-A est inférieure à 1 micromètre.The figure 1 presents an example of the microstructure of a steel sheet according to the invention. The morphology of the MA islands was revealed by means of appropriate chemical reagents: after attack, the MA islands appear in white on a more or less dark bainitic matrix. Some small islands are located between the bainitic ferrite slats. The islets are observed at magnifications ranging from approximately 500 to 1500x on a statistically representative surface and the mean size of the islets and the mean distance between these islets are measured using image analysis software. In the case of the figure 1 , the areal percentage of the islands is 12% and the average size of the MA islands is less than 1 micrometer.

On a mis en évidence qu'une morphologie spécifique des îlots M-A était à rechercher particulièrement : lorsque la taille moyenne des îlots est inférieure à 1 micromètre et lorsque la distance moyenne entre ces îlots est inférieure à 6 micromètres, on obtient simultanément les effets suivants :

  • un endommagement limité en raison de l'absence d'amorçage de la rupture sur des îlots M-A de grande taille
  • un durcissement significatif en raison de la proximité de nombreux constituants M-A de faible taille
It has been shown that a specific morphology of the MA islands was to be particularly sought: when the average size of the islands is less than 1 micrometer and when the average distance between these islands is less than 6 micrometers, the following effects are simultaneously obtained:
  • limited damage due to the absence of rupture initiation on large MA islands
  • significant hardening due to the proximity of many small MA constituents

Selon un autre mode de réalisation de l'invention destiné à la fabrication de tôles d'acier de résistance supérieure à 1400MPa et d'allongement à rupture supérieur à 8%, la microstructure est composée de 45 à 65% de bainite, le solde étant constitué d'îlots de martensite et d'austénite résiduelle.According to another embodiment of the invention intended for the manufacture of steel sheets with a strength greater than 1400 MPa and an elongation at break greater than 8%, the microstructure is composed of 45 to 65% bainite, the balance being consisting of islands of martensite and residual austenite.

Selon un autre mode de réalisation de l'invention destiné à la fabrication de tôles d'acier de résistance supérieure à 1600MPa et d'allongement à rupture supérieur à 8%, la microstructure est composée de 15 à 45% de bainite, le solde étant constitué de martensite et d'austénite résiduelle.According to another embodiment of the invention intended for the manufacture of steel sheets with a strength greater than 1600 MPa and an elongation at break greater than 8%, the microstructure is composed of 15 to 45% bainite, the balance being consisting of martensite and residual austenite.

La mise en oeuvre du procédé de fabrication d'une tôle mince laminée à froid et recuite selon l'invention est la suivante :

  • On approvisionne un acier de composition selon l'invention
  • On procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur, ou de bandes minces, entre cylindres d'acier contra-rotatifs.
The implementation of the process for manufacturing a cold-rolled and annealed thin sheet according to the invention is as follows:
  • A steel of composition according to the invention is supplied
  • A semi-finished product is cast from this steel. This casting can be carried out in ingots or continuously in the form of slabs with a thickness of around 200mm. It is also possible to cast in the form of thin slabs a few tens of millimeters thick, or thin strips, between counter-rotating steel cylinders.

Les demi-produits coulés sont tout d'abord portés à une température supérieure à 1150°C pour atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage. Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1150°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.The cast semi-finished products are first of all brought to a temperature above 1150°C in order to reach at all points a temperature favorable to the high deformations that the steel will undergo during rolling. Naturally, in the case of direct casting of thin slabs or thin strips between counter-rotating rolls, the hot rolling step of these semi-finished products starting at more than 1150°C can be done directly after casting so that an intermediate reheating step is not necessary in this case.

On lamine à chaud le demi-produit. Un avantage de l'invention est que les caractéristiques finales et la microstructure de la tôle laminée à froid et recuite sont relativement peu dépendantes de la température de fin de laminage et du refroidissement suivant le laminage à chaud.The semi-finished product is hot rolled. An advantage of the invention is that the final characteristics and the microstructure of the cold-rolled and annealed sheet are relatively little dependent on the end-of-rolling temperature and of the cooling following the hot-rolling.

On bobine ensuite la tôle à chaud. La température de bobinage est préférentiellement inférieure à 550°C pour limiter la dureté de la tôle laminée à chaud et l'oxydation intergranulaire en surface. Une dureté trop importante de la tôle laminée à chaud conduit à des efforts excessifs lors du laminage ultérieur à froid ainsi éventuellement qu'à des défauts en rives.The hot sheet is then coiled. The coiling temperature is preferably below 550° C. to limit the hardness of the hot-rolled sheet and the intergranular oxidation on the surface. Excessive hardness of the hot-rolled sheet leads to excessive stresses during the subsequent cold rolling as well as possibly to edge defects.

On décape ensuite la tôle laminée à chaud selon un procédé connu en lui-même de façon à conférer à celle-ci un état de surface propre au laminage à froid. Ce dernier est effectué en réduisant l'épaisseur de la tôle laminée à chaud de 30 à 80%.The hot-rolled sheet is then pickled according to a process known per se so as to give it a surface condition suitable for cold rolling. The latter is carried out by reducing the thickness of the hot-rolled sheet by 30-80%.

On effectue ensuite un traitement thermique de recuit, préférentiellement par un recuit en continu, qui comporte les phases suivantes :

  • Une phase de chauffage avec une vitesse Vc comprise entre 5 et 15°C/s. jusqu'à une température T1. Lorsque Vc est supérieure à 15°C/s, la recristallisation de la tôle écrouie par le laminage à froid peut ne pas être totale. Une valeur minimale de 5°C/s est requise pour la productivité. Une vitesse Vc comprise entre 5 et 15°C/s permet d'obtenir une taille de grain d'austénite particulièrement adaptée à la microstructure finale désirée.
An annealing heat treatment is then carried out, preferably by continuous annealing, which comprises the following phases:
  • A heating phase with a speed V c of between 5 and 15°C/s. up to a temperature T 1 . When V c is greater than 15°C/s, the recrystallization of the hardened sheet by cold rolling may not be complete. A minimum value of 5°C/s is required for productivity. A speed V c of between 5 and 15° C./s makes it possible to obtain an austenite grain size particularly suited to the desired final microstructure.

La température T1 est comprise entre Ac3 et Ac3+20°C, la température Ac3 correspondant à la transformation totale en austénite lors du chauffage. Ac3 dépend de la composition de l'acier et de la vitesse de chauffage et peut être déterminée par exemple par dilatométrie. L'austénitisation totale permet de limiter la formation ultérieure de ferrite proeutectoïde. Il est important que la température T1 soit inférieure à Ac3+20°C dans le but d'éviter un grossissement exagéré du grain austénitique. Au sein de cette plage (Ac3-Ac3+20°C), les caractéristiques du produit final sont peu sensibles à une variation de température T1.The temperature T 1 is between A c3 and A c3 +20° C., the temperature A c3 corresponding to the total transformation into austenite during heating. A c3 depends on the composition of the steel and the heating rate and can be determined for example by dilatometry. Total austenitization makes it possible to limit the subsequent formation of proeutectoid ferrite. It is important that the temperature T 1 be lower than A c3 +20°C in order to avoid an exaggerated magnification of the austenitic grain. Within this range (A c3 -A c3 +20°C), the characteristics of the final product are not very sensitive to a variation in temperature T 1 .

Très préférentiellement, la température T1 est comprise entre Ac3+10°C et Ac3+20°C. Dans ces conditions, les inventeurs ont mis en évidence que la taille de grain austénitique est plus homogène et plus fine, ce qui conduit par la suite à la formation d'une microstructure finale présentant elle aussi ces caractéristiques.

  • Un maintien à la température T1 pendant un temps t1 compris entre 50s et 150s. Cette étape conduit à une homogénéisation de l'austénite.
Very preferably, the temperature T 1 is between A c3 +10°C and A c3 +20°C. Under these conditions, the inventors have demonstrated that the austenitic grain size is more homogeneous and finer, which subsequently leads to the formation of a final microstructure also having these characteristics.
  • Holding at temperature T 1 for a time t 1 of between 50s and 150s. This step leads to homogenization of the austenite.

L'étape suivante du procédé dépend de la teneur en chrome et en molybdène de l'acier :

  • Lorsque l'acier ne comporte pratiquement pas de chrome, de molybdène et de bore, c'est à dire lorsque Cr<0,005%, Mo<0,005%, B=0%, on effectue un refroidissement avec une vitesse VR1 supérieure à 40°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre Ms-30°C et Ms+30°C. Pour ces conditions de vitesse de refroidissement, la diffusion du carbone dans l'austénite est limitée. Cet effet est saturé au delà de 100°C/s. Un maintien est réalisé à cette température T2 pendant un temps t2 compris entre 150 et 350s. MS désigne la température de début de transformation martensitique. Cette température dépend de la composition de l'acier mis en oeuvre et peut être déterminée par exemple par dilatométrie. Ces conditions permettent d'éviter la formation de ferrite proeutectoïde lors du refroidissement. On obtient également dans ces conditions une transformation bainitique de la plus grande partie de l'austénite. La fraction restante est transformée en martensite ou est éventuellement stabilisée sous forme d'austénite résiduelle.
  • Lorsque l'acier comporte une teneur en chrome et en molybdène telles que Mo ≤ 0,25%, Cr ≤ 1,65%, et Cr+(3 x Mo) ≥0,3%, on effectue un refroidissement avec une vitesse VR1 supérieure à 25°C/s et inférieure à 100°C/s jusqu'à une température T2 comprise entre (Bs et Ms-20°C) Un maintien est réalisé à cette température T2 pendant un temps t2 compris entre 150 et 350s. Bs désigne la température de début de transformation bainitique. Ces conditions permettent d'obtenir les mêmes caractéristiques microstructurales que ci-dessus. L'addition de chrome et/ou de molybdène permet en particulier de garantir que la formation de ferrite proeutectoïde n'intervient pas. Dans les limites de vitesse de refroidissement VR1 selon l'invention, les caractéristiques finales du produit sont relativement peu sensibles à une variation de cette vitesse VR1.
  • L'étape suivante du procédé est identique, que le produit comporte ou non du chrome et/ou du molybdène : on effectue un refroidissement à une vitesse VR2 inférieure à 30°C /s jusqu'à la température ambiante. En particulier, lorsque la température T2 est peu élevée au sein des plages selon l'invention, le refroidissement à une vitesse VR2 inférieure à 30°C /s provoque un revenu des îlots de martensite nouvellement formée, ce qui est favorable en termes de propriétés d'usage.
The next step in the process depends on the chromium and molybdenum content of the steel:
  • When the steel contains practically no chromium, molybdenum and boron, i.e. when Cr<0.005%, Mo<0.005%, B=0%, cooling is carried out with a speed V R1 greater than 40 °C/s and less than 100°C/s up to a temperature T 2 of between M s -30°C and M s +30°C. For these conditions of cooling rate, the diffusion of carbon in austenite is limited. This effect is saturated above 100°C/s. Maintaining is carried out at this temperature T 2 for a time t 2 of between 150 and 350 s. M S denotes the martensitic transformation start temperature. This temperature depends on the composition of the steel used and can be determined for example by dilatometry. These conditions make it possible to avoid the formation of proeutectoid ferrite during cooling. We also obtain under these conditions a bainitic transformation of the greatest part of the austenite. The remaining fraction is transformed into martensite or is optionally stabilized in the form of residual austenite.
  • When the steel has a chromium and molybdenum content such as Mo ≤ 0.25%, Cr ≤ 1.65%, and Cr+(3 x Mo) ≥0.3%, cooling is carried out with a speed V R1 greater than 25°C/s and less than 100°C/s up to a temperature T 2 between (B s and M s -20°C) Maintenance is carried out at this temperature T 2 for a time t 2 included between 150 and 350s. B s designates the bainitic transformation start temperature. These conditions make it possible to obtain the same microstructural characteristics as above. The addition of chromium and/or molybdenum makes it possible in particular to guarantee that the formation of proeutectoid ferrite does not occur. Within the cooling speed limits V R1 according to the invention, the final characteristics of the product are relatively insensitive to a variation of this speed V R1 .
  • The following stage of the process is identical, whether or not the product comprises chromium and/or molybdenum: cooling is carried out at a rate V R2 of less than 30° C./s down to ambient temperature. In particular, when the temperature T 2 is low within the ranges according to the invention, the cooling at a rate V R2 of less than 30° C. /s causes the islands of newly formed martensite to temper, which is favorable in terms of of use properties.

Exemple :Example :

On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral. Outre les aciers I-1 à I-5 ayant servi à la fabrication de tôles selon l'invention, on a indiqué à titre de comparaison la composition d'aciers R-1 à R-5 ayant servi à la fabrication de tôles de référence. Tableau 1 Compositions d'aciers (% poids). I= Selon l'invention. R= référence Valeurs soulignées : Non conforme à l'invention. Acier C (%) Mn (%) Si (%) Al (%) Si+Al (%) Mo (%) Cr (%) Cr+(3xMo) (%) S (%) P (%) V (%) Ti (%) B (%) N (%) I-1 0,19 2 1,5 0,040 1,54 - - - 0,003 0,015 - - - 0,004 I-2 0,2 2 1,5 0,040 1,54 0,25 - 0,75 0,003 0,015 - - - 0,004 I-3 0,19 2 1,5 0,040 1,54 0,14 0,34 0,76 0,003 0,015 - - - 0,004 I-4 0,2 2 1,5 0,040 1,54 0,25 - 0,75 0,003 0,015 - 0,020 0,0038 0,004 I-5 0,2 2 1,5 0,040 1,54 0,25 - 0,75 0,003 0,015 0,15 0,020 0,0038 0,004 R-1 0,110 2,2 0,347 0,031 0,378 0,13 0,4 0,79 0,003 0,015 - 0,027 - 0,004 R-2 0,038 0,212 0,036 0,053 0,089 1,1 0,21 3,51 0,003 0,015 - 0,002 - 0,004 R-3 0,035 0,21 0,035 0,054 0,089 0,5 0,034 1,534 0,003 0,015 - 0,002 - 0,004 R-4 0,19 1,3 0,25 0,040 0,29 - 0,18 0,18 0,003 0,015 - 0,003 0,006 R-5 0,148 1,925 0,214 0,024 0,238 - 0,19 0,19 0,002 0,012 - 0,024 - 0,005 Steels have been produced, the composition of which is given in the table below, expressed as a percentage by weight. In addition to the steels I-1 to I-5 having been used for the manufacture of sheets according to the invention, the composition of steels R-1 to R-5 having been used for the manufacture of reference sheets has been indicated by way of comparison. . Table 1 Compositions of steels (% weight). I= According to the invention. R=reference Underlined values: Not in accordance with the invention. Steel VS (%) Min (%) Yes (%) Al (%) Si+Al (%) MB (%) Cr (%) Cr+(3xMo) (%) S (%) P(%) V (%) Ti (%) B(%) NOT (%) I-1 0.19 2 1.5 0.040 1.54 - - - 0.003 0.015 - - - 0.004 I-2 0.2 2 1.5 0.040 1.54 0.25 - 0.75 0.003 0.015 - - - 0.004 I-3 0.19 2 1.5 0.040 1.54 0.14 0.34 0.76 0.003 0.015 - - - 0.004 I-4 0.2 2 1.5 0.040 1.54 0.25 - 0.75 0.003 0.015 - 0.020 0.0038 0.004 I-5 0.2 2 1.5 0.040 1.54 0.25 - 0.75 0.003 0.015 0.15 0.020 0.0038 0.004 R-1 0.110 2.2 0.347 0.031 0.378 0.13 0.4 0.79 0.003 0.015 - 0.027 - 0.004 R-2 0.038 0.212 0.036 0.053 0.089 1.1 0.21 3.51 0.003 0.015 - 0.002 - 0.004 R-3 0.035 0.21 0.035 0.054 0.089 0.5 0.034 1,534 0.003 0.015 - 0.002 - 0.004 R-4 0.19 1.3 0.25 0.040 0.29 - 0.18 0.18 0.003 0.015 - 0.003 0.006 R-5 0.148 1,925 0.214 0.024 0.238 - 0.19 0.19 0.002 0.012 - 0.024 - 0.005

La composition de l'acier I-1 n'est pas conforme aux revendications 1 à 3.The composition of steel I-1 does not comply with claims 1 to 3.

Des demi-produits correspondant aux compositions ci-dessus ont été réchauffés à 1200°C, laminés à chaud jusqu'à une épaisseur de 3 mm et bobinés à une température inférieure à 550°C. Les tôles ont été ensuite laminées à froid jusqu'à une épaisseur de 0,9 mm soit un taux de réduction de 70%. A partir d'une même composition, certains aciers ont fait l'objet de différentes conditions de fabrication. Les références I1-a, I1-b et I1-c, I1-d désignent par exemple quatre tôles d'aciers fabriquées selon des conditions différentes à partir de la composition d'acier I1. Le tableau 2 indique les conditions de fabrication des tôles recuites après laminage à froid. La vitesse de réchauffage Vc est de 10°C/s dans tous les cas.Semi-finished products corresponding to the above compositions were reheated to 1200°C, hot rolled to a thickness of 3 mm and coiled at a temperature below 550°C. The sheets were then cold rolled to a thickness of 0.9 mm, ie a reduction rate of 70%. From the same composition, certain steels have been subjected to different manufacturing conditions. The references I1-a, I1-b and I1-c, I1-d denote, for example, four steel sheets manufactured under different conditions from the steel composition I1. Table 2 indicates the manufacturing conditions for annealed sheets after cold rolling. The heating rate V c is 10° C./s in all cases.

Les températures de transformation Ac3, Bs et Ms ont été également portées au tableau 2.The transformation temperatures A c3 , B s and M s have also been given in Table 2.

On a également indiqué les différents constituants microstructuraux mesurés par microscopie quantitative : fraction surfacique de bainite, martensite et d'austénite résiduelle.The various microstructural constituents measured by quantitative microscopy have also been indicated: surface fraction of bainite, martensite and residual austenite.

Les îlots M-A ont été mis en évidence par le réactif de LePera. Leur morphologie a été examinée au moyen d'un logiciel d'analyse d'images Scion®. Tableau 2 : Conditions de fabrication et microstructure des tôles laminées à chaud obtenues. I= Selon l'invention. R= référence Valeurs soulignées : Non conformes à l'invention. Tôle d'acier T1 (°C) Ac3 (°C) t1 (s) VR1 (°C/s) T2 (°C) Bs (°C) Ms (°C) t2 (s) VR2 (C°/s) I1-a 850 830 100 54 350 600 380 200 15 I1-b 800 830 100 54 400 600 380 200 15 I1-c 825 830 100 54 400 600 380 200 15 I1-d 850 830 100 54 450 600 380 200 15 I2-a 850 830 100 54 400 575 375 200 15 I2-b 850 830 120 54 400 575 375 240 15 I2-c 850 830 95 22 400 575 375 200 5 I3-a 850 830 100 54 400 565 395 200 15 I3-b 850 830 100 65 350 565 395 200 15 I4 850 830 100 54 400 575 375 200 15 I5 850 830 100 54 400 575 375 200 15 R1 850 845 100 54 400 520 425 200 15 R2 800 930 60 20 460 695 510 20 15 R3 800 915 60 20 460 760 520 20 15 R4 850 845 300 20 460 650 425 20 15 R5 800 900 60 20 460 605 425 60 20 The MA islands were highlighted by LePera's reagent. Their morphology was examined using Scion ® image analysis software. Table 2: Manufacturing conditions and microstructure of the hot rolled sheets obtained. I= According to the invention. R=reference Underlined values: Not in accordance with the invention. Galvanised steel T1 ( °C) Ac3 (°C) t1( s ) V R1 (°C/s) T2 ( °C) Bsec (°C) Msec (°C) t 2 (s) V R2 (C°/s) I1-a 850 830 100 54 350 600 380 200 15 I1-b 800 830 100 54 400 600 380 200 15 I1-c 825 830 100 54 400 600 380 200 15 I1-d 850 830 100 54 450 600 380 200 15 I2-a 850 830 100 54 400 575 375 200 15 I2-b 850 830 120 54 400 575 375 240 15 I2-c 850 830 95 22 400 575 375 200 5 I3-a 850 830 100 54 400 565 395 200 15 I3-b 850 830 100 65 350 565 395 200 15 I4 850 830 100 54 400 575 375 200 15 I5 850 830 100 54 400 575 375 200 15 R1 850 845 100 54 400 520 425 200 15 R2 800 930 60 20 460 695 510 20 15 R3 800 915 60 20 460 760 520 20 15 R4 850 845 300 20 460 650 425 20 15 R5 800 900 60 20 460 605 425 60 20

Les propriétés mécaniques de traction obtenues (limite d'élasticité Re, résistance Rm, allongement uniforme Au, allongement à rupture At) ont été portées au tableau 3 ci-dessous. Le rapport Re/Rm a été également indiqué.The mechanical tensile properties obtained (yield strength Re, strength Rm, uniform elongation Au, elongation at break At) have been entered in Table 3 below. The Re/Rm ratio was also indicated.

Dans certains cas on a déterminé l'énergie de rupture à -40°C à partir d'éprouvettes de résilience du type Charpy V d'épaisseur réduite à 1,4mm. On a également évalué l'endommagement lié à une découpe (cisaillage ou poinçonnage par exemple) qui pourrait éventuellement diminuer les capacités de déformation ultérieure d'une pièce découpée. Dans ce but, on a découpé par cisaillage des éprouvettes de dimension 20 × 80 mm2. Une partie de ces éprouvettes a été ensuite soumise à un polissage des bords. Les éprouvettes ont été revêtues de grilles photodéposées puis soumises à une traction uniaxiale jusqu'à rupture. Les valeurs des déformations principales ε1 parallèles au sens de la sollicitation ont été mesurées au plus près de l'amorçage de la rupture à partir des grilles déformées. Cette mesure a été effectuée sur les éprouvettes à bords découpés mécaniquement et sur les éprouvettes à bords polis. La sensibilité à la découpe est évaluée par le facteur d'endommagement : Δ = ε1(bords découpés)-ε1(bords polis)/ ε1(bords polis).In some cases, the fracture energy at -40°C has been determined from impact specimens of the Charpy V type with a thickness reduced to 1.4 mm. We also evaluated the damage linked to a cut (shearing or punching for example) which could possibly reduce the subsequent deformation capacities of a cut part. For this purpose, specimens of dimension 20×80 mm 2 were cut by shearing. A portion of these specimens was then subjected to edge polishing. The specimens were coated with photodeposited grids and then subjected to uniaxial tension until fracture. The values of the main deformations ε 1 parallel to the direction of the stress were measured as close as possible to the initiation of the fracture from the deformed grids. This measurement was carried out on the specimens with mechanically cut edges and on the specimens with polished edges. Sensitivity to cutting is evaluated by the damage factor: Δ=ε 1 (cut edges)-ε 1 (polished edges)/ε 1 (polished edges).

Pour certaines tôles, on a également évalué l'endommagement au voisinage de bords découpés à partir d'échantillons de 105×105mm2 comportant un trou d'un diamètre initial de 10mm. On mesure l'augmentation relative du diamètre du trou après introduction d'un poinçon conique jusqu'à ce qu'une fissure apparaisse. Tableau 3 : Propriétés mécaniques des tôles laminées à froid et recuites. Valeurs soulignées : Non conformes à l'invention. Nd : non déterminé Tôle d'acier Fraction bainitique (%) Fraction (MA) (%) Taille d'îlot (MA)<1 micron et distance moyenne<6 micromètre Re (MPa) Rm (MPa) Au (%) At (%) KCV (-40°C) J/cm2 Endomma gement Δ bords découpés (%) Expansion (%) I1-a 89 11 Oui 718 1200 7,5 11,2 63 35 I1-b 43 17 Non 490 1020 15 19 I1-c 63 17 Oui 500 1040 14 17 36 I1-d 83 17 Non 550 1100 9 12 I2-a 88 12 Oui 800 1250 8,8 12,7 -14 I2-b 90 10 Oui 790 1260 8,2 12 I2-c Nd Nd Nd 700 1200 7 8,5 I3-a 88 12 Oui 750 1200 9,5 12,7 40 I3-b Nd Nd Nd 900 1300 9 8 I4 60 40 Oui 690 1420 8 11,2 -22,5 I5 45 55 Nd 800 1600 7,5 10 R1 Nd Nd Nd 800 950 4 6 R2 Ferrite 6 Nd 400 520 10 16 R3 Ferrite 5 Nd 300 450 16 21 R4 60 40 Nd 650 950 Nd 4 R5 Ferrite 17 Oui 404 856 12,4 16 -43 For certain plates, one also evaluated the damage in the vicinity of cut edges starting from samples of 105×105mm 2 comprising a hole with an initial diameter of 10mm. The relative increase in the diameter of the hole is measured after introduction of a conical punch until a crack appears. Table 3: Mechanical properties of cold rolled and annealed sheets. Underlined values: Not in accordance with the invention. Nd: not determined Galvanised steel Bainite fraction (%) Fraction (MA) (%) Island size (MA)<1 micron and mean distance<6 micrometer Re (MPa) Rm (MPa) At (%) At (%) KCV (-40°C) J/cm 2 Damage Δ cut edges (%) Expansion (%) I1-a 89 11 Yes 718 1200 7.5 11.2 63 35 I1-b 43 17 Nope 490 1020 15 19 I1-c 63 17 Yes 500 1040 14 17 36 I1-d 83 17 Nope 550 1100 9 12 I2-a 88 12 Yes 800 1250 8.8 12.7 -14 I2-b 90 10 Yes 790 1260 8.2 12 I2-c n/a n/a n/a 700 1200 7 8.5 I3-a 88 12 Yes 750 1200 9.5 12.7 40 I3-b n/a n/a n/a 900 1300 9 8 I4 60 40 Yes 690 1420 8 11.2 -22.5 I5 45 55 n/a 800 1600 7.5 10 R1 n/a n/a n/a 800 950 4 6 R2 Ferrite 6 n/a 400 520 10 16 R3 Ferrite 5 n/a 300 450 16 21 R4 60 40 n/a 650 950 n/a 4 R5 Ferrite 17 Yes 404 856 12.4 16 -43

Les tôles fabriquées selon les conditions de l'invention (I1-a, I2-a-b, 13-a, 14, 15) présentent une combinaison de propriétés mécaniques particulièrement avantageuse : d'une part une résistance mécanique supérieure à 1200 MPa, d'autre part un allongement à rupture toujours supérieur ou égal à 10%. Les aciers selon l'invention présentent également une énergie de rupture Charpy V à -40°C supérieure à 40 Joules/cm2. Ceci permet la fabrication de pièces résistant à la propagation brutale d'un défaut notamment en cas de sollicitations dynamiques. Les microstructures des aciers avec une résistance minimale de 1200MPa et un allongement à rupture minimal de 10% selon l'invention comportent une teneur en bainite comprise entre 65 et 90%, le solde étant constitué d'îlots MA. La figure 1 présente ainsi la microstructure de la tôle d'acier I3a comportant 88% de bainite et 12% d'îlots M-A, révélée par une attaque au réactif LePera. La figure 2 présente cette microstructure révélée par une attaque Nital. Dans le cas d'aciers présentant une résistance minimale de 1400MPa et un allongement à rupture minimal de 8%, les aciers selon l'invention présentent une teneur en bainite comprise entre 45 et 65%, le solde étant des îlots M-A. Dans le cas d'aciers présentant une résistance minimale de 1600MPa et un allongement à rupture minimal de 8%, les aciers selon l'invention présentent une teneur en bainite comprise entre 15 et 35%, le solde étant de la martensite et de l'austénite résiduelle. Les tôles d'acier selon l'invention présentent une taille d'îlots M-A inférieure à 1 micromètre, la distance inter-îlots étant inférieure à 6 micromètres.The sheets manufactured according to the conditions of the invention (I1-a, I2-ab, 13-a, 14, 15) have a particularly advantageous combination of mechanical properties: on the one hand a mechanical resistance greater than 1200 MPa, on the other hand an elongation at break always greater than or equal to 10%. The steels according to the invention also have a Charpy fracture energy V at -40° C. greater than 40 Joules/cm 2 . This allows the manufacture of parts resistant to the sudden propagation of a defect, in particular in the event of dynamic stresses. The microstructures of steels with a minimum strength of 1200 MPa and a minimum elongation at break of 10% according to the invention comprise a bainite content of between 65 and 90%, the balance consisting of MA islands. The figure 1 thus presents the microstructure of the I3a steel sheet comprising 88% bainite and 12% MA islands, revealed by an attack with the LePera reagent. The figure 2 presents this microstructure revealed by a Nital attack. In the case of steels having a minimum strength of 1400 MPa and a minimum elongation at break of 8%, the steels according to the invention have a bainite content of between 45 and 65%, the balance being islands MA. In the case of steels having a minimum strength of 1600 MPa and a minimum elongation at break of 8%, the steels according to the invention have a bainite content of between 15 and 35%, the balance being martensite and residual austenite. The steel sheets according to the invention have an island size MA of less than 1 micrometer, the inter-island distance being less than 6 micrometers.

Les aciers selon l'invention présentent également une bonne résistance à l'endommagement en cas de découpe puisque le facteur d'endommagement Δ est limité à -23%. Une tôle d'acier ne présentant pas ces caractéristiques (R5) peut présenter un facteur endommagement de 43%. Les tôles selon l'invention présentent ont une bonne aptitude à l'expansion de trou.The steels according to the invention also have good resistance to damage in the event of cutting since the damage factor Δ is limited to −23%. A steel sheet that does not have these characteristics (R5) can have a damage factor of 43%. The laminations according to the invention have good aptitude for hole expansion.

Les aciers selon l'invention présentent également une bonne aptitude au soudage homogène : pour des paramètres de soudage adaptés aux épaisseurs rapportés ci-dessus, les joints soudés sont exempts de fissures à froid ou à chaud.The steels according to the invention also have good aptitude for homogeneous welding: for welding parameters adapted to the thicknesses reported above, the welded joints are free of cold or hot cracks.

Les tôles d'acier I1-b et I1-c ont été recuites à une température T1 trop faible, la transformation austénitique n'est pas complète. En conséquence la microstructure comporte de la ferrite proeutectoïde (40% pour I1b, 20% pour I1-c) et une teneur excessive en îlots M-A. La résistance mécanique est alors diminuée par la présence de ferrite proeutectoïde.The steel sheets I1-b and I1-c were annealed at too low a temperature T 1 , the austenitic transformation is not complete. Consequently, the microstructure contains proeutectoid ferrite (40% for I1b, 20% for I1-c) and an excessive content of MA islands. The mechanical resistance is then reduced by the presence of proeutectoid ferrite.

Pour la tôle d'acier I1-d, la température de maintien T2 est supérieure à Ms+30°C : la transformation bainitique qui intervient à plus haute température donne naissance à une structure plus grossière et conduit à une résistance mécanique insuffisante.For the steel sheet I1-d, the holding temperature T 2 is greater than Ms+30° C.: the bainitic transformation which occurs at higher temperature gives rise to a coarser structure and leads to insufficient mechanical strength.

Pour la tôle d'acier I-2c, la vitesse de refroidissement VR1 après recuit n'est pas suffisante, la microstructure formée est plus hétérogène et l'allongement à rupture est réduit au dessous de 10%.For the steel sheet I-2c, the cooling rate V R1 after annealing is not sufficient, the microstructure formed is more heterogeneous and the elongation at break is reduced to below 10%.

Pour la tôle I-3b, la température de maintien T2 est inférieure à Ms-20°C : en conséquence, le refroidissement VR1 provoque l'apparition d'une bainite formée à basse température et de martensite, associées à un allongement insuffisant.For sheet I-3b, the holding temperature T 2 is lower than Ms-20°C: consequently, cooling V R1 causes the appearance of bainite formed at low temperature and martensite, associated with insufficient elongation .

L'acier R1 a une teneur en (silicium+aluminium) insuffisante, la température de maintien T2 est inférieure à Ms-20°C. En raison de la teneur insuffisante en (Si+Al), la quantité d'îlots M-A formée est insuffisante pour obtenir une résistance supérieure ou égale à 1200MPa.The steel R1 has an insufficient (silicon+aluminum) content, the holding temperature T 2 is lower than Ms-20°C. Due to the insufficient content of (Si+Al), the amount of MA islands formed is insufficient to obtain a strength greater than or equal to 1200MPa.

Les aciers R2 et R3 ont des teneurs en carbone, manganèse, silicium+aluminium, insuffisantes. La quantité de composés M-A formés est inférieure à 10%. En outre, la température de recuit T1 inférieure à Ac3 conduit à une teneur excessive en ferrite proeutectoïde et en cémentite, et à une résistance insuffisante.R2 and R3 steels have insufficient carbon, manganese, silicon+aluminum contents. The amount of MA compounds formed is less than 10%. Furthermore, the annealing temperature T 1 lower than A c3 leads to an excessive content of proeutectoid ferrite and of cementite, and to insufficient strength.

L'acier R4 a une teneur insuffisante en (Si+Al) La vitesse de refroidissement VR1 est notamment trop faible. L'enrichissement de l'austénite en carbone au refroidissement est alors insuffisant pour permettre la formation de martensite et pour obtenir les propriétés de résistance et d'allongement visées par l'invention.The steel R4 has an insufficient content of (Si+Al) The cooling rate V R1 is in particular too low. The enrichment of the austenite with carbon on cooling is then insufficient to allow the formation of martensite and to obtain the strength and elongation properties targeted by the invention.

L'acier R5 présente également une teneur insuffisante en (Si+Al) La vitesse de refroidissement insuffisamment rapide après le recuit conduit à une teneur excessive en ferrite proeutectoïde et à une résistance mécanique insuffisante.Steel R5 also has an insufficient content of (Si+Al). The insufficiently rapid cooling rate after annealing leads to an excessive content of proeutectoid ferrite and insufficient mechanical strength.

Partant du procédé de fabrication de la tôle d'acier I2-a, une tôle d'acier I2-d été fabriquée selon un procédé présentant des caractéristiques identiques, à l'exception de la température T1 égale à 830°C, soit la température Ac3. Dans le cas où T1 est égale à Ac3, l'aptitude à l'expansion de trou conique est de 25%. Quand la température T1 est égale à 850°C (Ac3+20°C), l'aptitude à l'expansion est accrue jusqu'à 31%.Starting from the manufacturing process of the steel sheet I2-a, a steel sheet I2-d was manufactured according to a process having identical characteristics, with the exception of the temperature T 1 equal to 830°C, i.e. the temperature A c3 . In the case where T 1 is equal to A c3 , the capacity for conical hole expansion is 25%. When the temperature T 1 is equal to 850°C (A c3 +20°C), the ability to expand is increased by up to 31%.

Ainsi, l'invention permet la fabrication de tôles d'aciers alliant une très haute résistance et une ductilité élevée. Les tôles d'aciers selon l'invention sont utilisées avec profit pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile et de l'industrie générale.Thus, the invention allows the manufacture of steel sheets combining very high strength and high ductility. The steel sheets according to the invention are used with profit for the manufacture of structural parts or reinforcing elements in the automotive field and in general industry.

Claims (13)

  1. Cold-rolled and annealed sheet steel with a strength higher than 1200 MPa and elongation at break higher than 8%, the composition of which is as follows, the contents being expressed in weight:
    0.10% ≤ C ≤ 0.25%
    1% ≤ Mn ≤ 3%
    Al ≥ 0.010%
    1.2% ≤ Si ≤ 1.8%
    S ≤ 0.015%
    P ≤ 0.1%
    N ≤ 0.008%,
    it being understood that
    1.2% ≤ Si+Al ≤ 3%,
    Mo ≤ 0.25%
    Cr ≤ 1.65%
    it being understood that
    Cr+(3 × Mo) ≥ 0.3%
    B = 0%,
    wherein the composition possibly comprises:
    0.05% ≤ V ≤ 0.15%
    Ti in a quantity such as Ti/N ≥ 4 and Ti ≤ 0.040%,
    the remainder of the composition being formed from iron and inevitable impurities resulting from smelting, wherein the microstructure of said steel amounts to 65 to 90% bainite, the balance being formed from islands of martensite and residual austenite.
  2. Cold-rolled and annealed sheet steel with a strength higher than 1400 MPa and elongation at break higher than 8%, the composition of which is as follows, the contents being expressed in weight:
    0.10% ≤ C ≤ 0.25%
    1% ≤ Mn ≤ 3%
    Al ≥ 0.010%
    1.2% ≤ Si ≤ 1.8%
    S ≤ 0.015%
    P ≤ 0.1%
    N ≤ 0.008%,
    it being understood that
    1.2% ≤ Si+Al ≤ 3%,
    Mo ≤ 0.25%
    Cr ≤ 1.65%
    it being understood that
    Cr+(3 × Mo) ≥ 0.3%
    wherein the composition possibly comprises:
    0.05% ≤ V ≤ 0.15%
    B ≤ 0.005%,
    Ti in a quantity such as Ti/N ≥ 4 and Ti ≤ 0.040%,
    the remainder of the composition being formed from iron and inevitable impurities resulting from smelting, wherein the microstructure of said steel comprises 45 to 65% bainite, the balance being formed from islands of martensite and residual austenite.
  3. Cold-rolled and annealed sheet steel with a strength higher than 1600 MPa and elongation at break higher than 8%, the composition of which is as follows, the contents being expressed in weight:
    0.10% ≤ C ≤ 0.25%
    1% ≤ Mn ≤ 3%
    Al ≥ 0.010%
    1.2% ≤ Si ≤ 1.8%
    S ≤ 0.015%
    P ≤ 0.1%
    N ≤ 0.008%,
    it being understood that
    1.2% ≤ Si+Al ≤ 3%,
    Mo ≤ 0.25%
    Cr ≤ 1.65%
    it being understood that
    Cr+(3 × Mo) ≥ 0.3%
    0.0005 ≤ B ≤0.003 %,
    wherein the composition possibly comprises:
    0.05% ≤ V ≤ 0.15%
    Ti in a quantity such as Ti/N ≥ 4 and Ti ≤ 0.040%,
    the remainder of the composition being formed from iron and inevitable impurities resulting from smelting, wherein the microstructure of said steel comprises 15 to 45% bainite, the balance being formed from martensite and residual austenite.
  4. Sheet steel according to any one of claims 1 to 3, characterised in that the composition of said steel contains, the content being expressed in weight:
    0.19% ≤ C ≤ 0.23%.
  5. Sheet steel according to any one of claims 1 to 4, characterised in that the composition of said steel contains, the content being expressed in weight:
    1.5% ≤ Mn ≤ 2.5%.
  6. Sheet steel according to any one of claims 1 to 5, characterised in that the composition of said steel contains, the content being expressed in weight:
    1.2% ≤ Al ≤ 1.8%.
  7. Sheet steel according to any one of claims 1 to 6, characterised in that the composition of said steel contains, the content being expressed in weight:
    0.05% ≤ V ≤ 0.15%
    0.004 ≤ N ≤ 0.008%.
  8. Sheet steel according to any one of claims 1 to 7, characterised in that the composition of said steel contains, the content being expressed in weight:
    0.12% ≤ V ≤ 0.15%.
  9. Sheet steel according to any one of claims 1 to 8, characterised in that the average size of said islands of martensite and residual austenite is less than 1 micrometre, and the average distance between said islands is less than 6 micrometres.
  10. Process for the production of a cold-rolled sheet steel with a strength higher than 1200 MPa, an elongation at break higher than 10%, according to which
    • a steel is supplied, the composition of said steel is as follows, the contents being expressed in weight:
    0.10% ≤ C ≤ 0.25%
    1% ≤ Mn ≤ 3%
    Al ≥ 0.010%
    1.2% ≤ Si ≤ 1.8%
    S ≤ 0.015%
    P ≤ 0.1%
    N ≤ 0.008%,
    it being understood that
    1.2% ≤ Si+Al ≤ 3%,
    Mo < 0.005%
    Cr < 0.005%
    B = 0%,
    wherein the composition possibly comprises:
    0.05% ≤ V ≤ 0.15%
    Ti in a quantity such as Ti/N ≥ 4 and Ti ≤ 0.040%,
    the remainder of the composition being formed from iron and inevitable impurities resulting from smelting
    then
    • semi-finished product is cast from this steel, then
    • said semi-finished product is brought to a temperature higher than 1150°C, then
    • said semi-finished product is hot rolled to obtain a hot-rolled sheet, then
    • said sheet is wound, then
    • said hot-rolled sheet is pickled, then
    • said sheet is cold rolled at a reduction rate in the range of between 30 and 80% in order to obtain a cold-rolled sheet, then
    • said cold-rolled sheet is reheated at a rate Vc in the range of between 5 and 15°C/s to a temperature T1 in the range of between Ac3 and Ac3+20°C for a time t1 in the range of between 50 and 150s, then said sheet is cooled at a rate VR1 higher than 40°C/s and lower than 100°C/s to a temperature T2 in the range of between (Ms-30°C)and (Ms+30°C), said sheet is maintained at said temperature T2 for a time t2 in the range of between 150 and 350s, then a cooling is conducted at a rate VR2 lower than 30°C/s to ambient temperature.
  11. Process for the production of a cold-rolled sheet steel with a strength higher than 1200 MPa, an elongation at break higher than 8%, according to which
    • a steel is supplied, the composition of said steel being according to any one of claims 1 to 3, wherein the contents of Mo and Cr are such that Mo ≤ 0.25%, Cr ≤ 1.65%, it being understood that Cr+(3 × Mo) ≥ 0.3%, then
    • semi-finished product is cast from this steel, then
    • said semi-finished product is brought to a temperature higher than 1150°C, then
    • said semi-finished product is hot rolled to obtain a hot-rolled sheet, then
    • said sheet is wound, then
    • said hot-rolled sheet is pickled, then
    • said sheet is cold rolled at a reduction rate in the range of between 30 and 80% in order to obtain a cold-rolled sheet, then
    • said cold-rolled sheet is reheated at a rate Vc in the range of between 5 and 15°C/s to a temperature T1 in the range of between Ac3 and Ac3+20°C for a time t1 in the range of between 50 and 150s, then said sheet is cooled at a rate VR1 higher than 25°C/s and lower than 100°C/s to a temperature T2 in the range of between Bs and (Ms-20°C), said sheet is maintained at said temperature T2 for a time t2 in the range of between 150 and 350s, then a cooling is conducted at a rate VR2 lower than 30°C/s to ambient temperature.
  12. Production process according to claim 10, characterised in that the temperature T1 is preferably in the range of between Ac3+10°C and Ac3+20°C.
  13. Use of a sheet steel cold-rolled and annealed according to any one of claims 1 to 9 or produced by a process according to any one of claims 10 to 12 for the production of structural parts or reinforcing elements in the automotive field.
EP08805523.1A 2007-05-11 2008-04-28 Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced Active EP2155915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08805523.1T PL2155915T5 (en) 2007-05-11 2008-04-28 Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07290598A EP1990431A1 (en) 2007-05-11 2007-05-11 Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
PCT/FR2008/000609 WO2008145871A2 (en) 2007-05-11 2008-04-28 Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced

Publications (3)

Publication Number Publication Date
EP2155915A2 EP2155915A2 (en) 2010-02-24
EP2155915B1 EP2155915B1 (en) 2017-10-25
EP2155915B2 true EP2155915B2 (en) 2022-04-27

Family

ID=38596874

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07290598A Withdrawn EP1990431A1 (en) 2007-05-11 2007-05-11 Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
EP08805523.1A Active EP2155915B2 (en) 2007-05-11 2008-04-28 Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07290598A Withdrawn EP1990431A1 (en) 2007-05-11 2007-05-11 Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby

Country Status (16)

Country Link
US (4) US20100307644A1 (en)
EP (2) EP1990431A1 (en)
JP (1) JP5398701B2 (en)
KR (1) KR101523395B1 (en)
CN (1) CN101765668B (en)
AR (1) AR066508A1 (en)
BR (1) BRPI0821572B1 (en)
CA (1) CA2686940C (en)
ES (1) ES2655476T5 (en)
HU (1) HUE035549T2 (en)
MA (1) MA31555B1 (en)
MX (1) MX2009011927A (en)
PL (1) PL2155915T5 (en)
RU (1) RU2437945C2 (en)
WO (1) WO2008145871A2 (en)
ZA (1) ZA200907430B (en)

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
EP2123786A1 (en) * 2008-05-21 2009-11-25 ArcelorMittal France Method of manufacturing very high-resistance, cold-laminated dual-phase steel sheets, and sheets produced thereby
CN101928875A (en) * 2009-06-22 2010-12-29 鞍钢股份有限公司 High-strength cold-rolled plate with favorable forming property and preparation method thereof
JP5703608B2 (en) * 2009-07-30 2015-04-22 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP2013545890A (en) * 2010-10-12 2013-12-26 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Steel blank hot forming method and hot formed parts
UA112771C2 (en) * 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл STEEL SHEET WITH HIGH MECHANICAL STRENGTH, PLASTICITY AND FORMATION, METHOD OF MANUFACTURING AND APPLICATION OF SUCH SHEETS
US10774412B2 (en) 2011-07-06 2020-09-15 Nippon Steel Corporation Hot-dip galvanized cold-rolled steel sheet and process for producing same
US9115416B2 (en) 2011-12-19 2015-08-25 Kobe Steel, Ltd. High-yield-ratio and high-strength steel sheet excellent in workability
PL2803746T3 (en) 2012-01-13 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
PL2803744T3 (en) 2012-01-13 2018-11-30 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and method for producing same
JP5516785B2 (en) * 2012-03-29 2014-06-11 Jfeスチール株式会社 Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5860333B2 (en) 2012-03-30 2016-02-16 株式会社神戸製鋼所 High yield ratio high strength cold-rolled steel sheet with excellent workability
JP2013209728A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Cold rolled steel sheet excellent in aging resistance and manufacturing method thereof
US9809874B2 (en) 2012-04-10 2017-11-07 Nippon Steel & Sumitomo Metal Corporation Steel sheet suitable for impact absorbing member and method for its manufacture
JP2014019928A (en) * 2012-07-20 2014-02-03 Jfe Steel Corp High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
EP2690184B1 (en) * 2012-07-27 2020-09-02 ThyssenKrupp Steel Europe AG Produit plat en acier laminé à froid et son procédé de fabrication
CN102766807A (en) * 2012-07-31 2012-11-07 内蒙古包钢钢联股份有限公司 Boron contained bainite steel plate and manufacturing method thereof
TR201903460T4 (en) * 2012-09-14 2019-04-22 Ilsenburger Grobblech Gmbh Steel alloy for a low alloy, high strength steel.
WO2015011511A1 (en) * 2013-07-24 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets
DE102013013067A1 (en) * 2013-07-30 2015-02-05 Salzgitter Flachstahl Gmbh Silicon-containing microalloyed high-strength multiphase steel having a minimum tensile strength of 750 MPa and improved properties and processes for producing a strip of this steel
ES2636780T3 (en) 2013-08-22 2017-10-09 Thyssenkrupp Steel Europe Ag Procedure for manufacturing a steel component
MA39245B2 (en) * 2014-02-05 2021-04-30 Arcelormittal S A Thermoformable, air hardenable and weldable steel sheet
CN103952635B (en) * 2014-05-13 2016-09-14 东北特钢集团北满特殊钢有限责任公司 High-strength steel of manganese and silicon containing and preparation method thereof
PL3150736T3 (en) 2014-05-29 2020-03-31 Nippon Steel Corporation Heat-treated steel material and method for producing same
CN104018069B (en) * 2014-06-16 2016-01-20 武汉科技大学 A kind of high-performance low-carbon is containing Mo bainitic steel and preparation method thereof
WO2016001708A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, formability and obtained sheet
WO2016001706A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016001710A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel having improved strength and ductility and obtained sheet
WO2016001702A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
WO2016001700A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
WO2016001704A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for manufacturing a high strength steel sheet and sheet obtained
DE102014017274A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Highest strength air hardening multiphase steel with excellent processing properties and method of making a strip from this steel
WO2016132165A1 (en) * 2015-02-19 2016-08-25 Arcelormittal Method of producing a phosphatable part from a sheet coated with an aluminium-based coating and a zinc coating
DE102015112886A1 (en) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh High-strength aluminum-containing manganese steel, a process for producing a steel flat product from this steel and steel flat product produced therefrom
WO2017109539A1 (en) 2015-12-21 2017-06-29 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability, and obtained high strength steel sheet
MX2018008975A (en) 2016-01-22 2018-09-03 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor.
WO2018115935A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
WO2018115933A1 (en) * 2016-12-21 2018-06-28 Arcelormittal High-strength cold rolled steel sheet having high formability and a method of manufacturing thereof
WO2018115936A1 (en) * 2016-12-21 2018-06-28 Arcelormittal Tempered and coated steel sheet having excellent formability and a method of manufacturing the same
WO2018215813A1 (en) * 2017-05-22 2018-11-29 Arcelormittal Method for producing a steel part and corresponding steel part
WO2018220430A1 (en) * 2017-06-02 2018-12-06 Arcelormittal Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal Zinc coated steel sheet with high resistance spot weldability
WO2019111029A1 (en) 2017-12-05 2019-06-13 Arcelormittal Cold rolled and annealed steel sheet and method of manufacturing the same
WO2019122963A1 (en) 2017-12-19 2019-06-27 Arcelormittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
CN109576579A (en) * 2018-11-29 2019-04-05 宝山钢铁股份有限公司 It is a kind of with high hole expansibility and compared with the 980MPa grade cold-rolled steel sheet and its manufacturing method of high-elongation
MX2021005866A (en) * 2018-11-30 2021-07-16 Arcelormittal Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof.
CN109894812B (en) * 2019-02-13 2021-09-24 舞阳钢铁有限责任公司 Method for producing Cr-Mo steel plate by using small single blank
CN112159931B (en) * 2020-09-28 2022-08-12 首钢集团有限公司 1000 MPa-grade medium manganese TRIP steel with continuous yield and preparation method thereof
CN113215493B (en) * 2021-05-11 2022-01-07 北京理工大学 High-strength grenade steel and preparation method thereof
CN114807746B (en) * 2021-05-28 2022-12-30 广西柳钢华创科技研发有限公司 HRB500E twisted steel bar produced by high-speed bar
CN113699456B (en) * 2021-09-01 2022-06-21 山东盛阳金属科技股份有限公司 Production process of 254SMo super austenitic stainless steel hot continuous rolling plate coil
CN115261704B (en) * 2022-07-29 2023-01-24 攀钢集团攀枝花钢铁研究院有限公司 Manufacturing method of medium-strength hot-rolled bainite steel rail

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190050A (en) 2002-12-06 2004-07-08 Kobe Steel Ltd High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part
EP1676932A1 (en) 2004-12-28 2006-07-05 Kabushiki Kaisha Kobe Seiko Sho High strength thin steel sheet having high hydrogen embrittlement resisting property

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04350121A (en) * 1991-05-27 1992-12-04 Nippon Steel Corp Production of steel plate and sheet excellent in high temperature strength characteristic
FR2729974B1 (en) 1995-01-31 1997-02-28 Creusot Loire HIGH DUCTILITY STEEL, MANUFACTURING PROCESS AND USE
JPH0925538A (en) * 1995-05-10 1997-01-28 Kobe Steel Ltd High strength cold rolled steel sheet excellent in pitting corrosion resistance and crushing characteristic, high strength galvanized steel sheet, and their production
JPH09263838A (en) * 1996-03-28 1997-10-07 Kobe Steel Ltd Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JP3450985B2 (en) * 1997-04-10 2003-09-29 新日本製鐵株式会社 High-strength cold-rolled steel sheet having good shape and excellent bendability and manufacturing method thereof
US6254698B1 (en) 1997-12-19 2001-07-03 Exxonmobile Upstream Research Company Ultra-high strength ausaged steels with excellent cryogenic temperature toughness and method of making thereof
JP2000080440A (en) * 1998-08-31 2000-03-21 Kawasaki Steel Corp High strength cold rolled steel sheet and its manufacture
JP2001226741A (en) * 2000-02-15 2001-08-21 Kawasaki Steel Corp High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001267386A (en) 2000-03-22 2001-09-28 Sony Corp Test circuit for semiconductor device
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
JP4304350B2 (en) 2002-08-20 2009-07-29 雅則 平野 Polynucleotide synthesis method
FR2847271B1 (en) * 2002-11-19 2004-12-24 Usinor METHOD FOR MANUFACTURING AN ABRASION RESISTANT STEEL SHEET AND OBTAINED SHEET
JP2005168405A (en) 2003-12-11 2005-06-30 Ajinomoto Co Inc Method for producing dipeptide
EP1559798B1 (en) * 2004-01-28 2016-11-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
EP1589126B1 (en) * 2004-04-22 2009-03-25 Kabushiki Kaisha Kobe Seiko Sho High-strenght cold rolled steel sheet having excellent formability and plated steel sheet
JP4254663B2 (en) * 2004-09-02 2009-04-15 住友金属工業株式会社 High strength thin steel sheet and method for producing the same
JP2006089775A (en) * 2004-09-21 2006-04-06 Nisshin Steel Co Ltd Method for producing tyre core having excellent durability
RU2292404C1 (en) 2005-07-15 2007-01-27 Открытое акционерное общество "Северсталь" Strip making method for producing tubes
JP4772496B2 (en) * 2005-12-27 2011-09-14 新日本製鐵株式会社 High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
EP1832667A1 (en) 2006-03-07 2007-09-12 ARCELOR France Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets.
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190050A (en) 2002-12-06 2004-07-08 Kobe Steel Ltd High strength steel plate with excellent elongation and stretch-flangeability by warm working, warm working method, and warm-worked high strength member or part
EP1676932A1 (en) 2004-12-28 2006-07-05 Kabushiki Kaisha Kobe Seiko Sho High strength thin steel sheet having high hydrogen embrittlement resisting property

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IMOSE: "Heating and cooling technology in the continuous annealing", TRANSACTIONS ISIU, vol. 25, 1985, pages 911 - 932
SUGIMOTO ET AL., ISIJ INTERNATIONAL, vol. 40, no. 9, 2000, pages 902 - 908

Also Published As

Publication number Publication date
MX2009011927A (en) 2009-11-18
WO2008145871A8 (en) 2019-09-06
US20160355900A1 (en) 2016-12-08
US10612106B2 (en) 2020-04-07
RU2437945C2 (en) 2011-12-27
EP1990431A1 (en) 2008-11-12
MA31555B1 (en) 2010-08-02
CA2686940C (en) 2014-01-21
ZA200907430B (en) 2010-07-28
CN101765668A (en) 2010-06-30
HUE035549T2 (en) 2018-05-28
ES2655476T5 (en) 2022-09-29
KR20100016438A (en) 2010-02-12
US20220136078A1 (en) 2022-05-05
CA2686940A1 (en) 2008-12-04
CN101765668B (en) 2011-12-21
WO2008145871A2 (en) 2008-12-04
ES2655476T3 (en) 2018-02-20
WO2008145871A3 (en) 2009-02-19
JP5398701B2 (en) 2014-01-29
US20200032366A1 (en) 2020-01-30
EP2155915A2 (en) 2010-02-24
EP2155915B1 (en) 2017-10-25
BRPI0821572B1 (en) 2019-10-01
RU2009145940A (en) 2011-06-20
BRPI0821572A2 (en) 2015-06-16
JP2010526935A (en) 2010-08-05
KR101523395B1 (en) 2015-05-27
AR066508A1 (en) 2009-08-26
US11414722B2 (en) 2022-08-16
US20100307644A1 (en) 2010-12-09
PL2155915T3 (en) 2018-03-30
PL2155915T5 (en) 2022-09-05

Similar Documents

Publication Publication Date Title
EP2155915B2 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP1994192B1 (en) Process for manufacturing steel sheet having very high strength, ductility and toughness characteristics, and sheet thus produced
EP2707514B1 (en) Steel sheet with high mechanical strength, ductility and formability properties, production method and use of such sheets
EP2291547B1 (en) Method for manufacturing very high strength, cold-rolled, dual phase steel sheets, and sheets thus produced
EP3084014B1 (en) High strength steel and method of production of the same
EP2171112B1 (en) Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained
EP3783116B1 (en) Pre-coated sheets allowing the production of press-hardened and coated steel parts
EP2718469B1 (en) Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate
EP2707513B1 (en) Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
EP2707515B1 (en) Producing method for very high yield strength martensitic steel sheet and steel sheet obtained
EP3307921A2 (en) High-strength steel and production method
FR2878257A1 (en) PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY
CA3065036C (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100415

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 940011

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008052677

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2655476

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180220

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E035549

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602008052677

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

26 Opposition filed

Opponent name: TATA STEEL IJMUIDEN BV

Effective date: 20180725

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180428

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: TATA STEEL IJMUIDEN BV

Effective date: 20180725

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 940011

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171025

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: TITRE

27A Patent maintained in amended form

Effective date: 20220427

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 602008052677

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SK

Ref legal event code: T5

Ref document number: E 26330

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2655476

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20220929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230328

Year of fee payment: 16

Ref country code: FR

Payment date: 20230321

Year of fee payment: 16

Ref country code: FI

Payment date: 20230321

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230327

Year of fee payment: 16

Ref country code: SK

Payment date: 20230323

Year of fee payment: 16

Ref country code: SE

Payment date: 20230327

Year of fee payment: 16

Ref country code: PL

Payment date: 20230322

Year of fee payment: 16

Ref country code: IT

Payment date: 20230322

Year of fee payment: 16

Ref country code: GB

Payment date: 20230321

Year of fee payment: 16

Ref country code: BE

Payment date: 20230321

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230502

Year of fee payment: 16

Ref country code: DE

Payment date: 20230321

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230329

Year of fee payment: 16

Ref country code: AT

Payment date: 20230322

Year of fee payment: 16