EP2707513B1 - Method for the production of very-high-strength martensitic steel and sheet or part thus obtained - Google Patents

Method for the production of very-high-strength martensitic steel and sheet or part thus obtained Download PDF

Info

Publication number
EP2707513B1
EP2707513B1 EP12724656.9A EP12724656A EP2707513B1 EP 2707513 B1 EP2707513 B1 EP 2707513B1 EP 12724656 A EP12724656 A EP 12724656A EP 2707513 B1 EP2707513 B1 EP 2707513B1
Authority
EP
European Patent Office
Prior art keywords
steel
sheet
temperature
blank
mean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12724656.9A
Other languages
German (de)
French (fr)
Other versions
EP2707513A1 (en
Inventor
Kangying ZHU
Olivier Bouaziz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Priority to PL12724656T priority Critical patent/PL2707513T3/en
Publication of EP2707513A1 publication Critical patent/EP2707513A1/en
Application granted granted Critical
Publication of EP2707513B1 publication Critical patent/EP2707513B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method for manufacturing sheet or steel parts with a martensitic structure, with a mechanical strength greater than that which could be obtained by austenitization and then simple fast cooling treatment with martensitic quenching, and properties of mechanical strength and durability. elongation allowing their application to the manufacture of energy absorbing parts in motor vehicles. In some applications, it is sought to produce steel parts combining high mechanical strength, high impact resistance and good corrosion resistance. This type of combination is particularly desirable in the automotive industry where significant vehicle lightening is sought. This can be achieved particularly through the use of steel parts with very high mechanical properties whose microstructure is martensitic or bainito-martensitic. Anti-intrusion parts, structure or participating in the safety of motor vehicles such as: bumper cross members, door or center pusher reinforcements, wheel arms, require for example the qualities mentioned above. Their thickness is preferably less than 3 millimeters.
  • the patent EP0971044 discloses the manufacture of a steel sheet coated with aluminum or an aluminum alloy, the composition of which comprises in weight content: 0.15-0.5% C, 0.5-3% Mn , 0.1-0.5% Si, 0.011% Cr, Ti ⁇ 0.2%, Al ⁇ 0.1%, P ⁇ 0.1%, S ⁇ 0.05%, 0.0005% ⁇ B ⁇ 0.08%, the rest being iron and impurities inherent in the elaboration.
  • This sheet is heated so as to obtain an austenitic transformation and hot stamped so as to produce a part, which is then cooled rapidly to obtain a martensitic or martensito-bainitic structure. In this way, it is possible to obtain, for example, a mechanical strength greater than 1500 MPa. However, we seek to obtain parts with even greater mechanical strength. We search still, at a given level of mechanical strength, to reduce the carbon content of the steel so as to improve its weldability.
  • the patent GB 1,166,042 discloses a steel composition suitable for this ausforming process, which comprises 0.1-0.6% C, 0.25-5% Mn, 0.5-2% Al, 0.5-3% Mo, 0.01-2% Si, 0.01-1% V.
  • These steels include significant additions of molybdenum, manganese, aluminum, silicon and / or copper. These are intended to create a larger metastability domain for austenite, ie to delay the onset of the transformation from austenite to ferrite, bainite or perlite, at the temperature at which performs hot deformation.
  • Most studies on ausforming have been conducted on steels with a carbon content greater than 0.3%.
  • these compositions adapted to the ausforming have the disadvantage of requiring special precautions for welding, and also have particular difficulties in the case where it is desired to perform a metal coating quenching.
  • these compositions have expensive addition elements.
  • (C) denotes the carbon content of the steel, expressed as a percentage by weight.
  • a method of manufacture is thus sought which makes it possible to obtain an ultimate tensile strength of 50 MPa for expression (1), ie a strength greater than 3220 (C ) + 958 MPa for this steel. It is sought to have a method for producing sheet metal with a very high yield strength, say greater than 1300 MPa. It is also sought to have a method for the manufacture of sheets or parts usable directly, that is to say without the need for a tempering treatment after quenching. It is also sought to have a manufacturing process for the manufacture of a sheet or a readily coated part by dipping in a metal bath.
  • the present invention aims to solve the problems mentioned above. It aims in particular to provide sheets with a yield strength greater than 1300 MPa, a mechanical strength expressed in megapascals greater than (3220 (C) +958) MPa, and preferably a total elongation greater than 3%.
  • the blank is hot-stamped so as to obtain a workpiece, then the workpiece is held in the stamping tool so as to cool it at a speed V R2 greater than the critical speed of martensitic quenching. .
  • the blank is pre-coated with aluminum or an aluminum-based alloy.
  • the blank is pre-coated with zinc or a zinc-based alloy.
  • the sheet or piece of steel obtained by any one of the above manufacturing processes is subjected to a subsequent heat treatment of tempering at a temperature T 4 of between 150 and 600 ° C. for a period of time between 5 and 30 minutes.
  • the subject of the invention is also an unreturned steel sheet having a yield strength greater than 1300 MPa, with a mechanical strength greater than (3220 (C) +958) megapascals, with the proviso that (C) denotes the weight percent carbon content of the steel, obtained by any of the above manufacturing processes, having a totally martensitic structure, having a medium size of slats less than 1 micrometer, the average elongation factor of slats being between 2 and 5
  • the invention also relates to a piece of unreturned steel obtained by any one of the above part manufacturing processes, the part comprising at least one zone of totally martensitic structure having an average slat size of less than 1 micrometer, the average elongation factor of the slats being between 2 and 5, the yield strength in said zone being greater than 1300 MPa and the mechanical strength being greater than (3220 (C) +958) megapascals, it being understood that (C) refers to the percentage carbon content of the steel.
  • the subject of the invention is also a sheet or a piece of steel obtained by the process with the above treatment of income, the steel having a totally martensitic structure, having in at least one zone an average slat size of less than 1 , 2 micrometer, the average elongation factor of the slats being between 2 and 5.
  • the inventors have demonstrated that the problems described above were solved by means of a specific ausforming process implemented on a particular range of steel compositions. Contrary to previous studies which showed that ausforming required the addition of expensive alloying elements, the inventors have surprisingly demonstrated that this effect can be obtained thanks to substantially less charged compositions of alloying elements.
  • the carbon content of the steel is less than 0.15% by weight, the quenchability of the steel is insufficient given the process used and it is not possible to obtain a totally martensitic structure.
  • this content is greater than 0.40%, welded joints made from these sheets or these parts have insufficient toughness.
  • the optimum carbon content for the implementation of the invention is between 0.16 and 0.28%.
  • Manganese lowers the initial formation temperature of martensite and slows the decomposition of austenite. In order to obtain sufficient effects to allow the implementation of the ausforming, the manganese content must not be less than 1.5%. Moreover, when the manganese content exceeds 3%, segregated zones are present in excessive quantity which is detrimental to the implementation of the invention. A preferred range for the implementation of the invention is 1.8 to 2.5% Mn.
  • the silicon content must be greater than 0.005% so as to contribute to the deoxidation of the steel in the liquid phase.
  • the silicon should not exceed 2% by weight due to the formation of surface oxides which significantly reduce the processability in processes involving a continuous passage of the steel sheet in a coating metal bath.
  • Chromium and molybdenum are very effective in retarding the transformation of austenite and in separating the ferrito- pearlitic and bainitic transformation domains, ferrito- pearlitic transformation occurring at higher temperatures than bainitic transformation.
  • These transformation domains are in the form of two distinct "noses" in an isothermal transformation diagram TTT (Transformation-Temperature-Time) from the austenite, which allows the implementation of the method according to the invention.
  • the chromium content of the steel must be between 1.8% and 4% by weight in order for its delay effect on the transformation of the austenite to be sufficient.
  • the chromium content of the steel takes into account the content of other elements that increase the quenchability such as manganese and molybdenum: in fact, given the respective effects of manganese, chromium and molybdenum on the transformations from the austenite, a combined addition of these elements must be carried out respecting the following condition, the respectively noted quantities (Mn) (Cr) (Mo) being expressed in percentage by weight: 2.7% ⁇ 0.5 (Mn) + (Cr) 3 (MB) ⁇ 5,7%.
  • the molybdenum content must not exceed 2% because of its excessive cost.
  • the aluminum content of the steel according to the invention is not less than 0.005% so as to obtain sufficient deoxidation of the steel in the liquid state.
  • the aluminum content is greater than 0.1% by weight, casting problems can occur. It is also possible to form inclusions of alumina in too large a quantity or size which play a detrimental role on the tenacity:
  • the sulfur and phosphorus contents of the steel are respectively limited to 0.05 and 0.1% in order to avoid a reduction in the ductility or toughness of the parts or sheets produced according to the invention.
  • the steel may optionally contain niobium and / or titanium, which makes it possible to refine further refinement of the grain. Due to the heat curing these additions confer, they must however be limited to 0.050% for niobium and between 0.01 and 0.1% for titanium so as not to increase the forces during hot rolling. .
  • the steel can also contain boron: indeed, the significant deformation of the austenite can accelerate the conversion to ferrite on cooling, a phenomenon that should be avoided. Addition of boron in an amount of between 0.0005 and 0.005% by weight makes it possible to guard against early ferritic transformation.
  • the steel may also contain calcium in an amount between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium prevents the formation of large inclusions, harmful to the ductility of the sheets or parts thus manufactured.
  • the rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.
  • the sheets or steel parts manufactured according to the invention are characterized by a totally slab martensite structure of great fineness: due to the specific thermomechanical cycle and composition, the average size of the martensitic slats is less than 1 micrometer and their average elongation factor is between 2 and 5.
  • These microstructural characteristics are determined for example by observing the microstructure by scanning electron microscopy using a field effect gun ("MEB-FEG” technique) at a magnification higher than 1200x, coupled to an EBSD detector ("Electron Backscatter Diffraction"). It is defined that two contiguous slats are distinct when their disorientation is greater than 5 degrees.
  • the average slat size is defined by the intercepts method known per se: the mean size of the intercepted slats is evaluated by randomly defined lines with respect to the microstructure. The measurement is performed on at least 1000 martensitic slats in order to obtain a representative average value.
  • the morphology of the individual slats is determined by image analysis using known software in themselves: the maximum I max and minimum I min dimension of each martensitic slat and its elongation factor are determined. l max l min . In order to be statistically representative, this observation concerns at least 1000 martensitic slats.
  • the average elongation factor l max ⁇ l min is then determined for all of these slats observed.
  • the method according to the invention makes it possible to manufacture either rolled sheets or hot-stamped or heat-formed parts. These two modes will be successively exposed.
  • the cumulative reduction rate of the various stages of rolling at roughing is noted ⁇ a .
  • e ia denotes the thickness of the semi-finished product before the hot rolling of roughing
  • e fa the thickness of the sheet after this rolling
  • the reduction rate cumulated by ⁇ at Ln e ia e f at .
  • the cumulative reduction ratio ⁇ a during the rough rolling must be greater than 30%. Under these conditions, the austenite obtained is completely recrystallized with an average grain size of less than 40 micrometers or even 5 microns when the strain ⁇ a is greater than 200% and when the temperature T 2 is between 950 and 880 ° C. .
  • the sheet is then not completely cooled, that is to say up to an intermediate temperature T 3 , so as to avoid transformation of the austenite, at a speed V R1 greater than 2 ° C./s up to a temperature T 3 between 600 ° C and 400 ° C, temperature range in which the austenite is metastable, that is to say in a field where it should not be present under conditions of thermodynamic equilibrium.
  • a finishing hot rolling is then carried out at the temperature T 3 , the cumulative reduction ratio ⁇ b being greater than 30%. Under these conditions, a plastically deformed austenitic structure is obtained in which no action is taken. recrystallization.
  • the sheet is then cooled at a speed V R2 greater than the critical martensitic quenching speed.
  • the invention is not limited to this geometry and to this type of products, and can be used for the manufacture of long products, bars, profiles, by successive stages of hot deformation.
  • This flat blank is obtained by cutting a sheet or a coil in a form related to the final geometry of the target part.
  • This blank may be uncoated or optionally pre-coated.
  • the pre-coating may be aluminum or an aluminum-based alloy.
  • the sheet may advantageously be obtained by continuously dipping in a bath of aluminum-silicon alloy comprising by weight 5-11% of silicon, 2 to 4% of iron, optionally between 15 and 30 ppm of calcium, the rest being aluminum and unavoidable impurities resulting from the elaboration.
  • the blank may also be pre-coated with zinc or a zinc-based alloy.
  • the pre-coating may be in particular of the type galvanized with continuous dipping ("GI”) or galvanized-alloyed ("GA")
  • the blank is heated to a temperature T 1 between A c3 and A c3 + 250 ° C.
  • the heating is preferably carried out in an oven under ordinary atmosphere; during this step, an alloying between the steel and the precoat is observed.
  • the alloyed coating protects the underlying steel from oxidation and decarburization and is suitable for subsequent hot deformation.
  • We keep the blank the temperature T 1 to ensure the homogeneity of the temperature within it.
  • the holding time at the temperature T 1 varies from 30 seconds to 5 minutes.
  • the blank is stamped or shaped at a temperature T 3 of between 400 and 600 ° C., this hot deformation can be carried out in a single step or in several successive steps, as in the case of the mentioned roll-forming. above. Starting from an initial flat blank, the stamping makes it possible to obtain a part whose shape is not developable. Regardless of the hot layout mode, the cumulative deformation ⁇ c must be greater than 30% so as to obtain a non-recrystallized deformed austenite.
  • the hot forming mode is chosen so that the condition ⁇ c > 30% is satisfied anywhere in the formed part.
  • the workpiece After hot deformation, the workpiece is cooled at a speed V R2 greater than the critical speed of martensitic quenching so as to obtain a totally martensitic structure.
  • this cooling can be achieved by maintaining the piece in the tool with close contact therewith.
  • This cooling by thermal conduction can be accelerated by cooling the stamping tool, for example through channels machined in the tool for the circulation of a refrigerant.
  • the hot stamping process of the invention differs from the usual process of starting hot stamping as soon as the blank has been positioned in the press.
  • the flow limit of the steel is the lowest at high temperature and the forces required by the press are the lowest.
  • the method according to the invention consists in observing a waiting time so that the blank reaches a temperature range suitable for the ausforming, then hot stamping the blank at a significantly lower temperature than in the usual process.
  • the stamping force required by the press is slightly higher but the final structure obtained thinner than in the usual process leads to greater mechanical properties of yield strength, strength and stability. ductility. To meet a specification corresponding to a given level of stress, it is therefore possible to reduce the thickness of the blanks and thereby reduce the stamping force of the parts according to the invention.
  • the hot deformation immediately after stamping must be limited, this high temperature deformation tending to favor the formation of ferrite in the most deformed areas, which is sought to avoid.
  • the method according to the invention does not include this limitation.
  • the sheets or the steel parts may be used as such or subjected to a heat treatment of tempering, carried out at a temperature T 4 of between 150 and 600 ° C. for a period of time. between 5 and 30 minutes.
  • This treatment of income has the effect of increasing the ductility at the price of a decrease in yield strength and strength.
  • the inventors have, however, demonstrated that the process according to the invention, which gives a tensile strength Rm of at least 50 MPa higher than that obtained after conventional quenching, retained this advantage, even after treatment of tempering with temperatures. ranging from 150 to 600 ° C.
  • the fineness characteristics of the microstructure are preserved by this treatment of income, the average size of slats being less than 1.2 micrometer, the average elongation factor of slats being between 2 and 5.
  • Steel semi-finished products have been supplied whose compositions, expressed in contents by weight (%), are as follows: Steel VS mn Yes Cr MB al S P Nb Ti B 0.5Mn + Cr + 3MB AT 0.195 1,945 0.01 1,909 0.05 003 0,003 0.02 0.01 0.012 0.0014 3.03 B 0.24 1.99 0.01 1.86 0,008 0027 0,003 0.02 0,008 - - 2.88
  • the microstructure of the Scanning Electron Microscopy plates was also observed using a field effect gun (MEB-FEG technique) and EBSD detector and quantified the average size. slats of the martensitic structure and their average elongation factor l max ⁇ l min .
  • Tests A1 and A2 designate tests carried out on the composition of steel A under two different conditions, the test B1 was made from the composition of steel B. Test conditions and mechanical results obtained Trial Temperature T 3 (° C) Re (MPa) Rm (MPa) AT (%) 3220% C + 908 (MPa) ⁇ Rm (MPa) Average size of slats ( ⁇ m) Invention A1 550 1588 1889 5.9 1536 353 0.9 3 B1 550 1572 1986 6.5 1681 306 0.8 4 Reference A2 Without 1223 1576 6.9 1536 40 2 7 Underlined values: not in accordance with the invention
  • figure 1 shows the microstructure obtained in the case of test A1.
  • figure 2 shows the microstructure of the same steel simply heated to 1250 ° C., held for 30 minutes at this temperature and then quenched with water (test A2).
  • the process according to the invention makes it possible to obtain a martensite with a significantly greater average slat size. thin and less elongated than in the reference structure.
  • the values of ⁇ Rm are 353 and 306 MPa respectively.
  • the method according to the invention therefore makes it possible to obtain mechanical strength values that are clearly higher than those which would be obtained by a simple martensitic quenching.
  • This increase in strength (353 or 306 MPa) is equivalent to that which would be obtained from equation (1) by simple martensitic quenching applied to steels in which an additional addition of 0.11% or 0.09 about% would have been achieved.
  • the carbon-based process would have adverse consequences with respect to weldability and toughness, whereas the process according to the invention makes it possible to achieve very high values of mechanical strength without these disadvantages.
  • the sheets manufactured according to the invention because of their lower carbon content, have good weldability by conventional methods, in particular spot resistance welding.
  • the figure 3 shows the microstructure obtained in condition B3 according to the invention, characterized by a very thin slat size (0.9 micrometer) and a low elongation factor.
  • the invention allows the manufacture of sheets, or bare or coated parts, with very high mechanical characteristics, under very satisfactory economic conditions.

Description

L'invention concerne un procédé de fabrication de tôles ou de pièces en acier à structure martensitique, avec une résistance mécanique supérieure à celle qui pourrait être obtenue par austénitisation puis simple traitement de refroidissement rapide avec trempe martensitique, et des propriétés de résistance mécanique et d'allongement permettant leur application à la fabrication de pièces à absorption d'énergie dans les véhicules automobiles. Dans certaines applications, on cherche à réaliser des pièces en acier combinant une résistance mécanique élevée, une grande résistance aux chocs et une bonne tenue à la corrosion. Ce type de combinaison est particulièrement désirable dans l'industrie automobile où l'on recherche un allègement significatif des véhicules. Ceci peut être notamment obtenu grâce à l'utilisation de pièces d'aciers à très hautes caractéristiques mécaniques dont la microstructure est martensitique ou bainito-martensitique. Des pièces anti-intrusion, de structure ou participant à la sécurité des véhicules automobiles telles que : traverses de pare-choc, renforts de portière ou de pied milieu, bras de roue, nécessitent par exemple les qualités mentionnées ci-dessus. Leur épaisseur est préférablement inférieure à 3 millimètres.The invention relates to a method for manufacturing sheet or steel parts with a martensitic structure, with a mechanical strength greater than that which could be obtained by austenitization and then simple fast cooling treatment with martensitic quenching, and properties of mechanical strength and durability. elongation allowing their application to the manufacture of energy absorbing parts in motor vehicles. In some applications, it is sought to produce steel parts combining high mechanical strength, high impact resistance and good corrosion resistance. This type of combination is particularly desirable in the automotive industry where significant vehicle lightening is sought. This can be achieved particularly through the use of steel parts with very high mechanical properties whose microstructure is martensitic or bainito-martensitic. Anti-intrusion parts, structure or participating in the safety of motor vehicles such as: bumper cross members, door or center pusher reinforcements, wheel arms, require for example the qualities mentioned above. Their thickness is preferably less than 3 millimeters.

Le brevet EP0971044 divulgue ainsi la fabrication d'une une tôle d'acier revêtue d'aluminium ou d'un alliage d'aluminium, dont la composition comprend en teneur pondérale: 0,15-0,5%C, 0,5-3%Mn, 0,1-0,5%Si, 0,011%Cr, Ti<0,2%, Al<0,1%, P<0,1%, S<0,05%, 0,0005%<B<0,08%, le reste étant du fer et des impuretés inhérentes à l'élaboration. Cette tôle est chauffée de façon à obtenir une transformation austénitique puis emboutie à chaud de manière à réaliser une pièce, celle-ci étant ensuite refroidie rapidement de façon à obtenir une structure martensitique ou martensito-bainitique. De la sorte, on peut obtenir par exemple une résistance mécanique supérieure à 1500MPa. On cherche cependant à obtenir des pièces avec une résistance mécanique encore supérieure. On cherche encore, à niveau donné de résistance mécanique, à diminuer la teneur en carbone de l'acier de façon à améliorer son aptitude à la soudabilité.The patent EP0971044 discloses the manufacture of a steel sheet coated with aluminum or an aluminum alloy, the composition of which comprises in weight content: 0.15-0.5% C, 0.5-3% Mn , 0.1-0.5% Si, 0.011% Cr, Ti <0.2%, Al <0.1%, P <0.1%, S <0.05%, 0.0005% <B < 0.08%, the rest being iron and impurities inherent in the elaboration. This sheet is heated so as to obtain an austenitic transformation and hot stamped so as to produce a part, which is then cooled rapidly to obtain a martensitic or martensito-bainitic structure. In this way, it is possible to obtain, for example, a mechanical strength greater than 1500 MPa. However, we seek to obtain parts with even greater mechanical strength. We search still, at a given level of mechanical strength, to reduce the carbon content of the steel so as to improve its weldability.

On connaît également un procédé de fabrication appelé « ausforming » dans lequel un acier est totalement austénitisé puis refroidi rapidement jusqu'à une température intermédiaire, généralement vers 700-400°C, gamme dans laquelle l'austénite est métastable. Cette austénite est déformée à chaud puis refroidie rapidement de façon à obtenir une structure totalement martensitique. Le brevet GB1,080,304 décrit ainsi la composition d'une tôle d'acier destinée à un tel procédé, qui comprend 0,15-1%C, 0,25-3%Mn, 1-2,5%Si, 0,5-3%Mo, 1-3%Cu, 0,2-1%V.There is also known a manufacturing process called "ausforming" in which a steel is totally austenitized and then rapidly cooled to an intermediate temperature, generally around 700-400 ° C, in which range the austenite is metastable. This austenite is hot deformed and then rapidly cooled so as to obtain a totally martensitic structure. The patent GB1,080,304 thus describes the composition of a steel sheet for such a process, which comprises 0.15-1% C, 0.25-3% Mn, 1-2.5% Si, 0.5-3% Mo , 1-3% Cu, 0.2-1% V.

De même, le brevet GB 1,166,042 décrit une composition d'acier adaptée à ce procédé d'ausforming, qui comprend 0,1-0,6%C, 0,25-5%Mn, 0,5-2%Al, 0,5-3%Mo, 0,01-2%Si, 0,01-1%V.Similarly, the patent GB 1,166,042 discloses a steel composition suitable for this ausforming process, which comprises 0.1-0.6% C, 0.25-5% Mn, 0.5-2% Al, 0.5-3% Mo, 0.01-2% Si, 0.01-1% V.

Ces aciers comportent des additions importantes de molybdène, de manganèse, d'aluminium, de silicium et/ou de cuivre. Celles-ci ont pour but de créer un domaine de métastabilité plus important pour l'austénite, c'est-à-dire de retarder le début de la transformation de l'austénite en ferrite, bainite ou perlite, à la température à laquelle on effectue la déformation à chaud. La plupart des études consacrées à l'ausforming ont été menées sur des aciers présentant une teneur en carbone supérieure à 0,3%. Ainsi, ces compositions adaptées à l'ausforming présentent l'inconvénient de nécessiter des précautions particulières pour le soudage, et présentent également des difficultés particulières dans le cas où l'on souhaite effectuer un revêtement métallique au trempé. De plus, ces compositions comportent des éléments d'addition coûteux.These steels include significant additions of molybdenum, manganese, aluminum, silicon and / or copper. These are intended to create a larger metastability domain for austenite, ie to delay the onset of the transformation from austenite to ferrite, bainite or perlite, at the temperature at which performs hot deformation. Most studies on ausforming have been conducted on steels with a carbon content greater than 0.3%. Thus, these compositions adapted to the ausforming have the disadvantage of requiring special precautions for welding, and also have particular difficulties in the case where it is desired to perform a metal coating quenching. In addition, these compositions have expensive addition elements.

On connaît par ailleurs, la publication de S. Morito et al.: « Influence of austenite grain size on the morphology and cristallography of lath martensite in Low C steels ». ISIJ International, vol. 45, 2005 . Cette publication illustre les relations entre la taille de grain austénitique, et les tailles de paquets, de blocs, et de lattes de martensite obtenues après trempe à l'eau. Les résultats présentés sont cependant uniquement relatifs à des aciers C-Mn et C-Mn-V et à un procédé d'austénitisation et trempe simple, sans déformation à chaud.Moreover, the publication of S. Morito et al .: "Influence of austenite grain size on the morphology and crystallography of martensite in Low C steels". ISIJ International, vol. 45, 2005 . This publication illustrates the relationships between austenitic grain size, and the sizes of martensite packs, blocks, and slats obtained after quenching with water. The results presented, however, are only relative to C-Mn and C-Mn-V steels and to a simple austenitization and quenching process, without hot deformation.

De plus, ce document ne contient pas d'enseignement sur le facteur d'allongement des lattes de la martensite.In addition, this document does not contain any teaching on the slenderness factor of martensite slats.

On connaît également la publication de Tsuji et Maki : « Enhanced structural refinement by combining phase transformation and plastic déformation » Scripta Materiala, 2009 . Celle-ci présente les principes généraux pour associer une déformation à chaud et une transformation en vue d'obtenir des structures ultrafines. Le procédé d'ausforming est mentionné en vue de la fabrication de structures martensitiques. Cependant la publication rapporte que la taille des lattes martensitiques n'est pas modifiée par l'ausforming. On connaît aussi la publication de S. Morito et al.: « Effect of the block size on the strength of lath martensite in low C steels" Material Science and Engineering A, 2006 . Cette publication vise à préciser les relations entre la limite d'élasticité et la taille des blocs ou des paquets martensitiques de deux nuances d'acier. Ces nuances sont des aciers Fe-C ou Fe-C-Mn, sans autre addition notable d'élément d'alliage. De plus, cette publication ne divulgue que des résultats d'essais après austénitisation et trempe simple, sans déformation à chaud.We also know the publication of Tsuji and Maki: "Enhanced structural refinement by deformation and plastic transformation" Scripta Materiala, 2009 . This presents the general principles for combining hot deformation and transformation to obtain ultrafine structures. The process of ausforming is mentioned for the manufacture of martensitic structures. However the publication reports that the size of the martensitic slats is not modified by the ausforming. We also know the publication of S. Morito et al .: "Effect of the block size on the strength of the martensite in low C steels" Material Science and Engineering A, 2006 . This publication aims to clarify the relationship between the yield strength and the size of the blocks or martensitic packages of two grades of steel. These grades are Fe-C or Fe-C-Mn steels, without any other significant addition of alloying elements. In addition, this publication only discloses test results after austenitization and quenching without hot deformation.

On cherche à disposer d'un procédé de fabrication de tôles ou de pièces d'acier ne présentant pas les inconvénients ci-dessus, dotées d'une résistance à la rupture supérieure de plus de 50 MPa à celle que l'on pourrait obtenir grâce à une austénitisation suivie d'une simple trempe martensitique de l'acier en question. Les inventeurs ont mis en évidence que, pour des teneurs en carbone allant de 0,15 à 0,40% en poids, la résistance à la rupture en traction Rm d'aciers fabriqués par austénitisation totale suivie d'une simple trempe martensitique, ne dépendait pratiquement que de la teneur en carbone et était reliée à celle-ci avec une très bonne précision, selon l'expression (1) : Rm (mégapascals) = 3220(C) + 908.It seeks to have a method of manufacturing sheets or steel parts does not have the above disadvantages, with a higher tensile strength of more than 50 MPa that could be obtained through austenitization followed by a simple martensitic quenching of the steel in question. The inventors have demonstrated that, for carbon contents ranging from 0.15 to 0.40% by weight, the tensile tensile strength Rm of steels manufactured by total austenitization followed by a simple martensitic quench, do not practically depended only on the carbon content and was connected to it with very good precision, according to the expression (1): Rm (megapascals) = 3220 (C) + 908.

Dans cette expression, (C) désigne la teneur en carbone de l'acier exprimée en pourcentage pondéral. A teneur en carbone C donnée pour un acier, on cherche donc un procédé de fabrication permettant d'obtenir une résistance à la rupture supérieure de 50 MPa à l'expression (1), c'est à dire une résistance supérieure à 3220(C)+ 958 MPa pour cet acier. On cherche à disposer d'un procédé permettant la fabrication de tôle à très haute limite d'élasticité, c'est à dire supérieure à 1300 MPa. On cherche également à disposer d'un procédé permettant la fabrication de tôles ou de pièces utilisables directement, c'est à dire sans nécessité impérative d'un traitement de revenu après trempe. On cherche également à disposer d'un procédé de fabrication permettant la fabrication d'une tôle ou d'une pièce aisément revêtable au trempé dans un bain métallique.In this expression, (C) denotes the carbon content of the steel, expressed as a percentage by weight. At a carbon content C given for a steel, a method of manufacture is thus sought which makes it possible to obtain an ultimate tensile strength of 50 MPa for expression (1), ie a strength greater than 3220 (C ) + 958 MPa for this steel. It is sought to have a method for producing sheet metal with a very high yield strength, say greater than 1300 MPa. It is also sought to have a method for the manufacture of sheets or parts usable directly, that is to say without the need for a tempering treatment after quenching. It is also sought to have a manufacturing process for the manufacture of a sheet or a readily coated part by dipping in a metal bath.

Ces tôles ou ces pièces doivent être soudables par les procédés usuels et ne pas comporter d'additions coûteuses d'éléments d'alliage.These sheets or these parts must be weldable by the usual methods and not have expensive additions of alloying elements.

La présente invention a pour but de résoudre les problèmes évoqués ci-dessus. Elle vise en particulier à mettre à disposition des tôles avec une limite d'élasticité supérieure à 1300 MPa, une résistance mécanique exprimée en mégapascals supérieure à (3220(C)+958) MPa, et de préférence un allongement total supérieur à 3%.The present invention aims to solve the problems mentioned above. It aims in particular to provide sheets with a yield strength greater than 1300 MPa, a mechanical strength expressed in megapascals greater than (3220 (C) +958) MPa, and preferably a total elongation greater than 3%.

Dans ce but, l'invention a pour objet un procédé de fabrication d'une tôle d'acier à structure totalement martensitique présentant une taille moyenne de lattes inférieure à 1 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5, étant entendu que le facteur d'allongement d'une latte de dimension maximale Imax et minimale Imin est défini par l max l min ,

Figure imgb0001
à limite d'élasticité supérieure à 1300 MPa, à résistance mécanique supérieure à (3220(C)+958) mégapascals, étant entendu que (C) désigne la teneur en carbone en pourcentage pondéral de l'acier, comprenant les étapes successives et dans cet ordre selon lesquelles :

  • on approvisionne un demi-produit d'acier dont la composition comprend, les teneurs étant exprimées en poids, 0,15% ≤ C ≤ 0,40%, 1,5%≤ Mon ≤ 3%, 0,005% ≤ Si ≤ 2%, 0,005%≤ Al ≤ 0,1%, 1,8% ≤ Cr≤ 4%, 0%≤ Mo ≤2%, étant entendu que 2,7%≤0,5 (Mn)+(Cr)+3(Mo)≤5,7%, S ≤ 0,05%, P≤ 0,1%, et optionnellement: 0%≤ Nb≤0,050%, 0,01%≤ Ti≤0,1%, 0,0005% ≤ B ≤ 0,005%, 0,0005% ≤ Ca ≤ 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration,
  • on réchauffe le demi-produit à une température T1 comprise entre 1050°C et 1250°C, puis
  • on effectue un laminage de dégrossissage du demi-produit réchauffé, à une température T2 comprise entre 1000 et 880°C, avec un taux de réduction εa cumulé supérieur à 30% de façon à obtenir une tôle avec une structure austénitique complètement recristallisée de taille moyenne de grain inférieure à 40 micromètres et préférentiellement à 5 micromètres, le taux de réduction cumulé εa étant défini par: Ln e ia e f a , .
    Figure imgb0002
    eia désignant l'épaisseur du demi-produit avant le laminage à chaud de dégrossissage et efa l'épaisseur de la tôle après le laminage de dégrossissage, puis
  • on refroidit non complètement la tôle jusqu'à une température T3 comprise entre 600°C et 400°C dans le domaine austénitique métastable, à une vitesse VR1 supérieure à 2°C/s, puis
  • on effectue un laminage à chaud de finition à la température T3, de la tôle non complètement refroidie, avec un taux de réduction cumulé εb supérieur à 30% de façon à obtenir une tôle, le taux de réduction cumulé εb étant défini par: Ln e ib e f b ,
    Figure imgb0003
    eib désignant l'épaisseur de la tôle avant le laminage à chaud de finition et efa l'épaisseur de la tôle après le laminage de finition, puis
  • on refroidit la tôle à une vitesse VR2 supérieure à la vitesse critique de trempe martensitique.
For this purpose, the subject of the invention is a method for manufacturing a sheet of steel with a totally martensitic structure having an average slat size of less than 1 micrometer, the average elongation factor of the slats being between 2 and 5 , it being understood that the elongation factor of a slat of maximum dimension I max and minimum I min is defined by l max l min ,
Figure imgb0001
with a yield strength greater than 1300 MPa, with a mechanical strength greater than (3220 (C) +958) megapascals, it being understood that (C) denotes the carbon content by weight percentage of the steel, comprising the successive stages and in this order according to which:
  • supplying a semi-finished steel product whose composition comprises, the contents being expressed by weight, 0.15% ≤ C ≤ 0.40%, 1.5% ≤ Mon ≤ 3%, 0.005% ≤ Si ≤ 2% , 0.005% ≤ Al ≤ 0.1%, 1.8% ≤ Cr ≤ 4%, 0% ≤ Mo ≤2%, with 2.7% ≤ 0.5 (Mn) + (Cr) + 3 ( Mo) ≤ 5.7%, S ≤ 0.05%, P ≤ 0.1%, and optionally: 0% ≤ Nb 0 0.050%, 0.01% ≤ Ti 0 0.1%, 0.0005% ≤ B ≤ 0.005%, 0.0005% ≤ Ca ≤ 0.005%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation,
  • the semi-finished product is heated to a temperature T 1 of between 1050 ° C. and 1250 ° C., and then
  • the semi-product heated at a temperature T 2 of between 1000 and 880 ° C. is rough-rolled with a cumulative reduction ratio ε a greater than 30% so as to obtain a sheet with a completely recrystallized austenitic structure of average grain size less than 40 micrometers and preferably 5 micrometers, the cumulative reduction rate ε a being defined by: Ln e ia e f at , .
    Figure imgb0002
    e ia designating the thickness of the semi-finished product before the hot rolling of roughing and e fa the thickness of the sheet after the rough rolling, and then
  • the sheet is cooled to a temperature T 3 of between 600 ° C. and 400 ° C. in the austenitic metastable domain, at a speed V R1 greater than 2 ° C./s, and then
  • finishing the hot rolling at the temperature T 3 of the non-completely cooled sheet with a cumulative reduction ratio ε b greater than 30% so as to obtain a sheet, the cumulative reduction ratio ε b being defined by : Ln e ib e f b ,
    Figure imgb0003
    e ib denoting the thickness of the sheet before finishing hot rolling and e fa the thickness of the sheet after finishing rolling, and then
  • the sheet is cooled to a speed V R2 greater than the critical speed of martensitic quenching.

L'invention a également pour objet un procédé de fabrication d'une pièce d'acier à structure totalement martensitique présentant une taille moyenne de lattes inférieure à 1 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5, comprenant les étapes successives et dans cet ordre selon lesquelles :

  • on approvisionne un flan d'acier dont la composition comprend, les teneurs étant exprimées en poids, 0,15% ≤ C ≤ 0,40%, 1,5%≤ Mn ≤ 3%, 0,005% ≤ Si ≤ 2%, 0,005%≤ Al ≤ 0,1%, 1,8% ≤ Cr≤ 4%, 0%≤ Mo ≤2%, étant entendu que 2,7%≤0,5 (Mn)+(Cr)+3(Mo)≤5,7%, S ≤ 0,05%, P≤ 0,1%, optionnellement: 0%≤ Nb≤0,050%, 0,01%≤ Ti≤0,1%, 0,0005% ≤ B ≤ 0,005%, 0,0005% ≤ Ca ≤ 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration,
  • on chauffe le flan à une température T1 comprise entre AC3 et AC3+250°C de telle sorte que la taille moyenne de grain austénitique soit inférieure à 40 micromètres, et préférentiellement à 5 micromètres, puis
  • on transfère le flan chauffé au sein d'une presse d'emboutissage à chaud ou d'un dispositif de mise en forme à chaud, puis
  • on refroidit le flan jusqu'à une température T3 comprise entre 600°C et 400°C, à une vitesse VR1 supérieure à 2°C/s de façon à éviter une transformation de l'austénite,
  • l'ordre des deux dernières étapes pouvant être interverti, puis,
  • on emboutit ou on met en forme à chaud à la température T3 le flan refroidi, d'une quantité εc supérieure à 30% dans au moins une zone, pour obtenir une pièces, εc étant défini par ε c = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 ,
    Figure imgb0004
    où ε1 et ε2 sont les déformations principales cumulées sur l'ensemble des étapes de déformation à la température T3, puis,
  • on refroidit la pièce à une vitesse VR2 supérieure à la vitesse critique de trempe martensitique.
The subject of the invention is also a method for manufacturing a piece of steel with a totally martensitic structure having an average slat size of less than 1 micrometer, the average elongation factor of the slats being between 2 and 5, comprising the successive stages and in this order according to which:
  • a steel blank whose composition comprises, the contents being expressed by weight, is supplied with 0.15% ≤ C ≤ 0.40%, 1.5% ≤ Mn ≤ 3%, 0.005% ≤ Si ≤ 2%, 0.005 % ≤ Al ≤ 0.1%, 1.8% ≤ Cr≤4%, 0% ≤ Mo ≤2%, with 2.7% ≤0.5 (Mn) + (Cr) +3 (Mo) ≤ 5.7%, S ≤ 0.05%, P ≤ 0.1%, optionally: 0% ≤ Nb ≤ 0.050%, 0.01% ≤ Ti ≤ 0.1%, 0.0005% ≤ B ≤ 0.005 %, 0.0005% ≤ Ca ≤ 0.005%, the remainder of the composition being iron and impurities inevitable resulting from the elaboration,
  • the blank is heated to a temperature T 1 between A C3 and A C3 + 250 ° C so that the average austenitic grain size is less than 40 microns, and preferably 5 microns, and then
  • the heated blank is transferred into a hot stamping press or a hot forming device, and then
  • the blank is cooled to a temperature T 3 of between 600 ° C and 400 ° C, at a speed V R1 greater than 2 ° C / s so as to avoid transformation of the austenite,
  • the order of the last two steps can be inverted, then,
  • the cooled blank is stamped or shaped at a temperature of T 3 ε c greater than 30% in at least one area, to obtain parts, ε c being defined by ε vs ~ = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 ,
    Figure imgb0004
    where ε 1 and ε 2 are the main deformations accumulated over all the deformation steps at the temperature T 3 , then,
  • the workpiece is cooled to a speed V R2 greater than the critical speed of martensitic quenching.

Selon un mode préféré, le flan est embouti à chaud de façon à obtenir une pièce, puis la pièce est maintenue au sein de l'outillage d'emboutissage de façon à la refroidir à une vitesse VR2 supérieure à la vitesse critique de trempe martensitique.In a preferred embodiment, the blank is hot-stamped so as to obtain a workpiece, then the workpiece is held in the stamping tool so as to cool it at a speed V R2 greater than the critical speed of martensitic quenching. .

Selon un mode préféré, le flan est pré-revêtu d'aluminium ou d'un alliage à base d'aluminium.In a preferred embodiment, the blank is pre-coated with aluminum or an aluminum-based alloy.

Selon un autre mode préféré, le flan est pré-revêtu de zinc ou d'un alliage à base de zinc.According to another preferred embodiment, the blank is pre-coated with zinc or a zinc-based alloy.

Préférentiellement, la tôle ou la pièce d'acier obtenue par l'un quelconque des procédés de fabrication ci-dessus, est soumise à un traitement thermique ultérieur de revenu à une température T4 comprise entre 150 et 600°C pendant une durée comprise entre 5 et 30 minutes.Preferably, the sheet or piece of steel obtained by any one of the above manufacturing processes is subjected to a subsequent heat treatment of tempering at a temperature T 4 of between 150 and 600 ° C. for a period of time between 5 and 30 minutes.

L'invention a également pour objet une tôle d'acier non revenu de limite d'élasticité supérieure à 1300 MPa, de résistance mécanique supérieure à (3220(C)+958) mégapascals, étant entendu que (C) désigne la teneur en carbone en pourcentage pondéral de l'acier, obtenue selon un quelconque des procédés de fabrication ci-dessus, de structure totalement martensitique, présentant une taille moyenne de lattes inférieure à 1 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5The subject of the invention is also an unreturned steel sheet having a yield strength greater than 1300 MPa, with a mechanical strength greater than (3220 (C) +958) megapascals, with the proviso that (C) denotes the weight percent carbon content of the steel, obtained by any of the above manufacturing processes, having a totally martensitic structure, having a medium size of slats less than 1 micrometer, the average elongation factor of slats being between 2 and 5

L'invention a également pour objet une pièce d'acier non revenu obtenue par l'un quelconque des procédés de fabrication de pièce ci-dessus, la pièce comportant au moins une zone de structure totalement martensitique présentant une taille moyenne de lattes inférieure à 1 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5, la limite d'élasticité dans ladite zone étant supérieure à 1300 MPa et la résistance mécanique étant supérieure à (3220(C)+958) mégapascals, étant entendu que (C) désigne la teneur en carbone en pourcentage pondéral de l'acier. L'invention a également pour objet une tôle ou une pièce d'acier obtenue par le procédé avec traitement de revenu ci-dessus, l'acier ayant une structure totalement martensitique, présentant dans au moins une zone une taille moyenne de lattes inférieure à 1,2 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5.The invention also relates to a piece of unreturned steel obtained by any one of the above part manufacturing processes, the part comprising at least one zone of totally martensitic structure having an average slat size of less than 1 micrometer, the average elongation factor of the slats being between 2 and 5, the yield strength in said zone being greater than 1300 MPa and the mechanical strength being greater than (3220 (C) +958) megapascals, it being understood that (C) refers to the percentage carbon content of the steel. The subject of the invention is also a sheet or a piece of steel obtained by the process with the above treatment of income, the steel having a totally martensitic structure, having in at least one zone an average slat size of less than 1 , 2 micrometer, the average elongation factor of the slats being between 2 and 5.

Les inventeurs ont mis en évidence que les problèmes exposés ci-dessus étaient résolus grâce à un procédé d'ausforming spécifique mis en oeuvre sur une gamme particulière de compositions d'aciers. Contrairement aux études précédentes qui montraient que l'ausforming requérait l'addition d'éléments d'alliage coûteux, les inventeurs ont mis en évidence de façon surprenante que cet effet peut être obtenu grâce à des compositions nettement moins chargées en éléments d'alliage.The inventors have demonstrated that the problems described above were solved by means of a specific ausforming process implemented on a particular range of steel compositions. Contrary to previous studies which showed that ausforming required the addition of expensive alloying elements, the inventors have surprisingly demonstrated that this effect can be obtained thanks to substantially less charged compositions of alloying elements.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous donnée à titre d'exemple et faite en référence aux figures jointes suivantes :

  • La figure 1 présente un exemple de microstructure de tôle d'acier fabriquée par le procédé selon l'invention.
  • La figure 2 présente un exemple de microstructure du même acier fabriqué par un procédé de référence, par chauffage dans le domaine austénitique puis simple trempe martensitique.
  • La figure 3 présente un exemple de microstructure de pièce d'acier fabriquée par le procédé selon l'invention.
Other features and advantages of the invention will become apparent from the following description given by way of example and with reference to the following appended figures:
  • The figure 1 shows an example of microstructure of steel sheet manufactured by the method according to the invention.
  • The figure 2 shows an example of microstructure of the same steel manufactured by a reference method, by heating in the austenitic domain and then simple martensitic quenching.
  • The figure 3 shows an example of a steel part microstructure manufactured by the method according to the invention.

La composition des aciers mis en oeuvre dans le procédé selon l'invention va maintenant être détaillée.The composition of the steels used in the process according to the invention will now be detailed.

Lorsque la teneur en carbone de l'acier est inférieure à 0,15% en poids, la trempabilité de l'acier est insuffisante compte tenu du procédé mis en oeuvre et il n'est pas possible d'obtenir une structure totalement martensitique. Lorsque cette teneur est supérieure à 0,40%, les joints soudés réalisés à partir de ces tôles ou de ces pièces présentent une ténacité insuffisante. La teneur optimale en carbone pour la mise en oeuvre de l'invention est comprise entre 0,16 et 0,28%.When the carbon content of the steel is less than 0.15% by weight, the quenchability of the steel is insufficient given the process used and it is not possible to obtain a totally martensitic structure. When this content is greater than 0.40%, welded joints made from these sheets or these parts have insufficient toughness. The optimum carbon content for the implementation of the invention is between 0.16 and 0.28%.

Le manganèse abaisse la température de début de formation de la martensite et ralentit la décomposition de l'austénite. Afin d'obtenir des effets suffisants pour permettre la mise en oeuvre de l'ausforming, la teneur en manganèse ne doit pas être inférieure à 1,5%. Par ailleurs, lorsque la teneur en manganèse dépasse 3%, des zones ségrégées sont présentes en quantité excessive ce qui nuit à la mise en oeuvre de l'invention. Une gamme préférentielle pour la mise en oeuvre de l'invention est 1,8 à 2,5%Mn.Manganese lowers the initial formation temperature of martensite and slows the decomposition of austenite. In order to obtain sufficient effects to allow the implementation of the ausforming, the manganese content must not be less than 1.5%. Moreover, when the manganese content exceeds 3%, segregated zones are present in excessive quantity which is detrimental to the implementation of the invention. A preferred range for the implementation of the invention is 1.8 to 2.5% Mn.

La teneur en silicium doit être supérieure à 0,005% de façon à contribuer à la désoxydation de l'acier en phase liquide. Le silicium ne doit pas excéder 2% en poids en raison de la formation d'oxydes superficiels qui réduisent notablement la revêtabilité dans les procédés comportant un passage en continu de la tôle d'acier dans un bain métallique de revêtement.The silicon content must be greater than 0.005% so as to contribute to the deoxidation of the steel in the liquid phase. The silicon should not exceed 2% by weight due to the formation of surface oxides which significantly reduce the processability in processes involving a continuous passage of the steel sheet in a coating metal bath.

Le chrome et le molybdène sont des éléments très efficaces pour retarder la transformation de l'austénite et pour séparer les domaines de transformation ferrito-perlitique et bainitique, la transformation ferrito-perlitique intervenant à des températures supérieures à la transformation bainitique. Ces domaines de transformation se présentent sous forme de deux « nez » bien distincts dans un diagramme de transformation isotherme TTT (Transformation-Température-Temps) à partir de l'austénite, ce qui permet la mise en oeuvre du procédé selon l'invention.Chromium and molybdenum are very effective in retarding the transformation of austenite and in separating the ferrito- pearlitic and bainitic transformation domains, ferrito- pearlitic transformation occurring at higher temperatures than bainitic transformation. These transformation domains are in the form of two distinct "noses" in an isothermal transformation diagram TTT (Transformation-Temperature-Time) from the austenite, which allows the implementation of the method according to the invention.

La teneur en chrome de l'acier doit être comprise entre 1,8% et 4% en poids pour que son effet de retardement sur la transformation de l'austénite soit suffisant. La teneur en chrome de l'acier tient compte de la teneur d'autres éléments augmentant la trempabilité tels que la manganèse et le molybdène : en effet, compte tenu des effets respectifs du manganèse, du chrome et du molybdène sur les transformations à partir de l'austénite, une addition combinée de ces éléments doit être effectuée en respectant la condition suivante, les quantités respectivement notées (Mn) (Cr) (Mo) étant exprimées en pourcentage pondéral : 2,7%≤0,5 (Mn)+(Cr)+3(Mo)≤5,7%. La teneur en molybdène ne doit cependant pas excéder 2% en raison de son coût excessif.The chromium content of the steel must be between 1.8% and 4% by weight in order for its delay effect on the transformation of the austenite to be sufficient. The chromium content of the steel takes into account the content of other elements that increase the quenchability such as manganese and molybdenum: in fact, given the respective effects of manganese, chromium and molybdenum on the transformations from the austenite, a combined addition of these elements must be carried out respecting the following condition, the respectively noted quantities (Mn) (Cr) (Mo) being expressed in percentage by weight: 2.7% ≤0.5 (Mn) + (Cr) 3 (MB) ≤5,7%. However, the molybdenum content must not exceed 2% because of its excessive cost.

La teneur en aluminium de l'acier selon l'invention n'est pas inférieure à 0,005% de façon à obtenir une désoxydation suffisante de l'acier à l'état liquide. Lorsque la teneur en aluminium est supérieure à 0,1% en poids, des problèmes de coulée peuvent apparaitre. Il peut également se former des inclusions d'alumine en quantité ou en taille trop importantes qui jouent un rôle néfaste sur la ténacité:The aluminum content of the steel according to the invention is not less than 0.005% so as to obtain sufficient deoxidation of the steel in the liquid state. When the aluminum content is greater than 0.1% by weight, casting problems can occur. It is also possible to form inclusions of alumina in too large a quantity or size which play a detrimental role on the tenacity:

Les teneurs en soufre et en phosphore de l'acier sont respectivement limitées à 0,05 et 0,1% pour éviter une réduction de la ductilité ou de la ténacité des pièces ou des tôles fabriquées selon l'invention.The sulfur and phosphorus contents of the steel are respectively limited to 0.05 and 0.1% in order to avoid a reduction in the ductility or toughness of the parts or sheets produced according to the invention.

L'acier peut contenir optionnellement du niobium et/ou du titane, ce qui permet d'affiner un affinement supplémentaire du grain. En raison du durcissement à chaud que ces additions confèrent, celles-ci doivent être cependant limitées à 0,050% pour le niobium et comprises entre 0,01 et 0,1% pour le titane de façon ne pas augmenter les efforts lors du laminage à chaud.The steel may optionally contain niobium and / or titanium, which makes it possible to refine further refinement of the grain. Due to the heat curing these additions confer, they must however be limited to 0.050% for niobium and between 0.01 and 0.1% for titanium so as not to increase the forces during hot rolling. .

A titre optionnel, l'acier peut également contenir du bore : en effet, la déformation importante de l'austénite peut accélérer la transformation en ferrite au refroidissement, phénomène qu'il convient d'éviter. Une addition de bore, en quantité comprise entre 0,0005 et 0,005% en poids permet de se prémunir d'une transformation ferritique précoce.As an option, the steel can also contain boron: indeed, the significant deformation of the austenite can accelerate the conversion to ferrite on cooling, a phenomenon that should be avoided. Addition of boron in an amount of between 0.0005 and 0.005% by weight makes it possible to guard against early ferritic transformation.

A titre optionnel, l'acier peut également contenir du calcium en quantité comprise entre 0,0005 et 0,005% : en se combinant avec l'oxygène et le soufre, le calcium permet d'éviter la formation d'inclusions de grande taille, néfastes pour la ductilité des tôles ou des pièces ainsi fabriquées.Optionally, the steel may also contain calcium in an amount between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium prevents the formation of large inclusions, harmful to the ductility of the sheets or parts thus manufactured.

Le reste de la composition de l'acier est constitué de fer et d'impuretés inévitables résultant de l'élaboration.The rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.

Les tôles ou les pièces d'acier fabriquées selon l'invention sont caractérisées par une structure totalement martensitique en lattes d'une grande finesse : en raison du cycle thermomécanique et de la composition spécifiques, la taille moyenne des lattes martensitiques est inférieure à 1 micromètre et leur facteur d'allongement moyen est compris entre 2 et 5. Ces caractéristiques microstructurales sont déterminées par exemple en observant la microstructure par microscopie électronique à balayage au moyen d'un canon à effet de champ (technique « MEB-FEG ») à un grandissement supérieur à 1200x, couplé à un détecteur EBSD (« Electron Backscatter Diffraction »). On définit que deux lattes contigües sont distinctes lorsque leur désorientation est supérieure à 5 degrés. La taille moyenne de lattes est définie par la méthode des intercepts connue en elle-même : on évalue la taille moyenne des lattes interceptées par des lignes définies de façon aléatoire par rapport à la microstructure. La mesure est réalisée sur au moins 1000 lattes martensitiques de façon à obtenir une valeur moyenne représentative. La morphologie des lattes individualisées est déterminée par analyse d'images au moyen de logiciels connus en eux-mêmes : on détermine la dimension maximale Imax et minimale Imin de chaque latte martensitique et son facteur d'allongement l max l min .

Figure imgb0005
Afin d'être statistiquement représentative, cette observation porte sur au moins 1000 lattes martensitiques. Le facteur d'allongement moyen l max l min
Figure imgb0006
est ensuite déterminé pour l'ensemble de ces lattes observées.The sheets or steel parts manufactured according to the invention are characterized by a totally slab martensite structure of great fineness: due to the specific thermomechanical cycle and composition, the average size of the martensitic slats is less than 1 micrometer and their average elongation factor is between 2 and 5. These microstructural characteristics are determined for example by observing the microstructure by scanning electron microscopy using a field effect gun ("MEB-FEG" technique) at a magnification higher than 1200x, coupled to an EBSD detector ("Electron Backscatter Diffraction"). It is defined that two contiguous slats are distinct when their disorientation is greater than 5 degrees. The average slat size is defined by the intercepts method known per se: the mean size of the intercepted slats is evaluated by randomly defined lines with respect to the microstructure. The measurement is performed on at least 1000 martensitic slats in order to obtain a representative average value. The morphology of the individual slats is determined by image analysis using known software in themselves: the maximum I max and minimum I min dimension of each martensitic slat and its elongation factor are determined. l max l min .
Figure imgb0005
In order to be statistically representative, this observation concerns at least 1000 martensitic slats. The average elongation factor l max ~ l min
Figure imgb0006
is then determined for all of these slats observed.

Le procédé selon l'invention permet de fabriquer soit des tôles laminées, soit des pièces embouties à chaud ou mises en forme à chaud. Ces deux modes vont être successivement exposés.The method according to the invention makes it possible to manufacture either rolled sheets or hot-stamped or heat-formed parts. These two modes will be successively exposed.

Le procédé de fabrication de tôles laminées à chaud selon l'invention comporte les étapes suivantes :

  • On approvisionne tout d'abord un demi-produit d'acier dont la composition a été exposée ci-dessus. Ce demi-produit peut se présenter par exemple sous forme de brame issue de coulée continue, de brame mince ou de lingot. A titre d'exemple indicatif, une brame de coulée continue a une épaisseur de l'ordre de 200mm, une brame mince une épaisseur de l'ordre de 50-80mm. On réchauffe ce demi-produit à une température T1 comprise entre 1050°C et 1250°C. La température T1 est supérieure à Ac3, température de transformation totale en austénite au chauffage. Ce réchauffage permet donc d'obtenir une austénitisation complète de l'acier ainsi que la dissolution d'éventuels carbonitrures de niobium existant dans le demi-produit. Cette étape de réchauffage permet également de réaliser les différentes opérations ultérieures de laminage à chaud qui vont être présentées : on effectue un laminage, dit de dégrossissage, du demi-produit à une température T2 comprise entre 1000 et 880°C.
The process for manufacturing hot-rolled sheets according to the invention comprises the following steps:
  • First, a semi-finished steel product is supplied whose composition has been exposed above. This semi-finished product may for example be in the form of slab from continuous casting, thin slab or ingot. As an indicative example, a continuous casting slab has a thickness of about 200 mm, a thin slab a thickness of about 50-80 mm. This half-product is heated to a temperature T 1 of between 1050 ° C. and 1250 ° C. The temperature T 1 is greater than A c3 , the total conversion temperature to austenite during heating. This reheating thus makes it possible to obtain a complete austenitization of the steel as well as the dissolution of any possible niobium carbonitrides in the semi-finished product. This reheating step also makes it possible to carry out the various subsequent hot rolling operations that will be presented: a roughing operation is carried out on the semi-finished product at a temperature T 2 of between 1000 and 880 ° C.

Le taux de réduction cumulé des différentes étapes de laminage au dégrossissage est noté εa. Si eia désigne l'épaisseur du demi-produit avant le laminage à chaud de dégrossissage et efa l'épaisseur de la tôle après ce laminage, on définit le taux de réduction cumulé par ε a = Ln e ia e f a .

Figure imgb0007
Selon l'invention, le taux de réduction cumulé εa lors du laminage de dégrossissage doit être supérieur à 30%. Dans ces conditions, l'austénite obtenue est totalement recristallisée avec une taille moyenne de grain inférieure à 40 micromètres, voire à 5 micromètres lorsque la déformation εa est supérieure à 200% et lorsque la température T2 est comprise entre 950 et 880°C. On refroidit ensuite non complètement la tôle, c'est à dire jusqu'à une température intermédiaire T3, de façon à éviter une transformation de l'austénite, à une vitesse VR1 supérieure à 2°C/s jusqu'à une température T3 comprise entre 600°C et 400°C, domaine de température dans lequel l'austénite est métastable, c'est à dire dans un domaine où elle ne devrait pas être présente dans des conditions d'équilibre thermodynamique. On effectue alors un laminage à chaud de finition à la température T3, le taux de réduction cumulé εb étant supérieur à 30%. Dans ces conditions, on obtient une structure austénitique déformée plastiquement dans laquelle n'intervient pas la recristallisation. On refroidit ensuite la tôle à une vitesse VR2 supérieure à la vitesse de trempe critique martensitique.The cumulative reduction rate of the various stages of rolling at roughing is noted ε a . If e ia denotes the thickness of the semi-finished product before the hot rolling of roughing and e fa the thickness of the sheet after this rolling, the reduction rate cumulated by ε at = Ln e ia e f at .
Figure imgb0007
According to the invention, the cumulative reduction ratio ε a during the rough rolling must be greater than 30%. Under these conditions, the austenite obtained is completely recrystallized with an average grain size of less than 40 micrometers or even 5 microns when the strain ε a is greater than 200% and when the temperature T 2 is between 950 and 880 ° C. . The sheet is then not completely cooled, that is to say up to an intermediate temperature T 3 , so as to avoid transformation of the austenite, at a speed V R1 greater than 2 ° C./s up to a temperature T 3 between 600 ° C and 400 ° C, temperature range in which the austenite is metastable, that is to say in a field where it should not be present under conditions of thermodynamic equilibrium. A finishing hot rolling is then carried out at the temperature T 3 , the cumulative reduction ratio ε b being greater than 30%. Under these conditions, a plastically deformed austenitic structure is obtained in which no action is taken. recrystallization. The sheet is then cooled at a speed V R2 greater than the critical martensitic quenching speed.

Bien que le procédé ci-dessus décrive la fabrication de produits plats (tôles) à partir notamment de brames, l'invention n'est pas limitée à cette géométrie et à ce type de produits, et peut être mise en oeuvre pour la fabrication de produits longs, de barres, de profilés, par des étapes successives de déformation à chaud.Although the above method describes the manufacture of flat products (sheets) from slabs in particular, the invention is not limited to this geometry and to this type of products, and can be used for the manufacture of long products, bars, profiles, by successive stages of hot deformation.

Le procédé de fabrication de pièces embouties ou mises en forme à chaud est le suivant :

  • On approvisionne tout d'abord un flan en acier dont la composition contient en poids : 0,15% ≤ C ≤ 0,40%, 1,5%≤ Mn ≤ 3%, 0,005% ≤ Si ≤ 2%, 0,005%≤ Al ≤ 0,1%, 1,8% ≤ Cr≤ 4%, 0%≤ Mo ≤2%, étant entendu que 2,7%≤0,5 (Mn)+(Cr)+3(Mo)≤5,7%, S ≤ 0,05%, P≤ 0,1%, et optionnellement : 0%≤ Nb≤0,050%, 0,01%≤ Ti≤0,1%, 0,0005% ≤ B ≤ 0,005%, 0,0005% ≤ Ca ≤ 0,005%.
The process for manufacturing stamped or hot-formed parts is as follows:
  • Firstly, a steel blank whose composition contains by weight: 0.15% ≤ C ≤ 0.40%, 1.5% ≤ Mn ≤ 3%, 0.005% ≤ Si ≤ 2%, 0.005% ≤ Al ≤ 0.1%, 1.8% ≤ Cr≤4%, 0% ≤ Mo ≤2%, with 2.7% ≤0.5 (Mn) + (Cr) +3 (Mo) ≤5 , 7%, S ≤ 0.05%, P ≤ 0.1%, and optionally: 0% ≤ Nb≤0.050%, 0.01% ≤ Ti ≤ 0.1%, 0.0005% ≤ B ≤ 0.005% , 0.0005% ≤ Ca ≤ 0.005%.

Ce flan plan est obtenu par découpage d'une tôle ou d'une bobine selon une forme en rapport avec la géométrie finale de la pièce visée. Ce flan peut être non-revêtu ou optionnellement pré-revêtu. Le pré-revêtement peut être de l'aluminium ou un alliage à base d'aluminium. Dans ce dernier cas, la tôle peut être avantageusement obtenue par passage au trempé en continu dans un bain d'alliage aluminium-silicium comprenant en poids 5-11% de silicium, 2 à 4% de fer, optionnellement entre 15 et 30 ppm de calcium, le reste étant de l'aluminium et des impuretés inévitables résultant de l'élaboration.This flat blank is obtained by cutting a sheet or a coil in a form related to the final geometry of the target part. This blank may be uncoated or optionally pre-coated. The pre-coating may be aluminum or an aluminum-based alloy. In the latter case, the sheet may advantageously be obtained by continuously dipping in a bath of aluminum-silicon alloy comprising by weight 5-11% of silicon, 2 to 4% of iron, optionally between 15 and 30 ppm of calcium, the rest being aluminum and unavoidable impurities resulting from the elaboration.

Le flan peut être également pré-revêtu de zinc ou d'un alliage à base de zinc. Le pré-revêtement peut être notamment du type galvanisé au trempé en continu (« GI ») ou galvanisé-allié (« GA »)The blank may also be pre-coated with zinc or a zinc-based alloy. The pre-coating may be in particular of the type galvanized with continuous dipping ("GI") or galvanized-alloyed ("GA")

On chauffe le flan à une température T1 comprise entre Ac3 et Ac3+250°C. Dans le cas où le flan est pré-revêtu, on effectue préférentiellement le chauffage dans un four sous atmosphère ordinaire ; on assiste durant cette étape à une alliation entre l'acier et le pré-revêtement. Le revêtement formé par alliation protège l'acier sous-jacent de l'oxydation et de la décarburation et se révèle apte à une déformation ultérieure à chaud. On maintient le flan à la température T1 pour assurer l'homogénéité de la température en son sein. Selon l'épaisseur du flan, comprise par exemple de 0,5 à 3 mm, la durée de maintien à la température T1 varie de 30 secondes à 5 minutes.The blank is heated to a temperature T 1 between A c3 and A c3 + 250 ° C. In the case where the blank is pre-coated, the heating is preferably carried out in an oven under ordinary atmosphere; during this step, an alloying between the steel and the precoat is observed. The alloyed coating protects the underlying steel from oxidation and decarburization and is suitable for subsequent hot deformation. We keep the blank the temperature T 1 to ensure the homogeneity of the temperature within it. Depending on the thickness of the blank, for example 0.5 to 3 mm, the holding time at the temperature T 1 varies from 30 seconds to 5 minutes.

Dans ces conditions, la structure de l'acier du flan est complètement austénitique. La limitation de la température à Ac3+250°C a pour effet de restreindre le grossissement du grain austénitique à une taille moyenne inférieure à 40 micromètres. Lorsque la température est comprise entre Ac3 et Ac3+50°C, la taille moyenne de grain est préférentiellement inférieure à 5 micromètres.

  • on transfère le flan ainsi chauffé au sein d'une presse d'emboutissage à chaud ou bien au sein d'un dispositif de mise en forme à chaud : ce dernier peut être par exemple un dispositif de « roll-forming » dans lequel le flan est déformé progressivement par profilage à chaud dans une série de rouleaux jusqu'à atteindre la géométrie finale de la pièce désirée. Le transfert du flan jusqu'à la presse ou jusqu'au dispositif de mise en forme doit s'effectuer suffisamment rapidement pour ne pas provoquer de transformation de l'austénite.
  • on refroidit ensuite le flan à une vitesse VR1 supérieure à 2°C/s de façon à éviter la transformation de l'austénite, jusqu'à une température T3 comprise entre 600°C et 400°C, domaine de température dans lequel l'austénite est métastable.
Under these conditions, the steel structure of the blank is completely austenitic. The limitation of the temperature to A c3 + 250 ° C has the effect of restricting the magnification of the austenitic grain to an average size of less than 40 micrometers. When the temperature is between Ac3 and Ac3 + 50 ° C, the average grain size is preferably less than 5 micrometers.
  • the blank thus heated is transferred into a hot stamping press or into a hot forming device: the latter may for example be a "roll-forming" device in which the blank is progressively deformed by hot forming in a series of rollers until reaching the final geometry of the desired part. The transfer of the blank to the press or to the shaping device must be carried out quickly enough not to cause transformation of the austenite.
  • the blank is then cooled at a speed V R1 greater than 2 ° C / s so as to avoid transformation of the austenite, to a temperature T 3 of between 600 ° C and 400 ° C, temperature range in which the austenite is metastable.

Selon une variante, il est aussi possible d'inverser l'ordre de ces deux dernières étapes, c'est à dire de refroidir d'abord le flan avec une vitesse VR1 supérieure à 2°C/s, puis de transférer ce flan au sein de la presse d'emboutissage ou du dispositif de mise en forme à chaud, de telle sorte que celui-ci puisse être embouti ou mis en forme à chaud de la façon qui suit.According to one variant, it is also possible to reverse the order of these last two steps, ie to cool the blank first with a speed V R1 greater than 2 ° C./s, and then to transfer this blank in the stamping press or hot forming device, so that it can be stamped or shaped hot as follows.

On emboutit ou on met en forme à chaud le flan à une température T3 comprise entre 400 et 600°C, cette déformation à chaud pouvant être effectuée en une seule étape ou en plusieurs étapes successives, comme dans le cas du roll-forming mentionné ci-dessus. A partir d'un flan initial plan, l'emboutissage permet d'obtenir une pièce dont la forme n'est pas développable. Quel que soit le mode de mise en forme à chaud, la déformation cumulée εc doit être supérieure à 30% de façon à obtenir une austénite déformée non recristallisée. Comme les modes de déformation peuvent varier d'un endroit à un autre en raison de la géométrie de la pièce et du mode local de sollicitation (expansion, rétreint, traction ou compression uniaxiale), on désigne par εc la déformation équivalente définie en chaque point de la pièce par ε c = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 ,

Figure imgb0008
où εc et ε2 sont les déformations principales cumulées sur l'ensemble des étapes de déformation à la température T3. Dans une première variante, le mode de formage à chaud est choisi de telle sorte que la condition εc >30% soit satisfaite en tout endroit de la pièce formée.The blank is stamped or shaped at a temperature T 3 of between 400 and 600 ° C., this hot deformation can be carried out in a single step or in several successive steps, as in the case of the mentioned roll-forming. above. Starting from an initial flat blank, the stamping makes it possible to obtain a part whose shape is not developable. Regardless of the hot layout mode, the cumulative deformation ε c must be greater than 30% so as to obtain a non-recrystallized deformed austenite. As the deformation modes may vary from one place to another due to the geometry of the part and the local mode of stress (expansion, shrinkage, traction or uniaxial compression), the term ε c the equivalent deformation defined in each point of the piece by ε vs ~ = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 ,
Figure imgb0008
where ε c and ε 2 are the main deformations accumulated over all the deformation steps at the temperature T 3 . In a first variant, the hot forming mode is chosen so that the condition ε c > 30% is satisfied anywhere in the formed part.

Optionnellement, il est également possible de mettre en oeuvre un procédé de formage à chaud où cette condition ne se trouve remplie qu'à certains endroits particuliers, correspondant aux zones les plus sollicitées des pièces où l'on souhaite obtenir des caractéristiques mécaniques particulièrement élevées. On obtient dans ces conditions une pièce dont les propriétés mécaniques sont variables, pouvant résulter à certains endroits d'une trempe martensitique simple (cas de zones éventuelles non déformées localement lors de la mise en forme à chaud) et résulter dans d'autres zones du procédé selon l'invention qui conduit à une structure martensitique avec une taille de lattes extrêmement réduite et des propriétés mécaniques accrues.Optionally, it is also possible to implement a hot forming process where this condition is fulfilled only in certain particular places, corresponding to the most stressed areas of the rooms where it is desired to obtain particularly high mechanical characteristics. In these conditions, a part is obtained whose mechanical properties are variable, which may result in some places with a simple martensitic quench (in the case of possible zones not locally deformed during hot forming) and result in other zones of the zone. method according to the invention which leads to a martensitic structure with an extremely reduced slat size and increased mechanical properties.

Après déformation à chaud, on refroidit la pièce à une vitesse VR2 supérieure à la vitesse critique de trempe martensitique de façon à obtenir une structure totalement martensitique. Dans le cas de l'emboutissage à chaud, ce refroidissement peut être réalisé par maintien de la pièce dans l'outillage avec un contact étroit avec celui-ci. Ce refroidissement par conduction thermique peut être accéléré par refroidissement de l'outillage d'emboutissage, par exemple grâce à des canaux usinés dans l'outillage permettant la circulation d'un fluide réfrigérant.After hot deformation, the workpiece is cooled at a speed V R2 greater than the critical speed of martensitic quenching so as to obtain a totally martensitic structure. In the case of hot stamping, this cooling can be achieved by maintaining the piece in the tool with close contact therewith. This cooling by thermal conduction can be accelerated by cooling the stamping tool, for example through channels machined in the tool for the circulation of a refrigerant.

Outre par la composition d'acier mis en oeuvre, le procédé d'emboutissage à chaud de l'invention diffère donc du procédé usuel qui consiste à débuter l'emboutissage à chaud dès que le flan a été positionné dans la presse. Selon ce procédé usuel, la limite d'écoulement de l'acier est la plus faible à haute température et les efforts requis par la presse sont les moins élevés. Par comparaison, le procédé selon l'invention consiste à observer un temps d'attente de façon à ce que le flan atteigne un domaine de température adapté pour l'ausforming, puis à emboutir à chaud le flan à température nettement plus basse que dans le procédé usuel. Pour une épaisseur de flan donnée, l'effort d'emboutissage requis par la presse est légèrement plus élevé mais la structure finale obtenue plus fine que dans le procédé usuel conduit à des propriétés mécaniques plus importantes de limite d'élasticité, de résistance et de ductilité. Pour satisfaire un cahier des charges correspondant à un niveau de sollicitation donné, il est donc possible de diminuer l'épaisseur des flans et par là même de diminuer l'effort d'emboutissage des pièces selon l'invention.In addition to the steel composition used, the hot stamping process of the invention differs from the usual process of starting hot stamping as soon as the blank has been positioned in the press. According to this conventional method, the flow limit of the steel is the lowest at high temperature and the forces required by the press are the lowest. By comparison, the method according to the invention consists in observing a waiting time so that the blank reaches a temperature range suitable for the ausforming, then hot stamping the blank at a significantly lower temperature than in the usual process. For a given blank thickness, the stamping force required by the press is slightly higher but the final structure obtained thinner than in the usual process leads to greater mechanical properties of yield strength, strength and stability. ductility. To meet a specification corresponding to a given level of stress, it is therefore possible to reduce the thickness of the blanks and thereby reduce the stamping force of the parts according to the invention.

De plus, selon le procédé d'emboutissage à chaud usuel, la déformation à chaud immédiatement après emboutissage doit être limitée, cette déformation à haute température ayant tendance à favoriser la formation de ferrite dans les zones les plus déformées, ce que l'on cherche à éviter. Le procédé selon l'invention ne comporte pas cette limitation.In addition, according to the conventional hot stamping method, the hot deformation immediately after stamping must be limited, this high temperature deformation tending to favor the formation of ferrite in the most deformed areas, which is sought to avoid. The method according to the invention does not include this limitation.

Quelle que soit la variante du procédé selon l'invention, les tôles ou les pièces d'acier peuvent être utilisés telles quelles ou soumises à un traitement thermique de revenu, effectué à une température T4 comprise entre 150 et 600°C pendant une durée comprise entre 5 et 30 minutes. Ce traitement de revenu a pour effet d'augmenter la ductilité au prix d'une diminution de la limite d'élasticité et de la résistance. Les inventeurs ont cependant mis en évidence que le procédé selon l'invention, qui confère une résistance mécanique en traction Rm d'au moins 50 MPa plus élevée que celle obtenue après trempe conventionnelle, conservait cet avantage, même après traitement de revenu avec des températures allant de 150 à 600°C. Les caractéristiques de finesse de la microstructure sont conservées par ce traitement de revenu, la taille moyenne de lattes étant inférieure à 1,2 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5.Whatever the variant of the process according to the invention, the sheets or the steel parts may be used as such or subjected to a heat treatment of tempering, carried out at a temperature T 4 of between 150 and 600 ° C. for a period of time. between 5 and 30 minutes. This treatment of income has the effect of increasing the ductility at the price of a decrease in yield strength and strength. The inventors have, however, demonstrated that the process according to the invention, which gives a tensile strength Rm of at least 50 MPa higher than that obtained after conventional quenching, retained this advantage, even after treatment of tempering with temperatures. ranging from 150 to 600 ° C. The fineness characteristics of the microstructure are preserved by this treatment of income, the average size of slats being less than 1.2 micrometer, the average elongation factor of slats being between 2 and 5.

A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.As a non-limitative example, the following results will show the advantageous characteristics conferred by the invention.

Exemple 1 :Example 1

On a approvisionné des demi-produits d'acier dont les compositions, exprimées en teneurs pondérales (%), sont les suivantes : Acier C Mn Si Cr Mo Al S P Nb Ti B 0,5Mn+Cr+3 Mo A 0,195 1,945 0,01 1,909 0,05 003 0,003 0,02 0,01 0,012 0,0014 3,03 B 0,24 1,99 0,01 1,86 0,008 0.027 0,003 0,02 0,008 - - 2,88 Steel semi-finished products have been supplied whose compositions, expressed in contents by weight (%), are as follows: Steel VS mn Yes Cr MB al S P Nb Ti B 0.5Mn + Cr + 3MB AT 0.195 1,945 0.01 1,909 0.05 003 0,003 0.02 0.01 0.012 0.0014 3.03 B 0.24 1.99 0.01 1.86 0,008 0027 0,003 0.02 0,008 - - 2.88

Des demi-produits de 31 mm d'épaisseur ont été réchauffés et maintenus 30 minutes à une température T1 de 1050°C puis soumis à un laminage de dégrossissage en 5 passes à une température T2 de 910°C jusqu'à une épaisseur de 6 mm, soit un taux de réduction cumulé εa de 164%. A ce stade, la structure est totalement austénitique et complètement recristallisée avec une taille moyenne de grain de 30 micromètres. Les tôles ainsi obtenues ont été ensuite refroidies à la vitesse de 25°C/s jusqu'à la température T3 de 550°C où elles ont été laminées en 5 passes avec un taux de réduction cumulé εb de 60% puis refroidies ensuite jusqu'à la température ambiante avec une vitesse de 80°C/s de façon à obtenir une microstructure complètement martensitique. Par comparaison, des tôles d'aciers de composition ci-dessus ont été chauffées et maintenues 30 minutes à 1250°C puis refroidies par trempe à l'eau de façon à obtenir une microstructure complètement martensitique (traitement de référence)31 mm thick semi-finished products were heated and held for 30 minutes at a temperature T 1 of 1050 ° C. and then subjected to a 5-pass roughing rolling at a temperature T 2 of 910 ° C. up to a thickness of 6 mm, a cumulative reduction ratio ε is 164%. At this stage, the structure is completely austenitic and completely recrystallized with an average grain size of 30 microns. The sheets thus obtained were then cooled at a rate of 25 ° C./s up to the temperature T 3 of 550 ° C. where they were rolled in 5 passes with a cumulative reduction rate ε b of 60% and then cooled down. up to room temperature with a speed of 80 ° C / sec so as to obtain a completely martensitic microstructure. In comparison, steel sheets of the above composition were heated and held for 30 minutes at 1250 ° C. and then cooled by quenching with water so as to obtain a completely martensitic microstructure (reference treatment).

Au moyen d'essais de traction, on a déterminé la limite d'élasticité Re, la résistance à la rupture Rm, et l'allongement total A des tôles obtenues par ces différents modes de fabrication. On a également fait figurer la valeur estimée de la résistance après trempe martensitique simple (3220%(C)+908) (MPa) ainsi que la différence ΔRm entre cette valeur estimée et la résistance effectivement mesurée.By means of tensile tests, the yield strength Re, the tensile strength Rm, and the total elongation A were determined for sheets obtained by these different methods of manufacture. The estimated value of the resistance after single martensitic hardening (3220% (C) +908) (MPa) and the difference ΔRm between this estimated value and the resistance actually measured are also shown.

On a également observé la microstructure des tôles obtenues par Microscopie Electronique à Balayage au moyen d'un canon à effet de champ (technique « MEB-FEG ») et détecteur EBSD et quantifié la taille moyenne des lattes de la structure martensitique ainsi que leur facteur d'allongement moyen l max l min .

Figure imgb0009
The microstructure of the Scanning Electron Microscopy plates was also observed using a field effect gun (MEB-FEG technique) and EBSD detector and quantified the average size. slats of the martensitic structure and their average elongation factor l max ~ l min .
Figure imgb0009

Les résultats de ces différentes caractérisations sont présentés ci-dessous. Les essais A1 et A2 désignent des essais réalisés sur la composition d'acier A dans deux conditions différentes, l'essai B1 a été réalisé à partir de la composition d'acier B. Conditions d'essais et résultats mécaniques obtenus Essai Température T3 (°C) Re (MPa) Rm (MPa) A (%) 3220 %C+908 (MPa) ΔRm (MPa) Taille moyenne de lattes (μm)

Figure imgb0010
Invention A1 550 1588 1889 5,9 1536 353 0,9 3 B1 550 1572 1986 6,5 1681 306 0,8 4 Référence A2 Sans 1223 1576 6,9 1536 40 2 7 Valeurs soulignées : non conformes à l'invention The results of these different characterizations are presented below. Tests A1 and A2 designate tests carried out on the composition of steel A under two different conditions, the test B1 was made from the composition of steel B. Test conditions and mechanical results obtained Trial Temperature T 3 (° C) Re (MPa) Rm (MPa) AT (%) 3220% C + 908 (MPa) ΔRm (MPa) Average size of slats (μm)
Figure imgb0010
Invention A1 550 1588 1889 5.9 1536 353 0.9 3 B1 550 1572 1986 6.5 1681 306 0.8 4 Reference A2 Without 1223 1576 6.9 1536 40 2 7
Underlined values: not in accordance with the invention

La figure 1 présente la microstructure obtenu dans le cas de l'essai A1. Par comparaison, la figure 2 présente la microstructure du même acier simplement chauffé à 1250°C, maintenu 30 minutes à cette température et trempé ensuite à l'eau (essai A2) Le procédé selon l'invention permet d'obtenir une martensite avec une taille moyenne de lattes nettement plus fine et moins allongées que dans la structure de référence.The figure 1 shows the microstructure obtained in the case of test A1. By comparison, figure 2 shows the microstructure of the same steel simply heated to 1250 ° C., held for 30 minutes at this temperature and then quenched with water (test A2). The process according to the invention makes it possible to obtain a martensite with a significantly greater average slat size. thin and less elongated than in the reference structure.

Dans le cas de l'essai A2 (trempe martensitique simple), on observe que la valeur de la résistance estimée (1536MPa) à partir de l'expression (1) est voisine de celle déterminée expérimentalement (1576MPa)In the case of the A2 (simple martensitic quenching) test, it is observed that the value of the estimated resistance (1536 MPa) from expression (1) is close to that determined experimentally (1576 MPa)

Dans les essais A1 et B1 selon l'invention, les valeurs de ΔRm sont de 353 et de 306 MPa respectivement. Le procédé selon l'invention permet donc d'obtenir des valeurs de résistance mécanique nettement supérieures à celles qui seraient obtenues par une trempe martensitique simple. Cette augmentation de résistance (353 ou 306 MPa) est équivalente à celle qui serait obtenue, d'après la relation (1) par une trempe martensitique simple appliquée à des aciers dans lesquels une addition supplémentaire de 0,11% ou de 0,09% environ aurait été réalisée. Une telle augmentation de la teneur en carbone aurait cependant des conséquences néfastes vis-à-vis de la soudabilité et de la ténacité, alors que le procédé selon l'invention permet d'atteindre de très hautes valeurs de résistance mécanique sans ces inconvénients.In tests A1 and B1 according to the invention, the values of ΔRm are 353 and 306 MPa respectively. The method according to the invention therefore makes it possible to obtain mechanical strength values that are clearly higher than those which would be obtained by a simple martensitic quenching. This increase in strength (353 or 306 MPa) is equivalent to that which would be obtained from equation (1) by simple martensitic quenching applied to steels in which an additional addition of 0.11% or 0.09 about% would have been achieved. Such an increase in the content However, the carbon-based process would have adverse consequences with respect to weldability and toughness, whereas the process according to the invention makes it possible to achieve very high values of mechanical strength without these disadvantages.

Les tôles fabriquées selon l'invention en raison de leur teneur en carbone plus faible, présentent une bonne aptitude au soudage par les procédés usuels, en particulier au soudage par résistance par points.The sheets manufactured according to the invention because of their lower carbon content, have good weldability by conventional methods, in particular spot resistance welding.

Des traitements thermiques de revenu ont été ensuite réalisés dans différentes conditions de température et de durée sur l'acier dans la condition B1 ci-dessus : pour une température allant jusqu'à 600°C et une durée allant jusqu'à 30 minutes, la taille moyenne de lattes martensitiques reste inférieure à 1,2 micromètre.Heat treatments were then carried out under different conditions of temperature and duration on the steel in condition B1 above: for a temperature up to 600 ° C and a duration of up to 30 minutes, the Average size of martensitic slats remains less than 1.2 micrometers.

Exemple 2 :Example 2

On a approvisionné des flans en acier d'épaisseur 3mm de composition suivante, exprimée en teneurs pondérales (%): Acier C Mn Si Cr Mo Al S P Nb 0,5Mn+ Cr+3Mo B 0,24 1,99 0,01 1,86 0,008 0,027 0,003 0,02 0,008 2,88 Steel blanks of thickness 3 mm of the following composition, expressed in terms of weight (%), were supplied: Steel VS mn Yes Cr MB al S P Nb 0.5Mn + Cr + 3Mo B 0.24 1.99 0.01 1.86 0,008 0,027 0,003 0.02 0,008 2.88

Les flans ont été soumis à un chauffage à 1000°C (soit Ac3+210°C environ) pendant 5 minutes. Ceux-ci ont été ensuite :

  • soit refroidis à 50°C/s jusqu'à la température T3 de 525°C puis emboutis à cette température avec une déformation équivalente εc supérieure à 50%, et enfin refroidis à une vitesse supérieure à la vitesse critique de trempe martensitique (essai B2)
  • soit refroidis à 50°C/s jusqu'à la température de 525°C, puis refroidis à une vitesse supérieure à la vitesse critique de trempe martensitique (essai B3)
The blanks were subjected to heating at 1000 ° C (ie Ac3 + 210 ° C) for 5 minutes. These were then:
  • be cooled to 50 ° C / s up to the temperature T 3 of 525 ° C and then stamped at this temperature with equivalent deformation ε c greater than 50%, and finally cooled to above the critical martensitic quenching speed (test B2)
  • cooled to 50 ° C / s to 525 ° C, then cooled to above the critical martensitic quenching rate (test B3)

Le tableau ci-dessous présente les propriétés mécaniques obtenues : Conditions d'essais et résultats mécaniques obtenus Essai Température T3 (°C) Re (MPa) Rm (MPa) 3220 %C+908 (MPa) |ΔRm| (MPa) Taille moyenne de lattes (µm)

Figure imgb0011
Invention B2 525 1531 1912 1681 299 0,9 3 Référence B3 - 1320 1652 1681 29 1,8 5 Valeurs soulignées : non conformes à l'invention The table below shows the mechanical properties obtained: Test conditions and mechanical results obtained Trial Temperature T 3 (° C) Re (MPa) Rm (MPa) 3220% C + 908 (MPa) | ΔRm | (MPa) Average size of slats (μm)
Figure imgb0011
Invention B2 525 1531 1912 1681 299 0.9 3 Reference B3 - 1320 1652 1681 29 1.8 5
Underlined values: not in accordance with the invention

La figure 3 présente la microstructure obtenue dans la condition B3 selon l'invention, caractérisée par une taille moyenne de lattes très fine (0,9 micromètre) et un faible facteur d'allongement.The figure 3 shows the microstructure obtained in condition B3 according to the invention, characterized by a very thin slat size (0.9 micrometer) and a low elongation factor.

Ainsi, l'invention permet la fabrication de tôles, ou de pièces nues ou revêtues, à très hautes caractéristiques mécaniques, dans des conditions économiques très satisfaisantes.Thus, the invention allows the manufacture of sheets, or bare or coated parts, with very high mechanical characteristics, under very satisfactory economic conditions.

Ces tôles ou ces pièces seront utilisées avec profit pour la fabrication de pièces de sécurité, et notamment de pièces anti-intrusion ou de soubassement, de barres de renforcement, de pieds milieu, pour la construction de véhicules automobiles.These sheets or parts will be used profitably for the manufacture of safety parts, including anti-intrusion parts or underbody, reinforcement bars, middle feet, for the construction of motor vehicles.

Claims (9)

  1. Method for manufacturing a steel sheet with a completely martensitic structure having a mean lath size of less than 1 micrometre, the mean elongation factor of said laths being between 2 and 5, it being understood that the elongation factor of a lath with a maximum dimension lmax and minimum dimension lmin is defined by l max l min ,
    Figure imgb0070
    with an elastic limit greater than 1300 MPa and a mechanical strength greater than (3220(C)+958) megapascals, it being understood that (C) designates the carbon content as a percentage by weight of said steel, comprising the successive steps in this order, according to which:
    - a semi-finished product is procured, the composition of which comprises, the proportions being expressed by weight, 0.15 % C 0.40 %
    Figure imgb0071
    1.5 % Mn 3 %
    Figure imgb0072
    0.005 % Si 2 %
    Figure imgb0073
    0.005 % Al 0.1 %
    Figure imgb0074
    1.8 % Cr 4 %
    Figure imgb0075
    0 % Mo 2 %
    Figure imgb0076
    it being understood that 2.7 % 0.5 Mn + Cr + 3 Mo 5.7 %
    Figure imgb0077
    S 0.05 %
    Figure imgb0078
    P 0.1 %
    Figure imgb0079
    and optionally: 0 % Nb 0.050 %
    Figure imgb0080
    0.01 % Ti 0.1 %
    Figure imgb0081
    0.0005 % B 0.005 %
    Figure imgb0082
    0.0005 % Ca 0.005 % ,
    Figure imgb0083
    the rest of the composition consisting of iron and unavoidable impurities resulting from the production,
    - the semi-finished product is heated to a temperature T1 of between 1050°C and 1250°C, and then
    - a roughing-down rolling of said heated semi-finished product is carried out, at a temperature T2 between 1000 and 880°C, with a total degree of reduction εa greater than 30% so as to obtain a sheet with a completely recrystallised austenitic structure with a mean grain size of less than 40 micrometres and preferably less than 5 micrometres, it being understood that the total reduction rate εa is defined by: Ln e ia e f a ,
    Figure imgb0084
    eia designating the thickness of the semi-finished product before said roughing-down hot rolling and efa the thickness of the sheet after said roughing-down rolling, and then
    - the sheet is cooled not completely to a temperature T3 of between 600°C and 400°C in the metastable austenitic range, at a rate VR1 greater than 2°C/s, then
    - a finishing hot rolling is carried out, at said temperature T3, of the not completely cooled sheet, with a total degree of reduction εb greater than 30% so as to obtain a sheet, it being understood that said total degree of reduction εb is defined by: Ln e ib e f b ,
    Figure imgb0085
    eib designating the thickness of the sheet before said finished hot rolling and efa the thickness of the sheet after said finishing rolling, then
    - said sheet is cooled at a rate VR2 greater than the critical martensitic hardening rate.
  2. Method for manufacturing a steel piece with a completely martensitic structure having a mean lath size of less than 1 micrometre, the mean elongation factor of said laths being between 2 and 5, it being understood that the elongation factor of a lath with a maximum dimension lmax and minimum dimension lmin is defined by l max l min ,
    Figure imgb0086
    comprising the successive steps in this order according to which:
    - a steel blank is procured, the composition of which comprises, the proportions being expressed by weight, 0.15 % C 0.40 %
    Figure imgb0087
    1.5 % Mn 3 %
    Figure imgb0088
    0.005 % Si 2 %
    Figure imgb0089
    0.005 % Al 0.1 %
    Figure imgb0090
    1.8 % Cr 4 %
    Figure imgb0091
    0 % Mo 2 %
    Figure imgb0092
    it being understood that 2.7 % 0.5 Mn + Cr + 3 Mo 5.7 %
    Figure imgb0093
    S 0.05 %
    Figure imgb0094
    P 0.1 %
    Figure imgb0095
    and optionally: 0 % Nb 0.050 %
    Figure imgb0096
    0.01 % Ti 0.1 %
    Figure imgb0097
    0.0005 % B 0.005 %
    Figure imgb0098
    0.0005 % Ca 0.005 % ,
    Figure imgb0099
    the rest of the composition consisting of iron and unavoidable impurities resulting from the production,
    - said blank is heated to a temperature T1 of between Ac3 and Ac3+250°C so that the mean austenitic grain size is less than 40 micrometres, and preferably less than 5 micrometres, then
    - said heated blank is transferred into a hot drawing press or a hot forming device, then
    - said blank is cooled to a temperature T3 between 600°C and 400°C, at a rate VR1 greater than 2°C/s so as to prevent transformation of the austenite,
    - the order of the last two sections being able to be inverted, then
    - said cooled blank is pressed or formed hot at said temperature T3, by a quantity εc greater than 30% in at least one region, in order to obtain a piece, it being understood that said quantity εc is defined by εc = 2 3 ε 1 2 + ε 1 ε 2 + ε 2 2 ,
    Figure imgb0100
    where ε1 and ε2 are the total main deformations over all the deformation steps at the temperature T3, then
    - said piece is cooled at a rate VR2 greater than the critical martensitic hardening rate.
  3. Method for manufacturing a piece according to claim 2, characterised in that said blank is hot drawn so as to obtain a piece, then said piece is kept in the drawing tool so as to cool said piece at a speed VR2 greater than the critical martensitic hardening speed.
  4. Method for manufacturing a steel piece according to either one of claims 2 or 3, characterised in that said blank is precoated with aluminium or an aluminium-based alloy.
  5. Method for manufacturing a steel piece according to any one of claims 2 to 4, characterised in that said blank is precoated with zinc or a zinc-based alloy.
  6. Method for manufacturing a steel sheet or piece according to any one of claims 1 to 5, characterised in that said sheet or piece is subjected to subsequent tempering heat treatment at a temperature T4 between 150°C and 600°C for a period of between 5 and 30 minutes.
  7. Steel sheet with an elastic limit greater than 1300 MPa, and a mechanical strength greater than (3220(C)+958) megapascals, it being understood that (C) designates the carbon content as a percentage by weight of said steel, obtained by a method according to claim 1, with a totally martensitic structure, having a mean lath size of less than 1 micrometre, the mean elongation factor of said laths being between 2 and 5.
  8. Steel piece obtained by a method according to any one of claims 2 to 5, comprising at least one region with a totally martensitic structure having a mean lath size of less than 1 micrometre, the mean elongation factor of said laths being between 2 and 5, the elastic limit in said at least one region being greater than 1300 MPa, and the mechanical strength being greater than (3220(C)+958) megapascals, it being understood that (C) designates the carbon content as a percentage by weight of said steel.
  9. Steel sheet or piece obtained by a method according to claim 6, with a totally martensitic structure, having, in at least one region, a mean lath size of less than 1.2 micrometres, the mean elongation factor of said laths being between 2 and 5.
EP12724656.9A 2011-05-12 2012-04-20 Method for the production of very-high-strength martensitic steel and sheet or part thus obtained Active EP2707513B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12724656T PL2707513T3 (en) 2011-05-12 2012-04-20 Method for the production of very-high-strength martensitic steel and sheet or part thus obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/FR2011/000294 WO2012153008A1 (en) 2011-05-12 2011-05-12 Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
PCT/FR2012/000153 WO2012153012A1 (en) 2011-05-12 2012-04-20 Method for the production of very-high-strength martensitic steel and sheet or part thus obtained

Publications (2)

Publication Number Publication Date
EP2707513A1 EP2707513A1 (en) 2014-03-19
EP2707513B1 true EP2707513B1 (en) 2016-11-09

Family

ID=46197581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12724656.9A Active EP2707513B1 (en) 2011-05-12 2012-04-20 Method for the production of very-high-strength martensitic steel and sheet or part thus obtained

Country Status (16)

Country Link
US (2) US10337090B2 (en)
EP (1) EP2707513B1 (en)
JP (1) JP6114261B2 (en)
KR (2) KR20150095949A (en)
CN (1) CN103562417B (en)
BR (2) BR122018069395B1 (en)
CA (1) CA2835533C (en)
ES (1) ES2612514T3 (en)
HU (1) HUE031878T2 (en)
MA (1) MA35058B1 (en)
MX (1) MX359665B (en)
PL (1) PL2707513T3 (en)
RU (1) RU2580578C2 (en)
UA (1) UA113628C2 (en)
WO (2) WO2012153008A1 (en)
ZA (1) ZA201309348B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016016676A1 (en) 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Process for manufacturing steel sheets, for press hardening, and parts obtained by means of this process
CN104357747B (en) * 2014-10-27 2017-11-03 中国科学院金属研究所 A kind of microalloying manganese-boron steel and its heat treatment method and application
WO2016079565A1 (en) * 2014-11-18 2016-05-26 Arcelormittal Method for manufacturing a high strength steel product and steel product thereby obtained
CN104846274B (en) * 2015-02-16 2017-07-28 重庆哈工易成形钢铁科技有限公司 Hot press-formed use steel plate, hot press-formed technique and hot press-formed component
DE102016201024A1 (en) * 2016-01-25 2017-07-27 Schwartz Gmbh Heat treatment process and heat treatment device
RU2630082C1 (en) * 2016-12-02 2017-09-05 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method for production of hot-rolling steel sheet products with hot forming
RU2630084C1 (en) * 2016-12-02 2017-09-05 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Method for production of cold-rolling steel sheet products with hot forming
EP3589757A1 (en) * 2017-03-01 2020-01-08 Ak Steel Properties, Inc. Hot-rolled steel with very high strength and method for production
WO2018160462A1 (en) 2017-03-01 2018-09-07 Ak Steel Properties, Inc. Press hardened steel with extremely high strength
CN109023092B (en) * 2018-09-10 2020-07-10 武汉钢铁有限公司 1300 MPa-grade hot forming steel for wheel rim and preparation method thereof
CN109355578B (en) * 2018-12-14 2022-02-18 辽宁衡业高科新材股份有限公司 Preparation method of 1000 MPa-level heat-treated wheel
CN111215751B (en) 2019-03-29 2022-06-28 宝山钢铁股份有限公司 Steel poor-strength welding part with aluminum or aluminum alloy coating and manufacturing method thereof
CN110273052A (en) * 2019-07-10 2019-09-24 泰州市金鹰齿轮有限公司 A kind of high-grade cone Pressure quenching mould
CN112210726B (en) * 2020-09-29 2022-02-15 中国科学院金属研究所 Ultrahigh-strength nanocrystalline 40Cr2NiMnW structural steel and preparation method thereof
CN112725698B (en) * 2020-12-28 2021-12-07 郑州航空工业管理学院 Multi-scale structure block material and preparation method and application thereof
CN114107636B (en) * 2021-10-19 2023-02-24 北京科技大学 2000 MPa-grade hot-rolled hot-forming steel for ultrahigh-strength and high-toughness spoke and preparation method thereof
CN113832407B (en) * 2021-11-29 2022-02-22 东北大学 Preparation method of thick hot forming steel, hot rolled steel plate and hot forming steel
CN115874112A (en) * 2022-11-02 2023-03-31 包头钢铁(集团)有限责任公司 Method for manufacturing 1300MPa cold-rolled martensitic steel

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276903A (en) * 1953-02-04 1966-10-04 Onera (Off Nat Aerospatiale) Heat treatment of metals
GB1080304A (en) 1965-03-12 1967-08-23 Natural Res Dev Corp Ausforming high-strength alloy steels
GB1166042A (en) 1965-12-22 1969-10-01 Nat Res Dev Improvements in Heat Treated Alloy Steels
US3907614A (en) * 1972-12-20 1975-09-23 Bethlehem Steel Corp Bainitic ferrous alloy and method
JPS61195958A (en) * 1985-02-26 1986-08-30 Nippon Steel Corp Manufacture of vibration suppressing steel sheet having high workability
JPH09310116A (en) * 1996-05-21 1997-12-02 Daido Steel Co Ltd Production of high strength member excellent in delayed fracture characteristic
WO1999005328A1 (en) 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
JPH11100644A (en) * 1997-09-26 1999-04-13 Daido Steel Co Ltd Manufacture of spring steel with high strength and high toughness and spring
EP0937757A1 (en) 1998-02-19 1999-08-25 Nihon Parkerizing Co., Ltd. Composition and method for hydrophilic treatment of aluminium or aluminium alloy, and use of the composition
FR2780984B1 (en) 1998-07-09 2001-06-22 Lorraine Laminage COATED HOT AND COLD STEEL SHEET HAVING VERY HIGH RESISTANCE AFTER HEAT TREATMENT
PT1218552E (en) * 1999-07-12 2009-10-22 Mmfx Steel Corp Of America Low-carbon steels of superior mechanical and corrosion properties
FR2849864B1 (en) 2003-01-15 2005-02-18 Usinor VERY HIGH STRENGTH HOT-ROLLED STEEL AND METHOD OF MANUFACTURING STRIPS
JP2004337923A (en) 2003-05-15 2004-12-02 Sumitomo Metal Ind Ltd Manufacturing method of steel for hot forming
JP4673558B2 (en) 2004-01-26 2011-04-20 新日本製鐵株式会社 Hot press molding method and automotive member excellent in productivity
JP2007154305A (en) * 2005-07-05 2007-06-21 Jfe Steel Kk Steel for mechanical structure with excellent strength, ductility and toughness, and its manufacturing method
CN100540706C (en) 2005-07-05 2009-09-16 杰富意钢铁株式会社 The steel for mechanical structure of intensity, ductility and good-toughness and manufacture method thereof
JP4502272B2 (en) * 2005-12-14 2010-07-14 株式会社神戸製鋼所 Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof
JP4681492B2 (en) * 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
JP2007310116A (en) 2006-05-18 2007-11-29 Seiko Epson Corp Method of forming orientation film, method of manufacturing liquid crystal panel and method of manufacturing electronic equipment
KR100797326B1 (en) * 2006-09-29 2008-01-22 주식회사 포스코 Steel plate for riser pipe guaranteed pwht and method of manufacturing thereof
RU2350662C1 (en) * 2007-06-15 2009-03-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Method for production of sheets
JP4538094B2 (en) * 2008-09-17 2010-09-08 新日本製鐵株式会社 High strength thick steel plate and manufacturing method thereof
US8500924B2 (en) * 2008-11-11 2013-08-06 Nippon Steel & Sumitomo Metal Corporation High-strength steel plate and producing method therefor

Also Published As

Publication number Publication date
JP2014517149A (en) 2014-07-17
US10895003B2 (en) 2021-01-19
BR112013028931A2 (en) 2017-02-07
BR112013028931B1 (en) 2019-03-06
CA2835533A1 (en) 2012-11-15
US10337090B2 (en) 2019-07-02
ES2612514T3 (en) 2017-05-17
JP6114261B2 (en) 2017-04-12
US20190226060A1 (en) 2019-07-25
KR20150095949A (en) 2015-08-21
BR122018069395B1 (en) 2019-04-24
KR101590689B1 (en) 2016-02-01
WO2012153012A1 (en) 2012-11-15
WO2012153008A1 (en) 2012-11-15
ZA201309348B (en) 2014-07-30
MX2013013220A (en) 2014-06-23
CN103562417B (en) 2015-07-29
EP2707513A1 (en) 2014-03-19
RU2580578C2 (en) 2016-04-10
RU2013155181A (en) 2015-06-20
UA113628C2 (en) 2017-02-27
CN103562417A (en) 2014-02-05
HUE031878T2 (en) 2017-08-28
MX359665B (en) 2018-10-05
PL2707513T3 (en) 2017-04-28
KR20140019838A (en) 2014-02-17
US20140076470A1 (en) 2014-03-20
CA2835533C (en) 2018-12-04
MA35058B1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
EP2707513B1 (en) Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
EP2707515B1 (en) Producing method for very high yield strength martensitic steel sheet and steel sheet obtained
EP2155915B1 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
EP3783116B1 (en) Pre-coated sheets allowing the production of press-hardened and coated steel parts
EP2155916B1 (en) Low density steel with good stamping capability
CA2680623C (en) Steel for tool-less hot forming or quenching with improved ductility
CA3065036C (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP6950850B2 (en) Manufacturing method of high-strength steel plate, shock absorbing member and high-strength steel plate
JP6950849B2 (en) Manufacturing method of high-strength steel plate, shock absorbing member and high-strength steel plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141205

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELORMITTAL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 7/13 20060101ALI20160502BHEP

Ipc: C21D 8/02 20060101ALI20160502BHEP

Ipc: C21D 9/46 20060101ALI20160502BHEP

Ipc: C22C 38/22 20060101ALI20160502BHEP

Ipc: C22C 38/04 20060101ALI20160502BHEP

Ipc: C21D 1/673 20060101ALI20160502BHEP

Ipc: C21D 1/19 20060101AFI20160502BHEP

Ipc: C22C 38/18 20060101ALI20160502BHEP

INTG Intention to grant announced

Effective date: 20160608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 843972

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012025141

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2612514

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012025141

Country of ref document: DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E031878

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 843972

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230328

Year of fee payment: 12

Ref country code: FR

Payment date: 20230321

Year of fee payment: 12

Ref country code: FI

Payment date: 20230321

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230323

Year of fee payment: 12

Ref country code: SK

Payment date: 20230323

Year of fee payment: 12

Ref country code: SE

Payment date: 20230327

Year of fee payment: 12

Ref country code: PL

Payment date: 20230323

Year of fee payment: 12

Ref country code: IT

Payment date: 20230322

Year of fee payment: 12

Ref country code: GB

Payment date: 20230321

Year of fee payment: 12

Ref country code: BE

Payment date: 20230321

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230502

Year of fee payment: 12

Ref country code: DE

Payment date: 20230321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230329

Year of fee payment: 12

Ref country code: AT

Payment date: 20230322

Year of fee payment: 12