JPH09310116A - Production of high strength member excellent in delayed fracture characteristic - Google Patents
Production of high strength member excellent in delayed fracture characteristicInfo
- Publication number
- JPH09310116A JPH09310116A JP16225796A JP16225796A JPH09310116A JP H09310116 A JPH09310116 A JP H09310116A JP 16225796 A JP16225796 A JP 16225796A JP 16225796 A JP16225796 A JP 16225796A JP H09310116 A JPH09310116 A JP H09310116A
- Authority
- JP
- Japan
- Prior art keywords
- delayed fracture
- added
- hardenability
- range
- high strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Forging (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は遅れ破壊特性に優れた
高強度鋼からなる部材の加工方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a member made of high strength steel having excellent delayed fracture characteristics.
【0002】[0002]
【従来の技術】通常、引っ張り強度が1200MPaを
超えるような高強度鋼をボルトのように常に高い応力場
におかれた環境で使用する場合、遅れ破壊による事故が
深刻になる。遅れ破壊とは、主に水素の内部拡散による
破壊現象である。耐遅れ破壊特性を高めるために様々な
成分的トライを行っている。例えば、C量の低減、Mo
やV添加、あるいは焼き戻し温度を高くして粒界炭化物
の形状を制御したり、B添加によって粒界での水素拡散
を抑えたり、YやTiを添加して拡散水素との化合物を
生成ささる等の試みを行っている。2. Description of the Related Art Usually, when a high strength steel having a tensile strength of more than 1200 MPa is used in an environment such as a bolt which is always under a high stress field, an accident due to delayed fracture becomes serious. Delayed destruction is a destruction phenomenon mainly due to internal diffusion of hydrogen. Various compositional trials are conducted to improve delayed fracture resistance. For example, reduction of C amount, Mo
Addition of V or V or increasing the tempering temperature to control the shape of grain boundary carbides, addition of B to suppress hydrogen diffusion at grain boundaries, and addition of Y or Ti to form a compound with diffused hydrogen. Attempts such as monkeys are being made.
【0003】しかしながらこれら成分的な改善だけで
は、引っ張り強度が1400MPa前後のレベルまでが
限界とされている。なぜなら、C量を下げたり炭化物の
形状制御を行おうとしても、高い焼き戻し温度が前提と
なるため、C添加量は自ずと高くならざるを得ないから
である。However, the tensile strength is limited to a level of about 1400 MPa only by improving these components. This is because even if the amount of C is reduced or the shape of the carbide is controlled, a high tempering temperature is premised, so the amount of C added must be high.
【0004】またMoやV等による2次硬化を利用する
ことによってC量の低減と高強度化を両立させる場合、
材料コストが極端に高くなり、実用性の面で問題とな
る。In the case where both the reduction of C content and the enhancement of strength are achieved by utilizing the secondary hardening by Mo or V,
The material cost becomes extremely high, which poses a problem in terms of practicality.
【0005】製造工程においても、焼きいれ、焼き戻し
工程が必ず入るため表面粗さの影響による性能のバラツ
キや、熱処理コストの観点からもこれら比較的高温の熱
処理は望ましくない。In the manufacturing process as well, since the annealing and tempering processes are necessarily included, these relatively high temperature heat treatments are not desirable from the viewpoint of performance variation due to the influence of surface roughness and heat treatment cost.
【0006】[0006]
【発明が解決しようとする課題】本発明は、低Cで焼き
入れ性の高い材料を用いて、加工熱処理の1つであるオ
ースフォーミングと焼き戻しによる拡散性水素の放出処
理を行うことによって従来では不可能とされていた15
00MPa以上の引っ張り強度まで対応できる耐遅れ破
壊特性に優れた高強度部材の製造方法を提案するもので
ある。DISCLOSURE OF THE INVENTION The present invention has hitherto been carried out by using a material having a low C content and high hardenability to perform diffusion heat release treatment by ausforming and tempering, which are one of the thermomechanical treatments. Was impossible in 15
The present invention proposes a method for manufacturing a high-strength member having excellent delayed fracture resistance capable of handling a tensile strength of 00 MPa or more.
【0007】[0007]
【課題を解決するための手段】遅れ破壊に優れているた
めの条件は、組織が微細であること、粒界に炭化物等の
偏析が少ないこと、水素のトラップサイトが少なく、十
分に拡散性水素が放出されていること、析出炭化物が球
状かつ微細であることがあげられる。[Means for Solving the Problems] The conditions for excellent delayed fracture are that the structure is fine, that segregation of carbides and the like at grain boundaries is small, that there are few hydrogen trap sites, and that diffusible hydrogen is sufficient. Are emitted, and the precipitated carbides are spherical and fine.
【0008】これらの条件を満たすためには、より少な
いC量で強度を上げること、焼き入れ後に得られるマル
テンサイトラス等が微細で、ひずみ等による水素のトラ
ップサイトを消失させ、拡散性水素を放出させること、
微細炭化物を粒内に析出させることが有効である。In order to satisfy these conditions, the strength should be increased with a smaller amount of C, the martensite lath obtained after quenching should be fine, and the trap sites of hydrogen due to strain should be eliminated to release diffusible hydrogen. Letting
It is effective to precipitate fine carbides in the grains.
【0009】焼き入れ途中の準安定オーステナイト状態
で加工を行った場合、加工硬化オーステナイトからのマ
ルテンサイト変態によって均一でしかも高い転位密度が
受け継がれ、しかもマルテンサイトラスは非常に微細
に、かつ分断された状態となる。この状態での引っ張り
強度は、0.06%≦C≦0.15%の範囲で、加工を
加えずに焼き入れただけの状態より約100から200
MPa程高い1300から1600MPaに達する。When processing was performed in a metastable austenite state during quenching, a uniform and high dislocation density was inherited by the martensite transformation from work-hardened austenite, and the martensite lath was extremely fine and fragmented. It becomes a state. The tensile strength in this state is in the range of 0.06% ≤ C ≤ 0.15%, and is about 100 to 200 as compared with the state of just quenching without processing.
As high as 1 MPa, it reaches from 1300 to 1600 MPa.
【0010】ただし、このままの状態では、水素のトラ
ップサイトが多いため、250℃から350℃、あるい
は420℃から550℃の範囲で水素放出のための焼き
戻し処理が必要となる。なお、このような低い温度で焼
き戻しすることによって、微細でかつ粒内ひずみが均一
なマルテンサイト組織から結晶粒界に偏析することな
く、微細な炭化物が析出する。In this state, however, since there are many hydrogen trap sites, tempering treatment for releasing hydrogen is required in the range of 250 ° C. to 350 ° C. or 420 ° C. to 550 ° C. By tempering at such a low temperature, fine carbide is deposited without segregation from a fine martensite structure with uniform intragranular strain to a grain boundary.
【0011】焼き入れ途中の準安定オーステナイトで加
工する場合、フェライト、ベイナイト変態のような拡散
変態が著しく促進されるため、既存のJISで規定され
た構造用低合金鋼では充分な焼き入れ後硬さが得られな
い。特にC添加量が低い領域では顕著となる。When processing with metastable austenite during quenching, diffusion transformations such as ferrite and bainite transformation are remarkably promoted. Therefore, existing low-alloy structural steels defined by JIS have sufficient hardness after quenching. I can't get it. In particular, it becomes remarkable in the region where the amount of C added is low.
【0012】従って焼き入れ性を充分高める必要がある
ため、焼き入れ性を高める元素の総量を規定する必要が
ある。これらの焼き入れ性向上元素総量をMn+Cr+
Mo+(Cu+Ni)/2+(V+W)/5+10Nb
=Hと定義した場合、下限を3.5と規定することによ
って安定した強度が得られるようになる。ただし、焼き
入れ性向上元素総量が多すぎると鍛造性が阻害されるた
め、Hの上限を5.5とした。Therefore, since the hardenability must be sufficiently enhanced, it is necessary to define the total amount of the elements that enhance the hardenability. The total amount of these hardenability improving elements is Mn + Cr +
Mo + (Cu + Ni) / 2 + (V + W) / 5 + 10Nb
When = H is defined, stable strength can be obtained by defining the lower limit as 3.5. However, if the total amount of the hardenability improving elements is too large, the forgeability is impaired, so the upper limit of H was set to 5.5.
【0013】焼き入れ性向上元素の中で、Mn、Crは
焼き入れ性を著しく高めると共にコスト的にも優れる。
従ってそれそれ1.0%、0.5%以上添加させる。た
だし、Mnは3%を超えて添加しても焼き入れ性向上能
は上昇しなくなるため上限を3%とする。またCrは変
形抵抗を上げる傾向があるため上限を3%ととする。Of the hardenability improving elements, Mn and Cr significantly enhance the hardenability and are excellent in cost.
Therefore, 1.0%, 0.5% or more are added respectively. However, even if Mn is added in excess of 3%, the ability to improve hardenability does not increase, so the upper limit is made 3%. Further, Cr tends to increase the deformation resistance, so the upper limit is made 3%.
【0014】Niは通常、1.5%から4.0%の範囲
の添加で変形抵抗を上げることなく焼き入れ性を高める
作用があるが、焼き入れ性向上能はさほど高くないため
上限を4.0%とする。Ni is usually added in the range of 1.5% to 4.0% to improve the hardenability without increasing the deformation resistance, but the hardenability improving ability is not so high, so the upper limit is 4%. 0.0%.
【0015】Cuは焼き入れ性を上げる効果がある反
面、熱間加工性を悪化させるためその上限を1.0%と
規定した。Although Cu has the effect of improving the hardenability, it deteriorates the hot workability, so its upper limit is defined as 1.0%.
【0016】Mo,W,V,Nbは焼き入れ性を上げる
作用と2次硬化の作用があるが、同時に安定した硬い炭
化物を形成して、変形抵抗を上げてしまうので、その上
限をそれそれ2.0%、0.5%、0.3%、0.06
%とした。Mo, W, V, and Nb have the effect of improving hardenability and the effect of secondary hardening, but at the same time, they form stable hard carbides and increase the deformation resistance. 2.0%, 0.5%, 0.3%, 0.06
%.
【0017】BもMn、Cr、Mo同様に焼き入れ性を
著しく高める作用がある。しかし、B添加による効果
は、0.0008≦B≦0.005の範囲であるので、
この範囲で規定した。また、この時、Nを固定させる必
要があるため、B添加の時は0.01≦Ti≦0.10
の範囲で添加しなければならない。B, like Mn, Cr and Mo, also has the effect of remarkably enhancing the hardenability. However, since the effect of adding B is in the range of 0.0008 ≦ B ≦ 0.005,
Specified within this range. Further, at this time, it is necessary to fix N. Therefore, when B is added, 0.01 ≦ Ti ≦ 0.10
Must be added within the range.
【0018】Cは、マルテンサイトの強度を決定する元
素である。本発明では強度範囲を1200MPaから1
600MPaで考えているため、添加量を0.06%か
ら0.15%と規定した。C is an element that determines the strength of martensite. In the present invention, the strength range is 1200 MPa to 1
Since it is considered to be 600 MPa, the addition amount is specified to be 0.06% to 0.15%.
【0019】Siは焼き入れ性を上げる作用があるが、
同時に変形抵抗を大きく上げる作用があるためその上限
を0.5%と規定した。なお、下限値の0.08%は製
造上の制約からくるものである。Although Si has the effect of improving hardenability,
At the same time, it has the effect of greatly increasing the deformation resistance, so the upper limit was defined as 0.5%. The lower limit of 0.08% is due to manufacturing restrictions.
【0020】S、Pは粒界を脆化させ、遅れ破壊特性を
劣化させる元素であるため、これらの上限を0.03%
とした。Since S and P are elements that embrittle grain boundaries and deteriorate delayed fracture characteristics, their upper limits are 0.03%.
And
【0021】[0021]
【実施例】次に本発明の実施例を以下に詳述する。表1
に示す成分組成の鋼種を用いて、図1に示すプロセスに
従って鍛造加工、及び焼き入れを行った。図2に焼き入
れ性指数Hと鍛造温度、及び焼き入れ後硬さの関係を示
す。尚、鍛造時の圧縮率は、50%である。Next, embodiments of the present invention will be described in detail. Table 1
Forging processing and quenching were performed according to the process shown in FIG. FIG. 2 shows the relationship between the hardenability index H, the forging temperature, and the hardness after quenching. The compressibility during forging is 50%.
【0022】[0022]
【表1】 [Table 1]
【0023】図2より、焼き入れ性指数Hが3.5付近
で安定した焼き入れ後硬さが得られるようになることが
確認できる。また、加工を加えず、焼きいれたままのも
のと比較して、焼き入れ性指数Hが3.5以上のものは
明らかに高強度化されていることがわかる。From FIG. 2, it can be confirmed that when the hardenability index H is around 3.5, stable hardness after quenching can be obtained. Further, it can be seen that those having a hardenability index H of 3.5 or more have obviously increased strength as compared with the as-baked ones without processing.
【0024】図3に鋼種Eを一旦1030℃に加熱した
後、冷却途中で鍛造した時の鍛造温度と引っ張り強度の
関係を示す。FIG. 3 shows the relationship between the forging temperature and the tensile strength when the steel type E was once heated to 1030 ° C. and then forged during cooling.
【0025】図3の結果より、鍛造温度が550から9
00℃の範囲のとき、加熱−焼き入れ材と比べて極めて
高い引っ張り強度が得られることが確認できる。From the results shown in FIG. 3, the forging temperature is 550 to 9
It can be confirmed that in the range of 00 ° C, extremely high tensile strength can be obtained as compared with the heat-quenched material.
【0026】次に遅れ破壊特性評価についてその実施例
を詳述する。用いた試験機は片持ち曲げ式加速型遅れ破
壊試験機で、その概略は図4に示す。この手法では、曲
げ応力/静曲げ応力が0.7の時、30時間以上破断し
なければ、ボルト等に使用可能と判断できる。Next, examples of delayed fracture characteristic evaluation will be described in detail. The test machine used is a cantilever bending type accelerated delayed fracture test machine, the outline of which is shown in FIG. With this method, when the bending stress / static bending stress is 0.7, it can be judged that the bolt or the like can be used unless it breaks for 30 hours or more.
【0027】図5に遅れ破壊試験に用いた試験片の製造
プロセスを示す。また図6に片持ち曲げ式加速型遅れ破
壊試験における、曲げ応力/静曲げ応力が0.7の時
の、破断時間と引っ張り強度の関係を示す。Hが3.5
以上の鋼種で、プロセス3に従って製造された試験片
は、添加元素にほとんど影響を受けず、曲げ応力/静曲
げ応力が0.7の時、いずれも30時間以上の破断時間
を示す。一方、加工を加えない、プロセス4の試験片で
は強度、遅れ破壊特性ともに低く、曲げ応力/静曲げ応
力が0.7の時、破断時間は30時間を下回る。JIS
−SCM435の焼き入れ−焼き戻し材も同様に、この
ような高い強度では遅れ破壊特性は悪い。FIG. 5 shows the manufacturing process of the test piece used in the delayed fracture test. FIG. 6 shows the relationship between the breaking time and the tensile strength when the bending stress / static bending stress is 0.7 in the cantilever bending type delayed fracture test. H is 3.5
With the above steel types, the test pieces manufactured according to Process 3 were hardly affected by the additional elements, and when the bending stress / static bending stress was 0.7, each showed a breaking time of 30 hours or more. On the other hand, in the test piece of Process 4 which is not processed, both the strength and the delayed fracture property are low, and the breaking time is less than 30 hours when the bending stress / static bending stress is 0.7. JIS
-Quenching of SCM435-The tempered material also has a delayed fracture property at such a high strength.
【0028】図7に、プロセス3、4によって製造され
た試験片の焼き戻し温度、引っ張り強度と、曲げ応力/
静曲げ応力が0.7の時の破断時間との関係を示す。焼
き戻し温度が250℃から350℃、及び420℃以上
で破断時間が伸びることがわかる。FIG. 7 shows the tempering temperature, tensile strength, and bending stress / bending stress of the test pieces manufactured by the processes 3 and 4.
The relationship with the breaking time when the static bending stress is 0.7 is shown. It can be seen that the breaking time extends when the tempering temperature is 250 ° C. to 350 ° C. and 420 ° C. or higher.
【0029】250℃から350℃ではマトリックスに
固溶している拡散性水素が放出され、420℃以上では
拡散性水素と非拡散性水素の放出と炭化物の微細析出す
るため、この焼き戻し温度領域で耐遅れ破壊特性があが
る。ただし、焼き戻し温度が550℃を超えるような領
域では、強度が大幅に低下してしまうため、焼き戻し温
度の上限を550℃とする。At 250 ° C. to 350 ° C., diffusible hydrogen solid-dissolved in the matrix is released, and at 420 ° C. or higher, diffusible hydrogen and non-diffusible hydrogen are released, and carbides are finely precipitated. The delayed fracture resistance is improved. However, in a region where the tempering temperature exceeds 550 ° C, the strength is significantly reduced, so the upper limit of the tempering temperature is set to 550 ° C.
【0030】以上本発明の実施例を詳述したが、これは
あくまで一例示であり、本発明はその主旨を逸脱しない
範囲において、種種の変更を加えた形態で実施可能であ
る。The embodiment of the present invention has been described in detail above, but this is merely an example, and the present invention can be implemented in various modified forms without departing from the spirit of the invention.
【0031】[0031]
【発明の効果】本発明により、1200MPaを超える
ような非常に高い強度で、靭性、及び遅れ破壊特性に優
れた部材の製造が可能となる。Industrial Applicability According to the present invention, it is possible to manufacture a member having a very high strength exceeding 1200 MPa, excellent toughness and delayed fracture characteristics.
【図1】焼き入れ試験に用いた、鍛造履歴、及び熱履歴
を示した図である。FIG. 1 is a diagram showing a forging history and a heat history used in a quenching test.
【図2】一旦1030℃に加熱した後、冷却途中ので鍛
造したときの鍛造温度と引っ張り強度の関係を示した図
である。FIG. 2 is a diagram showing a relationship between a forging temperature and a tensile strength when the material is once heated to 1030 ° C. and then forged while being cooled.
【図3】プロセス1、及びプロセス2に従って得られた
試料の焼き入れ性指数Hと、鍛造温度、及び焼き入れ後
硬さの関係を示したグラフである。FIG. 3 is a graph showing the relationship between the hardenability index H of the samples obtained according to Process 1 and Process 2, the forging temperature, and the hardness after quenching.
【図4】実験に用いた遅れ破壊評価試験の概略を表す図
である。FIG. 4 is a diagram showing an outline of a delayed fracture evaluation test used in an experiment.
【図5】遅れ破壊試験に用いた試験片の鍛造履歴、及び
熱履歴を示した図である。FIG. 5 is a diagram showing a forging history and a heat history of a test piece used in a delayed fracture test.
【図6】遅れ破壊試験によりによって得られた、焼き入
れ指数H,引っ張り強度と曲げ応力/静曲げ応力=0.
7の時の破断時間の関係を示した図である。FIG. 6: Quenching index H, tensile strength and bending stress / static bending stress = 0.
It is the figure which showed the relationship of the fracture | rupture time at the time of 7.
【図7】遅れ破壊試験によりによって得られた、焼き入
れ指数H、焼き戻し温度と曲げ応力/静曲げ応力=0.
7の時の破断時間の関係を示した図である。FIG. 7: Quenching index H, tempering temperature and bending stress / static bending stress = 0.
It is the figure which showed the relationship of the breakage time at the time of 7.
Claims (1)
0.08≦Si≦0.5%、N≦0.03%、S≦0.
03%、P≦0.03%であって、Mn+Cr+Mo+
(Cu+Ni)/2+(V+W)/5+10Nb+XB
=Hと定義された焼き入れ性を示す指数Hが、3.5≦
H≦5.5(但し、1.0≦Mn≦3.0%、0.5≦
Cr≦3.0%、Ni≦4.0%、Cu≦1.0%、M
o≦2.0%、W≦0.5%、V≦0.3%、Nb≦
0.06%とし、Bが0.0008≦B≦0.005%
の範囲で添加される場合、XB=0.5とする。またB
が添加される場合、N固定のため0.01≦Ti≦0.
10とする。)であり、不可避不純物と残部が実質Fe
から成る合金を一旦Ac3点以上に加熱することによっ
てオーステナイト化した後、空冷等の冷却を行い、90
0から550℃の範囲で鍛造加工を行い、しかる後油
冷、あるいは水冷によってマルテンサイト化させ、更に
250℃から350℃、あるいは420℃から550℃
の範囲で10分以上焼き戻しを行うことを特徴とする遅
れ破壊特性に優れた高強度部材の製造方法。1. In weight%, 0.06 ≦ C ≦ 0.15,
0.08 ≦ Si ≦ 0.5%, N ≦ 0.03%, S ≦ 0.
03%, P ≦ 0.03%, Mn + Cr + Mo +
(Cu + Ni) / 2 + (V + W) / 5 + 10Nb + XB
= H, which is defined as the hardenability index H, is 3.5 ≦
H ≦ 5.5 (however, 1.0 ≦ Mn ≦ 3.0%, 0.5 ≦
Cr ≦ 3.0%, Ni ≦ 4.0%, Cu ≦ 1.0%, M
o ≦ 2.0%, W ≦ 0.5%, V ≦ 0.3%, Nb ≦
0.06%, B is 0.0008 ≦ B ≦ 0.005%
XB = 0.5 when added in the range. Also B
When N is added, 0.01 ≦ Ti ≦ 0.
It is assumed to be 10. ), And the unavoidable impurities and the balance are essentially Fe.
The alloy consisting of is once austenitized by heating at Ac 3 or higher, and then cooled by air cooling or the like,
Forging is performed in the range of 0 to 550 ° C, and then martensite is made by oil cooling or water cooling, and further 250 ° C to 350 ° C, or 420 ° C to 550 ° C.
A method for producing a high-strength member having excellent delayed fracture characteristics, which comprises performing tempering for 10 minutes or more in the range of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16225796A JPH09310116A (en) | 1996-05-21 | 1996-05-21 | Production of high strength member excellent in delayed fracture characteristic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16225796A JPH09310116A (en) | 1996-05-21 | 1996-05-21 | Production of high strength member excellent in delayed fracture characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09310116A true JPH09310116A (en) | 1997-12-02 |
Family
ID=15751003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16225796A Pending JPH09310116A (en) | 1996-05-21 | 1996-05-21 | Production of high strength member excellent in delayed fracture characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09310116A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100605723B1 (en) * | 2004-11-24 | 2006-08-01 | 주식회사 포스코 | High strength steel having excellent delayed fracture resistance and method for producing the same |
JP2007084909A (en) * | 2005-09-26 | 2007-04-05 | Daido Steel Co Ltd | Weldable steel having high strength and high toughness, and method for producing member using the same |
JP2014517149A (en) * | 2011-05-12 | 2014-07-17 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Extremely high strength martensitic steel and method for producing steel plates or parts obtained thereby |
-
1996
- 1996-05-21 JP JP16225796A patent/JPH09310116A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100605723B1 (en) * | 2004-11-24 | 2006-08-01 | 주식회사 포스코 | High strength steel having excellent delayed fracture resistance and method for producing the same |
JP2007084909A (en) * | 2005-09-26 | 2007-04-05 | Daido Steel Co Ltd | Weldable steel having high strength and high toughness, and method for producing member using the same |
JP4677868B2 (en) * | 2005-09-26 | 2011-04-27 | 大同特殊鋼株式会社 | Steel that can be welded with high strength and high toughness, and a method for producing a member using the same |
JP2014517149A (en) * | 2011-05-12 | 2014-07-17 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Extremely high strength martensitic steel and method for producing steel plates or parts obtained thereby |
US10337090B2 (en) | 2011-05-12 | 2019-07-02 | Arcelormittal Investigaciòn Y Desarrollo, S.L. | Method for the production of very high strength martensitic steel and sheet or part thus obtained |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3595901B2 (en) | High strength steel wire for spring and manufacturing method thereof | |
EP2374904B1 (en) | Steel wire material for spring and its producing method | |
EP1746176B1 (en) | Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same | |
WO2011004913A1 (en) | Steel wire for high-strength spring | |
CN101346481A (en) | High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same | |
JP4057930B2 (en) | Machine structural steel excellent in cold workability and method for producing the same | |
JP3738004B2 (en) | Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method | |
JP4728884B2 (en) | Induction contour hardened steel and induction contour hardened parts with excellent low cycle fatigue characteristics | |
JP2004250768A (en) | Steel for machine structural having excellent cold workability and low decarburizing property, and production method therefor | |
KR102175367B1 (en) | Steel wire rod for cold forging with improved impact toughness, processed good using the same, and methods for manufacturing thereof | |
US20240052467A1 (en) | High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same | |
JP2007513259A (en) | Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same | |
KR20200021668A (en) | Wire rod and steel wire for spring with improved toughness and corrosion fatigue resistance and method for manufacturing the same | |
JP3267164B2 (en) | Method for producing steel for nitriding and nitrided steel products | |
JP2003034843A (en) | High-strength case hardened steel and parts thereof | |
JPH09310116A (en) | Production of high strength member excellent in delayed fracture characteristic | |
JP2000256785A (en) | Steel excellent in machinability and its production | |
KR101795277B1 (en) | High strength spring steel having excellent corrosion resistance | |
JPH07310118A (en) | Production of case hardening steel suitable for cold-working | |
JP3398552B2 (en) | High-strength austenitic stainless steel sheet for flapper valve with excellent fatigue properties and method for producing the same | |
JP7552959B1 (en) | Non-tempered steel for hot forging, hot forging material and manufacturing method thereof | |
JPH1192860A (en) | Steel having ultrafine ferritic structure | |
JPH10237589A (en) | Martensitic non-heat treated steel excellent in machinability and having high strength and high toughness, and its production | |
KR102445781B1 (en) | Method for manufacturing a high strength wire rod | |
KR102448756B1 (en) | High-strength wire rod with excellent resistance of hydrogen delayed fracture, heat treatment parts using the same, and methods for manufacturing thereof |