JP2004250768A - Steel for machine structural having excellent cold workability and low decarburizing property, and production method therefor - Google Patents

Steel for machine structural having excellent cold workability and low decarburizing property, and production method therefor Download PDF

Info

Publication number
JP2004250768A
JP2004250768A JP2003044996A JP2003044996A JP2004250768A JP 2004250768 A JP2004250768 A JP 2004250768A JP 2003044996 A JP2003044996 A JP 2003044996A JP 2003044996 A JP2003044996 A JP 2003044996A JP 2004250768 A JP2004250768 A JP 2004250768A
Authority
JP
Japan
Prior art keywords
steel
less
machine structural
cold workability
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003044996A
Other languages
Japanese (ja)
Other versions
JP4012475B2 (en
Inventor
Makoto Okonogi
真 小此木
Taro Ishihara
太郎 石原
Tatsuro Ochi
達朗 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003044996A priority Critical patent/JP4012475B2/en
Publication of JP2004250768A publication Critical patent/JP2004250768A/en
Application granted granted Critical
Publication of JP4012475B2 publication Critical patent/JP4012475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel as hot-rolled for machine structural in which the thickness of a decarburizing layer on the surface is suppressed, and which has cold workability equal to that of the conventional steel subjected to softening annealing after hot rolling, and to provide a production method therefor. <P>SOLUTION: The steel has a composition comprising, by mass, 0.1 to 1.2% C, 0.01 to 2.5% Si, 0.1 to 1.5% Mn, ≤0.04% P, 0.0005 to 0.05% S, ≤0.2% Al, 0.0005 to 0.05% Te or/and 0.0005 to 0.05% Se and 0.0005 to 0.03% N, and in which the total content of S and Te or/and Se is 0.005 to 0.05%, and the balance Fe with inevitable impurities, and has a structure essentially consisting of ferrite and pearlite, and in which ferrite grain size number prescribed in JIS G 0552 is ≥11. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車部品や産業機械部品の素材として使用される機械構造用鋼に関わり、特に引抜き、切削、冷間鍛造等の冷間加工性を向上させた機構構造用鋼、及びその製造方法に関するものである。
【0002】
【従来の技術】
自動車部品や産業機械部品は、一般に炭素鋼や合金鋼などの機械構造用鋼の熱間圧延材を、冷間加工性を確保する目的で軟化焼鈍を行った後、引抜き、冷間鍛造、転造あるいは切削加工にて所定の形状に成型し、焼入れ焼戻し処理で強度を付与して製造されている。
【0003】
軟化焼鈍は、例えば球状化焼鈍の場合には約20時間の長時間の熱処理を要すことから、部品製造コストに占める割合が高い。このため近年では部品コストの低減を目的に軟化焼鈍の省略化が検討され、熱間圧延ままで軟化焼鈍材と同等の加工性を得る方法が提案されている。
【0004】
熱間圧延後に徐冷する方法として、1℃/秒以下の冷却速度でフェライト変態終了まで徐冷する方法(例えば特許文献1参照)や、冷却速度を0.02〜0.3℃/秒として徐冷する方法(例えば特許文献2参照)が開示されている。本発明者らの調査によると、これらの方法では冷却速度が遅いためベイナイトなどの硬質な組織が存在せず、またフェライト分率も高くなるため軟質化するが、鋼種によっては冷却後の鋼材表面に炭素濃度の低い領域、即ち脱炭層が形成される。このような脱炭層が存在すると、最終製品での表面強度が確保できない場合がある。
【0005】
さらに熱間圧延直後に昇温する方法として、5℃/秒以上の冷却速度で制御冷却し、直ちに500〜700℃の炉雰囲気温度範囲に15分以上1時間未満保持する方法(特許文献3参照)が開示されている。この方法では熱間圧延直後の再加熱により軟質化されるものの、鋼種によっては表層に脱炭層が形成される。これは焼入れ性の高い鋼種では冷却時にパーライト変態あるいはベイナイト変態が完了せずオーステナイト/フェライト2相域のまま保持されることによると考えられる。
【0006】
また、表層部の脱炭層がない軟質線材の製造方法として、鋼片を900℃〜1250℃に加熱し、仕上げ圧延前の圧延を650〜750℃の温度範囲に60秒を超えて曝されないように行い、700〜900℃で減面率30%以上の仕上げ圧延を行い、仕上げ圧延後にMs点を超え850℃以下になるように冷却し、10〜50本/mのリング密度でコンベア上に展開し、650℃以上800℃以下になるまで冷却し、その後、リング密度を150〜500本/mに変更し冷却速度0.15〜2℃/sで500℃まで冷却する方法が開示されている(特許文献4参照)。この方法では、温度や冷却速度の厳格な管理や煩雑な製造条件が必要となる一方で、圧延材の強度は軟質化されているものの、焼鈍材と比べると強度が高い。これは仕上げ圧延後から500℃までの冷却速度が速いため、ベイナイトなどの硬質な組織の混入は防止できるものの、パーライト部の軟質化が不十分であるためである。
【0007】
以上のように、熱間圧延材を軟質化するためには、一般に熱間圧延直後に650〜750℃付近の温度域に保定することや、フェライト変態温度付近を徐冷するなどの制御冷却が行われるが、一方で中炭素鋼の脱炭はフェライト/オーステナイト2相域に保持することで発生しやすくなることが知られている。このように熱間圧延材を制御冷却により軟質化すると、脱炭が顕著に発生する温度域での滞留時間が長くなるため、従来方法では熱間圧延ままで軟化焼鈍材と同等の強度を得ようとすると、表層の脱炭が避けられない問題が残されていた。
【0008】
【特許文献1】
特公平2−13004号公報(第3頁5段23行)
【特許文献2】
特開2000−336456号公報(請求項4)
【特許文献3】
特開2000−336460号公報(請求項4)
【特許文献4】
特開2000−256740号公報(請求項1)
【0009】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するため案出されたものであり、鋼材表面の脱炭層厚みが抑制され、従来の熱間圧延後に軟化焼鈍を施した鋼材と同等の冷間加工性を有する熱間圧延ままでの機械構造用鋼、及びその製造方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明者らは上記課題を解決するため、鋼材成分と温度履歴が脱炭に及ぼす影響を調査し、熱間圧延材を制御冷却によって軟質化しても、脱炭の発生を抑制するには、微量元素の表面偏析により、鋼材表面での脱炭反応を抑制することが有効であると考え、種々の微量元素による表面偏析と脱炭の抑制効果を評価した。表面偏析元素として一般にCuやPが知られているが、これらは熱間延性を低下させ圧延疵の原因となったり、粒界を脆化し靭性を劣化させる。材質特性への影響が少ない脱炭を抑制する微量元素として、Te、Se、Sが有効であることを見いだし、これらの元素を特定の量添加することで、熱間圧延鋼材の軟質化と脱炭の抑制を両立することを見いだした。
【0011】
これらの元素は鋼材中では、TeやSeはMnTe、MnSe等のTe化物、Se化物、あるいはこれらとSの複合介在物の形態で存在する。またSはMnS等の硫化物として存在する。TeやSe、及びSは界面エネルギーを低下させるため、鋼材表面や結晶粒界に偏析しやすい。鋼材表面にこれらの元素が偏析することにより、鋼中の炭素が表面に偏析することを阻害する。その結果、鋼材表層での炭素と酸素、あるいは水蒸気との反応が阻害され脱炭が抑制されると考えられる。
【0012】
またTe、SeやSを鋼材表面に濃化させ脱炭を抑制するためには、熱間圧延後の熱履歴は、仕上げ圧延後に500〜700℃の温度域まで0.1℃/秒以上5℃/秒未満の冷却速度で冷却し、一旦パーライト変態を完了させた後、650℃〜750℃の温度域に再昇温する熱履歴が加工性の向上及び脱炭抑制に有効であることを見出した。
【0013】
以上により、従来の軟質化焼鈍材と同等の強度、延性を有し、表層の脱炭層厚みが抑制された熱間圧延材を発明するに至った。
本発明の要旨は以下の通りである。
【0014】
(1) 質量%で、
C :0.1〜1.2%、
Si:0.01〜2.5%、
Mn:0.1〜1.5%、
P :0.04%以下(0%を含む)、
S :0.0005〜0.05%、
Al:0.2%以下、
Te:0.0005〜0.05%及びSe:0.0005〜0.05%の内の1種または2種、
N :0.0005〜0.03%
を含有し、Sと、Te及びSeの内の1種または2種の含有量の合計が0.005%〜0.05%であり、残部がFe及び不可避的不純物からなる鋼であって、フェライトとパーライトを主体とする組織からなり、JIS G 0552で規定するフェライト結晶粒度番号が11番以上であることを特徴とする冷間加工性と低脱炭性に優れた機械構造用鋼。
【0015】
(2) さらに、質量%で
Sb:0.001〜0.05%
を含有することを特徴とする上記(1)記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
【0016】
(3) さらに、質量%で
Cr:0.2〜2.0%、
Mo:0.1〜1.0%、
Ni:0.3〜1.5%、
Cu:1.0%以下、
B :0.005%以下
のうち1種または2種以上を含有することを特徴とする上記(1)または(2)記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
【0017】
(4) さらに、質量%で、
Ti:0.002%〜0.05%、
Nb:0.005〜0.1%、
V :0.03〜0.3%、
のうち1種または2種以上をさらに含有することを特徴とする上記(1)乃至(3)のいずれかに記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
【0018】
(5) さらに、質量%で
Mg:0.0002〜0.01%、
Zr:0.0001〜0.01%
Ca:0.0002〜0.008%、
のうち1種または2種以上を含有することを特徴とする(1)乃至(4)のいずれかに記載の冷間加工性と低脱炭性に優れた機械構造用鋼である。
【0019】
(6) 上記(1)乃至(5)のいずれかに記載の鋼成分を有する鋼を850℃以上1000℃以下の温度範囲で熱間粗圧延し、700℃以上1000℃以下の温度範囲で仕上げ圧延後、500℃以上700℃以下の温度まで0.1℃/秒以上5℃/秒未満の範囲の冷却速度で冷却し、その後直ちに650℃以上750℃以下の炉雰囲気温度に15分以上90分以下保持し、その後放冷することを特徴とする冷間加工性と低脱炭性に優れた機械構造用鋼の製造方法。
【0020】
【発明の実施の形態】
本発明の機械構造用鋼についての化学成分を限定した理由を以下に説明する。
【0021】
Cは機械構造用部品としての強度を確保するため添加する。0.1%未満では機械部品として必要な強度を確保できず、1.2%を超えると延性及び靭性が劣化するため0.1〜1.2%とした。
【0022】
Siは脱酸元素として機能するとともに、鋼に必要な強度、焼入れ性を付与し、焼戻し軟化抵抗を向上するのに有効な元素である。0.01%未満ではこれらの効果が不十分で、2.5%を超えると靭性、延性が劣化するとともに硬度の上昇を招き、冷間鍛造性を劣化させるため、0.01〜2.5%とした。
【0023】
Mnは鋼に必要な強度、焼入れ性を付与するために有効な元素である。0.1%未満では効果が不十分であり、1.5%を超えると靭性が劣化するとともに硬度が上昇し冷間鍛造性を劣化させるため、0.1〜1.5%とした。
【0024】
Pは冷間鍛造時の変形抵抗を高め、靭性を劣化させる。また粒界に偏析し焼入れ焼戻し後の結晶粒界を脆化して靭性を劣化させるため低減することが望ましい。従って上限を0.04%とした。
【0025】
SはMn、Cu、Mg等の合金元素と反応して硫化物として存在する。これらの硫化物はピン止め粒子として機能し結晶粒を細粒化し延性、靭性を向上するとともに被削性を向上させる。また鋼材の表面に偏析して脱炭の抑制にも有効に機能する。0.0005%未満では脱炭抑制効果がみられず、0.05%を超えて添加すると冷間鍛造性を劣化させるとともに、焼入れ焼戻し後の結晶粒界を脆化させ靭性が劣化する。このため0.0005〜0.05%とした。
【0026】
Alは強力な脱酸元素でOと結合して酸化物を形成する。あるいはNと結合してAlNとして存在する。これらの酸化物や窒化物はピン止め粒子として機能し結晶粒を細粒化する。0.2%を超えると冷間加工性を劣化させるため、上限を0.2%とした。
【0027】
Teは表面に偏析して脱炭を抑制する。0.0005%未満では脱炭の抑制効果が少なく、0.05%を超えると熱間加工性、及び冷間加工性を劣化するため、0.0005〜0.05%とした。
【0028】
Seは表面に偏析して脱炭を抑制する。0.0005%未満では脱炭の抑制効果が少なく、0.05%を超えると熱間加工性、及び冷間加工性を劣化するため、0.0005〜0.05%とした。
【0029】
またSと、Te及びSeの内の1種または2種との含有量の合計が0.005%未満では脱炭抑制の効果が認められず、0.05%を超えると熱間加工性を阻害する。従って、S、Te、及びSeの含有量の合計を0.005〜0.05%とした。
【0030】
NはAl、Ti等と結合し窒化物を形成しピン止め粒子として機能し結晶粒を細粒化する。0.0005%未満では窒化物の析出量が不足し、結晶粒が粗大化し加工性が劣化する。また0.03%を超えて添加すると熱間延性を劣化させるため、0.0005〜0.03%とした。
【0031】
次に請求項2〜5の成分限定理由を説明する。これらの元素は以下に記載する特性の向上を目的に1種または2種以上含有させることができる。
【0032】
Sbは表面に偏析して脱炭を抑制する。0.001%未満では脱炭の抑制効果が少なく、0.05%を超えると熱間加工性、及び冷間加工性を劣化するため、0.001〜0.05%とした。
【0033】
Cr、Mo、Ni、Cu、Bは焼入れ性を向上させ鋼の高強度化に有効である。
【0034】
Crは高強度化、焼入れ性の向上を目的に添加する。0.2%未満では効果が不十分で、2.0%を超えて添加すると冷間加工性が劣化するため、0.2〜2.0%とした。
【0035】
Moは焼入れ性の向上を目的に添加する。0.1%未満では効果が不十分で、1.0%を超えて添加すると製造コストの上昇を招くため、0.1〜1.0%とした。
【0036】
Niは焼入れ性の向上を目的に添加する。0.3%未満では効果が不十分で、1.5%を超えて添加すると製造コストの上昇を招くため、0.3〜1.5%とした。
【0037】
Cuは焼入れ性の向上を目的に添加する。1.0%を超えて添加すると熱間延性を著しく低下し表面疵の原因となるため上限を1.0%とした。
【0038】
Bは焼入れ性の向上を目的に添加するが0.005%を超えて添加しても効果が飽和するので上限を0.005%とした。なお、焼入れ性のためにはBの添加量の下限を0.0003%とすることが好ましい。
【0039】
Ti、Nb、Vは炭窒化物を形成する。これらの炭窒化物は鋼中に分散しピン止め粒子として機能し、結晶粒の粗大化を抑制し、加工性を向上させる。
【0040】
TiはCあるいはNと結合してTiCあるいはTiNとして存在する。これらの炭窒化物はピン止め粒子として有効である。0.002%未満では効果が現れず、0.05%を超えるとその効果が飽和するとともに硬度の上昇を招き冷間鍛造性が劣化するため0.002〜0.05%とした。
【0041】
NbはNあるいはCと結合しNbN、NbCあるいはそれらの複合介在物を形成し、結晶粒の粗大化抑制に有効に機能する。0.005%未満では効果が不十分で、0.1%を超えて添加しても効果が飽和するため、0.005〜0.1%とした。
【0042】
VはNあるいはCと結合しVN、VCあるいはそれらの複合介在物を形成し、結晶粒の粗大化抑制に有効に機能する。0.03%未満では効果が不十分で、0.3%を超えて添加しても効果が飽和するため、0.03〜0.3%とした。
【0043】
Mg、Zr、Caは脱酸元素として含有させる。
【0044】
MgはSあるいはOと結合して酸化物、硫化物あるいはこれらを含む複合介在物として存在し、ピン止め粒子として有効に機能する。0.0002%未満では効果が現れず、0.01%を超えて添加すると製造コストの上昇を招くため0.0002〜0.01%とした。
【0045】
ZrはOと結合して酸化物として存在するほか、NあるいはCと結合しZrN、ZrCあるいはそれらの複合介在物を形成し、結晶粒の粗大化抑制に有効に機能する。0.0001未満では効果が不十分で、0.01%を超えて添加しても効果が飽和するため、0.0001〜0.01%とした。
【0046】
Caは強力な脱酸元素であるほか、硫化物の形態制御に有効である。MnSの圧延方向への伸長化を防止し、加工性や靭性の劣化を改善する。0.0002%未満では効果が不十分で、0.008%を超えて添加しても効果が飽和するとともに粗大な酸化物を生成し破壊靭性値を低下させる。
【0047】
Oは鋼中に不可避的に含有されAlやTiなどの酸化物として存在する。O含有量が高いと粗大な酸化物が形成し、疲労破壊の原因となるので0.01%以下に抑制することが望ましい。
【0048】
また、本発明の鋼は特定の組織を有する。
【0049】
フェライトとパーライトを主体とする組織としたのは、組織中に硬質なベイナイトやマルテンサイトが混入すると、強度が増加し冷間加工性を劣化させるためである。フェライト結晶粒度番号が11番未満では延性が低下する。
【0050】
次に本発明の製造方法を説明する。
【0051】
熱間粗圧延温度が1000℃を超えるとオーステナイト結晶粒が粗大化して圧延後のフェライト結晶粒度11番以上のものが得られないためである。また粗圧延温度が850℃未満では圧延機負荷の点から圧延困難となるためである。仕上げ圧延温度が1000℃を超えるとフェライト結晶粒度11番以上のものが得られなくなり、700℃未満ではオーステナイトとフェライトの2相域での圧延となり、圧延後に均一なフェライト・パーライト組織が得られず、加工性を劣化させる。
【0052】
次に圧延後の冷却速度が0.1℃/秒未満ではパーライト変態温度が高くなりラメラ間隔が厚いパーライト、即ち熱的に安定性の高いパーライトが生成し、強度が増加する。一方、5℃/秒以上では焼入れ性が高い鋼種では、圧延後の冷却中に変態が完了せず、未変態のまま保持され組織が粗大化し加工性が劣化するとともに、鋼材表面のスケール層と地鉄の界面に形成されるTe、Se濃化層でのTe、Se濃度が低くなり脱炭抑制効果が低下する。冷却終了温度が650℃を超えると一部パーライト変態が未完となり組織が不均一となり、加工性が劣化する。また冷却終了温度が500℃未満では、その後の再加熱で650℃以上の温度に到達するのに長時間を要し、生産性の低下によるコストの上昇を招く。
【0053】
再加熱温度が650℃未満ではセメンタイトの粒状化が不十分で、軟質化が不十分となる。また750℃を超えると組織の一部がオーステナイト化し強度が高くなる。また再加熱時間が15分未満ではコイルの内部では十分に温度が上がらず軟質化が不十分となる。90分以上では生産性を阻害する。
【0054】
【実施例】
以下に、実施例により本発明を具体的に説明する。表1に供試鋼の化学成分を示す。これらの鋼は転炉溶製鋼を連続鋳造し、断面が162×162mmの鋼片に分塊圧延後、表2に示す圧延条件で直径11mmの線材に熱間圧延した。熱間圧延は加熱炉にて1100℃で抽出し、所定の温度で粗圧延及び仕上げ圧延を行い、リング状に巻き取り、圧延No.I、II及びIIIは搬送ライン上での衝風冷却、徐冷カバー、熱処理炉、水槽などを利用して所定の冷却速度で、所定温度まで冷却したのち、コイルに集束してライン上を移動しながら熱処理炉で30分間加熱し炉外で放冷した。圧延No.IVは従来の熱間圧延後に軟化焼鈍を行う工程に相当する。熱間圧延後、搬送ライン上で徐冷カバーをかけることで冷却し、その後放冷した。冷却後、焼鈍炉にて700℃×3hの軟化焼鈍を行った。
【0055】
【表1】

Figure 2004250768
【0056】
【表2】
Figure 2004250768
【0057】
表3には熱間圧延材と軟化焼鈍材の組織、加工性と脱炭特性を示す。加工性の評価には引張強度(TS)、絞り(RA)及び限界圧縮率を用い、脱炭性の評価にはJIS G 0558の方法でフェライト脱炭層厚みを用いた。引張試験はJIS2号引張試験片を用い、限界圧縮率は、線材をφ10に伸線加工後、文献「冷間据込み性試験方法」(塑性と加工、22(1981)、139.)に示されている1号試験片(圧縮試験片)に準拠したφ10×15mmの圧縮試験片を用い端面拘束圧縮試験により評価した。
【0058】
【表3】
Figure 2004250768
【0059】
表3に示すように、本発明の請求範囲を満たす鋼は、いずれも限界圧縮率及び低脱炭性がともに優れている。TeまたはSeの含有量が本発明の下限未満である鋼種SはI〜IIIの圧延条件のいずれで製造してもフェライト脱炭が認められ低脱炭性が劣化する。またTe含有量が本発明の上限を超える鋼U、及びSe含有量が本発明の上限を超える鋼Vはいずれもほぼ同等の成分である鋼J、Lと比べ著しく限界圧縮率が低下し、加工性が劣化する。また熱間圧延後の冷却速度が請求項6で示した製造条件の下限未満である18はフェライト粒度番号が本発明を外れ延性が低下する。また熱間圧延後の冷却速度が請求項6で示した製造条件の上限を超える19では組織が粗大化しフェライト粒度番号が本発明の範囲を外れ加工性が劣化するまた本発明は圧延後に軟化焼鈍を行った23と比較しても同等以上の加工性が得られることがわかる。
【0060】
【発明の効果】
本発明によれば、軟質化焼鈍することなしに焼鈍材と同等以上の加工性を有し、さらに鋼材表面の脱炭層厚みが抑制された機械構造用鋼が提供可能であり、産業上極めて大きな効果を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to steel for mechanical structures used as a material for automobile parts and industrial machine parts, and particularly to steel for mechanical structures with improved cold workability such as drawing, cutting and cold forging, and a method for producing the same. It is about.
[0002]
[Prior art]
For automotive parts and industrial machine parts, hot-rolled materials of machine structural steel such as carbon steel and alloy steel are generally softened and annealed to ensure cold workability, and then drawn, cold forged and rolled. It is manufactured by molding or cutting into a predetermined shape and imparting strength by quenching and tempering.
[0003]
Softening annealing requires a long-term heat treatment of about 20 hours in the case of, for example, spheroidizing annealing, and thus accounts for a large proportion of the component manufacturing cost. For this reason, in recent years, the omission of soft annealing has been studied for the purpose of reducing the cost of parts, and a method of obtaining workability equivalent to that of a soft annealed material while hot rolling has been proposed.
[0004]
As a method of gradually cooling after hot rolling, a method of slowly cooling until the ferrite transformation is completed at a cooling rate of 1 ° C./sec or less (for example, see Patent Document 1), or a cooling rate of 0.02 to 0.3 ° C./sec. A method of slow cooling (for example, see Patent Document 2) is disclosed. According to the investigations of the present inventors, in these methods, the cooling rate is low, so that there is no hard structure such as bainite, and the ferrite fraction is high, so that the steel is softened. A region having a low carbon concentration, that is, a decarburized layer is formed. If such a decarburized layer exists, the surface strength of the final product may not be ensured in some cases.
[0005]
Further, as a method of raising the temperature immediately after hot rolling, a method of controlling cooling at a cooling rate of 5 ° C./sec or more and immediately maintaining the temperature in a furnace atmosphere temperature range of 500 to 700 ° C. for 15 minutes to less than 1 hour (see Patent Document 3) ) Is disclosed. In this method, although the steel is softened by reheating immediately after hot rolling, a decarburized layer is formed on the surface depending on the type of steel. This is considered to be because the pearlite transformation or the bainite transformation is not completed at the time of cooling in the steel type having high hardenability, and the austenite / ferrite two-phase region is maintained.
[0006]
In addition, as a method for producing a soft wire having no decarburized layer in the surface layer, a steel slab is heated to 900 ° C to 1250 ° C so that rolling before finish rolling is not exposed to a temperature range of 650 to 750 ° C for more than 60 seconds. And finish rolling at 700 to 900 ° C. with a surface reduction rate of 30% or more, and after finishing rolling, cooling to a temperature exceeding the Ms point to 850 ° C. or less, and on a conveyor at a ring density of 10 to 50 rings / m. A method is disclosed in which the film is developed, cooled to 650 ° C. or more and 800 ° C. or less, and then cooled to 500 ° C. at a cooling rate of 0.15 to 2 ° C./s by changing the ring density to 150 to 500 pieces / m. (See Patent Document 4). In this method, strict control of temperature and cooling rate and complicated production conditions are required. On the other hand, although the strength of the rolled material is softened, the strength is higher than that of the annealed material. This is because although the cooling rate from the finish rolling to 500 ° C. is high, the incorporation of a hard structure such as bainite can be prevented, but the softening of the pearlite portion is insufficient.
[0007]
As described above, in order to soften a hot-rolled material, it is generally necessary to maintain the temperature in a temperature range of about 650 to 750 ° C. immediately after hot rolling or to perform controlled cooling such as gradually cooling around a ferrite transformation temperature. However, it is known that decarburization of medium carbon steel is more likely to occur when the medium carbon steel is kept in the ferrite / austenite two-phase region. As described above, when the hot-rolled material is softened by controlled cooling, the residence time in a temperature range where decarburization occurs remarkably increases, and therefore, in the conventional method, the same strength as the soft-annealed material can be obtained as it is in the hot-rolled state. If so, there remains a problem that decarburization of the surface layer is inevitable.
[0008]
[Patent Document 1]
Japanese Patent Publication No. 2-13004 (page 3, line 5, line 23)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-336456 (Claim 4)
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-336460 (Claim 4)
[Patent Document 4]
Japanese Patent Application Laid-Open No. 2000-256740 (Claim 1)
[0009]
[Problems to be solved by the invention]
The present invention has been devised in order to solve the above-described problems, and the thickness of the decarburized layer on the surface of the steel material is suppressed, and has a cold workability equivalent to that of a steel material subjected to softening and annealing after conventional hot rolling. An object of the present invention is to provide a steel for machine structural use as hot rolled and a method for producing the steel.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors investigated the effect of steel material composition and temperature history on decarburization, and even if the hot-rolled material was softened by controlled cooling, to suppress the occurrence of decarburization, It was considered effective to suppress the decarburization reaction on the steel material surface by the segregation of trace elements, and the effect of suppressing surface segregation and decarburization by various trace elements was evaluated. Cu and P are generally known as surface segregation elements. However, these elements lower hot ductility and cause rolling flaws or embrittle grain boundaries to deteriorate toughness. Te, Se, and S are found to be effective as trace elements that suppress decarburization with little effect on the material properties, and by adding these elements in specific amounts, the softening and decarburization of hot-rolled steel can be achieved. It has been found that both suppression of charcoal can be achieved.
[0011]
In steel materials, these elements are present in the form of Te or Se, such as MnTe or MnSe, in the form of Te compounds, Se compounds, or composite inclusions of these and S. S exists as a sulfide such as MnS. Since Te, Se, and S lower the interfacial energy, they tend to segregate on the steel material surface and crystal grain boundaries. The segregation of these elements on the surface of the steel material prevents carbon in the steel from segregating on the surface. As a result, it is considered that the reaction between carbon and oxygen or water vapor on the steel surface layer is inhibited, and decarburization is suppressed.
[0012]
Further, in order to concentrate Te, Se or S on the steel material surface and suppress decarburization, the heat history after hot rolling is 0.1 ° C / sec or more up to a temperature range of 500 to 700 ° C after finish rolling. After cooling at a cooling rate of less than 1 ° C / sec and once completing the pearlite transformation, the heat history of reheating to a temperature range of 650 ° C to 750 ° C is effective for improving workability and suppressing decarburization. I found it.
[0013]
As described above, a hot-rolled material having the same strength and ductility as the conventional softened and annealed material and having a reduced thickness of the surface decarburized layer has been invented.
The gist of the present invention is as follows.
[0014]
(1) In mass%,
C: 0.1 to 1.2%,
Si: 0.01 to 2.5%,
Mn: 0.1-1.5%,
P: 0.04% or less (including 0%),
S: 0.0005 to 0.05%,
Al: 0.2% or less,
One or two of Te: 0.0005 to 0.05% and Se: 0.0005 to 0.05%,
N: 0.0005 to 0.03%
Wherein the total content of S and one or two of Te and Se is 0.005% to 0.05%, with the balance being Fe and unavoidable impurities, A steel for machine structural use comprising a structure mainly composed of ferrite and pearlite and having a ferrite crystal grain size number of 11 or more specified in JIS G 0552, and having excellent cold workability and low decarburization.
[0015]
(2) Further, in mass%, Sb: 0.001 to 0.05%
The steel for machine structural use according to the above (1), which is excellent in cold workability and low decarburization property.
[0016]
(3) Further, Cr: 0.2 to 2.0% by mass%,
Mo: 0.1-1.0%,
Ni: 0.3-1.5%,
Cu: 1.0% or less,
B: The steel for machine structural use excellent in cold workability and low decarburization described in the above (1) or (2), which contains one or more of 0.005% or less.
[0017]
(4) Further, in mass%,
Ti: 0.002% to 0.05%,
Nb: 0.005 to 0.1%,
V: 0.03-0.3%,
The steel for machine structural use according to any one of the above (1) to (3), further comprising one or two or more of the above.
[0018]
(5) Further, Mg: 0.0002 to 0.01% by mass%,
Zr: 0.0001-0.01%
Ca: 0.0002 to 0.008%,
The steel for machine structural use according to any one of (1) to (4), which is excellent in cold workability and low decarburization property, comprising one or more of the above.
[0019]
(6) The steel having the steel component described in any of (1) to (5) above is hot rough-rolled in a temperature range of 850 ° C to 1000 ° C and finished in a temperature range of 700 ° C to 1000 ° C. After rolling, it is cooled to a temperature of 500 ° C. or more and 700 ° C. or less at a cooling rate of 0.1 ° C./second or more and less than 5 ° C./second, and immediately thereafter, is heated to a furnace atmosphere temperature of 650 ° C. or more and 750 ° C. or less for 15 minutes or more. A method for producing steel for machine structural use having excellent cold workability and low decarburization properties, wherein the steel is held for not more than one minute and then left to cool.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the chemical components of the steel for machine structural use of the present invention will be described below.
[0021]
C is added to secure the strength as a component for machine structure. If it is less than 0.1%, the strength required as a mechanical component cannot be secured, and if it exceeds 1.2%, ductility and toughness deteriorate, so the content was made 0.1 to 1.2%.
[0022]
Si functions as a deoxidizing element and is an element effective for imparting necessary strength and hardenability to steel and improving tempering softening resistance. If it is less than 0.01%, these effects are insufficient, and if it exceeds 2.5%, toughness and ductility are deteriorated and hardness is increased, and cold forgeability is deteriorated. %.
[0023]
Mn is an element effective for imparting necessary strength and hardenability to steel. If it is less than 0.1%, the effect is insufficient, and if it exceeds 1.5%, the toughness is deteriorated, the hardness is increased, and the cold forgeability is deteriorated.
[0024]
P increases the deformation resistance during cold forging and deteriorates toughness. In addition, it is desirable to reduce segregation at the grain boundaries and embrittle the crystal grain boundaries after quenching and tempering to deteriorate toughness. Therefore, the upper limit is set to 0.04%.
[0025]
S reacts with alloying elements such as Mn, Cu, and Mg and exists as sulfide. These sulfides function as pinning particles, refine crystal grains, improve ductility and toughness, and improve machinability. It also segregates on the surface of the steel material and effectively functions to suppress decarburization. If it is less than 0.0005%, the effect of suppressing decarburization is not seen, and if it exceeds 0.05%, the cold forgeability is deteriorated, and the grain boundaries after quenching and tempering are embrittled to deteriorate toughness. Therefore, the content is set to 0.0005 to 0.05%.
[0026]
Al is a strong deoxidizing element and combines with O to form an oxide. Alternatively, it exists as AlN by combining with N. These oxides and nitrides function as pinning particles and reduce crystal grains. If it exceeds 0.2%, the cold workability is deteriorated, so the upper limit is made 0.2%.
[0027]
Te segregates on the surface and suppresses decarburization. If it is less than 0.0005%, the effect of suppressing decarburization is small, and if it exceeds 0.05%, hot workability and cold workability are deteriorated.
[0028]
Se segregates on the surface and suppresses decarburization. If it is less than 0.0005%, the effect of suppressing decarburization is small, and if it exceeds 0.05%, hot workability and cold workability are deteriorated.
[0029]
Further, if the total content of S and one or two of Te and Se is less than 0.005%, the effect of suppressing decarburization is not recognized, and if it exceeds 0.05%, hot workability is deteriorated. Inhibit. Therefore, the total content of S, Te, and Se is set to 0.005 to 0.05%.
[0030]
N combines with Al, Ti and the like to form nitrides, function as pinning particles, and refine crystal grains. If it is less than 0.0005%, the amount of nitride precipitation is insufficient, crystal grains are coarsened and workability is deteriorated. Further, if added in excess of 0.03%, the hot ductility is deteriorated, so the content was made 0.0005 to 0.03%.
[0031]
Next, the reasons for limiting the components of claims 2 to 5 will be described. One or more of these elements can be contained for the purpose of improving the characteristics described below.
[0032]
Sb segregates on the surface and suppresses decarburization. If it is less than 0.001%, the effect of suppressing decarburization is small, and if it exceeds 0.05%, hot workability and cold workability are deteriorated.
[0033]
Cr, Mo, Ni, Cu, and B are effective in improving hardenability and increasing the strength of steel.
[0034]
Cr is added for the purpose of increasing strength and hardenability. If it is less than 0.2%, the effect is insufficient, and if it exceeds 2.0%, the cold workability deteriorates.
[0035]
Mo is added for the purpose of improving hardenability. If it is less than 0.1%, the effect is insufficient, and if it exceeds 1.0%, the production cost is increased.
[0036]
Ni is added for the purpose of improving hardenability. If the content is less than 0.3%, the effect is insufficient. If the content exceeds 1.5%, the production cost is increased.
[0037]
Cu is added for the purpose of improving hardenability. If added in excess of 1.0%, the hot ductility is significantly reduced and causes surface flaws, so the upper limit was made 1.0%.
[0038]
B is added for the purpose of improving hardenability, but the effect is saturated even if added over 0.005%, so the upper limit was made 0.005%. Note that, for hardenability, the lower limit of the amount of B added is preferably set to 0.0003%.
[0039]
Ti, Nb, and V form carbonitrides. These carbonitrides are dispersed in the steel and function as pinning particles, which suppress the coarsening of crystal grains and improve workability.
[0040]
Ti combines with C or N and exists as TiC or TiN. These carbonitrides are effective as pinning particles. If the content is less than 0.002%, no effect is exhibited, and if it exceeds 0.05%, the effect is saturated and the hardness is increased, and the cold forgeability is deteriorated.
[0041]
Nb combines with N or C to form NbN, NbC or a composite inclusion thereof, and functions effectively to suppress the coarsening of crystal grains. If the content is less than 0.005%, the effect is insufficient, and if the content exceeds 0.1%, the effect is saturated.
[0042]
V combines with N or C to form VN, VC or a composite inclusion thereof, and functions effectively to suppress the coarsening of crystal grains. If it is less than 0.03%, the effect is insufficient, and if it exceeds 0.3%, the effect is saturated.
[0043]
Mg, Zr, and Ca are contained as deoxidizing elements.
[0044]
Mg is present as oxides, sulfides or composite inclusions containing these by combining with S or O, and effectively functions as pinning particles. If the content is less than 0.0002%, no effect is exhibited, and if it exceeds 0.01%, the production cost is increased.
[0045]
Zr combines with O and exists as an oxide, and also combines with N or C to form ZrN, ZrC or a composite inclusion thereof, and effectively functions to suppress the coarsening of crystal grains. If the amount is less than 0.0001, the effect is insufficient, and if the amount exceeds 0.01%, the effect is saturated.
[0046]
Ca is a powerful deoxidizing element and is effective in controlling the form of sulfide. It prevents MnS from elongation in the rolling direction and improves the deterioration of workability and toughness. If it is less than 0.0002%, the effect is insufficient, and if it exceeds 0.008%, the effect is saturated, and a coarse oxide is formed to lower the fracture toughness value.
[0047]
O is inevitably contained in steel and exists as an oxide such as Al or Ti. If the O content is high, a coarse oxide is formed, which causes fatigue fracture, so it is desirable to suppress the content to 0.01% or less.
[0048]
Further, the steel of the present invention has a specific structure.
[0049]
The structure mainly composed of ferrite and pearlite is because if hard bainite or martensite is mixed in the structure, the strength increases and the cold workability deteriorates. If the ferrite crystal grain size number is less than 11, the ductility decreases.
[0050]
Next, the manufacturing method of the present invention will be described.
[0051]
If the hot rough rolling temperature exceeds 1000 ° C., the austenite crystal grains become coarse, so that a ferrite grain size of 11 or more after rolling cannot be obtained. On the other hand, if the rough rolling temperature is lower than 850 ° C., rolling becomes difficult from the viewpoint of the rolling mill load. If the finish rolling temperature exceeds 1000 ° C., a ferrite grain size of 11 or more cannot be obtained. If the finish rolling temperature is less than 700 ° C., rolling occurs in the two-phase region of austenite and ferrite, and a uniform ferrite-pearlite structure cannot be obtained after rolling. , Deteriorating workability.
[0052]
Next, if the cooling rate after rolling is less than 0.1 ° C./sec, the pearlite transformation temperature increases and pearlite having a large lamella interval, that is, pearlite having high thermal stability, is formed, and the strength increases. On the other hand, at a temperature of 5 ° C./sec or more, in the case of a steel type having high hardenability, the transformation is not completed during cooling after rolling, the steel remains untransformed, the structure is coarsened, the workability is deteriorated, and the scale layer on the steel material surface and The Te and Se concentrations in the Te and Se enriched layers formed at the interface of the base iron are reduced, and the decarburization suppressing effect is reduced. If the cooling end temperature exceeds 650 ° C., the pearlite transformation is partially incomplete, the structure becomes non-uniform, and the workability deteriorates. If the cooling end temperature is lower than 500 ° C., it takes a long time to reach a temperature of 650 ° C. or higher in the subsequent reheating, which leads to an increase in cost due to a decrease in productivity.
[0053]
When the reheating temperature is lower than 650 ° C., granulation of cementite is insufficient, and softening is insufficient. On the other hand, when the temperature exceeds 750 ° C., a part of the structure becomes austenite and the strength is increased. On the other hand, if the reheating time is less than 15 minutes, the temperature inside the coil does not rise sufficiently and softening becomes insufficient. If it is longer than 90 minutes, the productivity is impaired.
[0054]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples. Table 1 shows the chemical components of the test steel. These steels were continuously cast from converter steel, slab-rolled into slabs having a cross section of 162 × 162 mm, and then hot-rolled into a wire having a diameter of 11 mm under the rolling conditions shown in Table 2. In hot rolling, extraction is performed at 1100 ° C. in a heating furnace, rough rolling and finish rolling are performed at a predetermined temperature, and the resultant is rolled into a ring. I, II and III are cooled to a predetermined temperature at a predetermined cooling rate using a blast cooling, slow cooling cover, heat treatment furnace, water tank, etc. on the transfer line, and then converged on a coil to move on the line While heating in a heat treatment furnace for 30 minutes, it was allowed to cool outside the furnace. Rolling No. IV corresponds to the step of performing softening annealing after conventional hot rolling. After hot rolling, it was cooled by applying a slow cooling cover on the transport line, and then allowed to cool. After cooling, softening annealing at 700 ° C. × 3 h was performed in an annealing furnace.
[0055]
[Table 1]
Figure 2004250768
[0056]
[Table 2]
Figure 2004250768
[0057]
Table 3 shows the structures, workability and decarburization characteristics of the hot-rolled material and the soft-annealed material. The tensile strength (TS), the drawing (RA) and the critical compressibility were used for the evaluation of the workability, and the thickness of the ferrite decarburized layer according to JIS G 0558 was used for the evaluation of the decarburizing property. For the tensile test, a JIS No. 2 tensile test piece was used, and the critical compressibility was shown in the document "Cold Upsetting Test Method" (plasticity and processing, 22 (1981), 139.) after drawing a wire into φ10. Using a compression test piece of φ10 × 15 mm based on No. 1 test piece (compression test piece), evaluation was performed by an end face constraint compression test.
[0058]
[Table 3]
Figure 2004250768
[0059]
As shown in Table 3, any steel satisfying the claims of the present invention is excellent in both the critical compression ratio and the low decarburization property. Regarding steel type S in which the content of Te or Se is less than the lower limit of the present invention, ferrite decarburization is observed and low decarburization is deteriorated even when manufactured under any of the rolling conditions I to III. Further, the steel U having a Te content exceeding the upper limit of the present invention and the steel V having a Se content exceeding the upper limit of the present invention have significantly lower critical compressibility than the steels J and L, which are almost the same components, Workability deteriorates. Further, when the cooling rate after hot rolling is less than the lower limit of the production condition shown in claim 6, the ferrite grain size number deviates from the present invention and the ductility is reduced. If the cooling rate after hot rolling exceeds the upper limit of the manufacturing conditions as set forth in claim 6, the microstructure becomes coarse, the ferrite grain size number falls outside the range of the present invention, and the workability is deteriorated. It can be seen that even when compared with 23 which was performed, the same or higher workability was obtained.
[0060]
【The invention's effect】
According to the present invention, it is possible to provide a steel for machine structural use having a workability equal to or more than that of an annealed material without softening annealing and further suppressing the thickness of a decarburized layer on the surface of a steel material, which is extremely large in industry. Has an effect.

Claims (6)

質量%で、
C :0.1〜1.2%、
Si:0.01〜2.5%、
Mn:0.1〜1.5%、
P :0.04%以下(0%を含む)、
S :0.0005〜0.05%、
Al:0.2%以下、
Te:0.0005〜0.05%及びSe:0.0005〜0.05%の内の1種または2種、
N :0.0005〜0.03%
を含有し、Sと、Te及びSeの内の1種または2種の含有量の合計が0.005%〜0.05%であり、残部がFe及び不可避的不純物からなる鋼であって、フェライトとパーライトを主体とする組織からなり、JIS G 0552で規定するフェライト結晶粒度番号が11番以上であることを特徴とする冷間加工性と低脱炭性に優れた機械構造用鋼。
In mass%,
C: 0.1 to 1.2%,
Si: 0.01 to 2.5%,
Mn: 0.1-1.5%,
P: 0.04% or less (including 0%),
S: 0.0005 to 0.05%,
Al: 0.2% or less,
One or two of Te: 0.0005 to 0.05% and Se: 0.0005 to 0.05%,
N: 0.0005 to 0.03%
Wherein the total content of S and one or two of Te and Se is 0.005% to 0.05%, with the balance being Fe and unavoidable impurities, A steel for machine structural use comprising a structure mainly composed of ferrite and pearlite and having a ferrite crystal grain size number of 11 or more specified in JIS G 0552, and having excellent cold workability and low decarburization.
さらに、質量%で
Sb:0.001〜0.05%
を含有することを特徴とする請求項1記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
Furthermore, Sb: 0.001 to 0.05% by mass%
The steel for machine structural use excellent in cold workability and low decarburization property according to claim 1, characterized by containing.
さらに、質量%で
Cr:0.2〜2.0%、
Mo:0.1〜1.0%、
Ni:0.3〜1.5%、
Cu:1.0%以下、
B :0.005%以下
のうち1種または2種以上を含有することを特徴とする請求項1または2記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
Further, Cr: 0.2 to 2.0% by mass%,
Mo: 0.1-1.0%,
Ni: 0.3-1.5%,
Cu: 1.0% or less,
B: The steel for machine structural use excellent in cold workability and low decarburization according to claim 1 or 2, which contains one or more of 0.005% or less.
さらに、質量%で、
Ti:0.002%〜0.05%、
Nb:0.005〜0.1%、
V :0.03〜0.3%、
のうち1種または2種以上を含有することを特徴とする請求項1乃至3のいずれかに記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
Furthermore, in mass%,
Ti: 0.002% to 0.05%,
Nb: 0.005 to 0.1%,
V: 0.03-0.3%,
The steel for machine structural use excellent in cold workability and low decarburization according to any one of claims 1 to 3, wherein the steel contains one or more of the following.
さらに、質量%で
Mg:0.0002〜0.01%、
Zr:0.0001〜0.01%
Ca:0.0002〜0.008%、
のうち1種または2種以上をさらに含有することを特徴とする請求項1乃至4のいずれかに記載の冷間加工性と低脱炭性に優れた機械構造用鋼。
Further, Mg: 0.0002 to 0.01% by mass%,
Zr: 0.0001-0.01%
Ca: 0.0002 to 0.008%,
The steel for machine structural use excellent in cold workability and low decarburization according to any one of claims 1 to 4, further comprising one or more of the following.
請求項1乃至5のいずれかに記載の鋼成分を有する鋼を850℃以上1000℃以下の温度範囲で熱間粗圧延し、700℃以上1000℃以下の温度範囲で仕上げ圧延後、500℃以上700℃以下の温度まで0.1℃/秒以上5℃/秒未満の範囲の冷却速度で冷却し、その後直ちに650℃以上750℃以下の炉雰囲気温度に15分以上90分以下保持し、その後放冷することを特徴とする冷間加工性と低脱炭性に優れた機械構造用鋼の製造方法。The steel having the steel component according to any one of claims 1 to 5 is hot rough-rolled in a temperature range of 850 ° C or more and 1000 ° C or less, and is finish-rolled in a temperature range of 700 ° C or more and 1000 ° C or less, and then 500 ° C or more. Cool to a temperature of 700 ° C or less at a cooling rate of 0.1 ° C / sec or more and less than 5 ° C / sec, and immediately maintain the furnace atmosphere temperature of 650 ° C or more and 750 ° C or less for 15 minutes or more and 90 minutes or less. A method for producing steel for machine structural use having excellent cold workability and low decarburization characteristics, which is characterized by cooling.
JP2003044996A 2003-02-21 2003-02-21 Machine structural steel excellent in cold workability and low decarburization and method for producing the same Expired - Fee Related JP4012475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044996A JP4012475B2 (en) 2003-02-21 2003-02-21 Machine structural steel excellent in cold workability and low decarburization and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044996A JP4012475B2 (en) 2003-02-21 2003-02-21 Machine structural steel excellent in cold workability and low decarburization and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004250768A true JP2004250768A (en) 2004-09-09
JP4012475B2 JP4012475B2 (en) 2007-11-21

Family

ID=33027531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044996A Expired - Fee Related JP4012475B2 (en) 2003-02-21 2003-02-21 Machine structural steel excellent in cold workability and low decarburization and method for producing the same

Country Status (1)

Country Link
JP (1) JP4012475B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110247734A1 (en) * 2008-12-26 2011-10-13 Posco Surface Decarburization-Restrained Steel and Manufacturing Method Thereof
JP2011246769A (en) * 2010-05-27 2011-12-08 Jfe Steel Corp Steel for machine structural use and method of manufacturing the same
KR101289218B1 (en) 2011-06-10 2013-07-29 주식회사 포스코 Wire rod, drawn wire having high-strength and excellent corrosion resistance and method for manufacturing thereof
US20130252017A1 (en) * 2010-11-25 2013-09-26 Jfe Steel Corporation Steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
WO2015004902A1 (en) 2013-07-09 2015-01-15 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and production method for same
JP2015205305A (en) * 2014-04-21 2015-11-19 大同特殊鋼株式会社 Ring manufacturing method
US10253386B2 (en) 2012-03-07 2019-04-09 Jfe Steel Corporation Steel sheet for hot press-forming, method for manufacturing the same, and method for producing hot press-formed parts using the same
CN115216689A (en) * 2022-06-20 2022-10-21 江苏永钢集团有限公司 Microalloy steel for railway wheels and production process thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151048A1 (en) 2018-01-30 2019-08-08 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and method for manufacturing same
EP3901303A4 (en) 2019-01-30 2021-11-03 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for manufacturing same
CN113366136B (en) 2019-01-30 2023-10-31 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264935A (en) * 2008-12-26 2011-11-30 Posco公司 Surface decarburization-restrained steel and manufacturing method thereof
CN102264935B (en) * 2008-12-26 2014-09-03 Posco公司 Surface decarburization-restrained steel and manufacturing method thereof
US20110247734A1 (en) * 2008-12-26 2011-10-13 Posco Surface Decarburization-Restrained Steel and Manufacturing Method Thereof
JP2011246769A (en) * 2010-05-27 2011-12-08 Jfe Steel Corp Steel for machine structural use and method of manufacturing the same
US10144196B2 (en) * 2010-11-25 2018-12-04 Jfe Steel Corporation Steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
US20130252017A1 (en) * 2010-11-25 2013-09-26 Jfe Steel Corporation Steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
KR101289218B1 (en) 2011-06-10 2013-07-29 주식회사 포스코 Wire rod, drawn wire having high-strength and excellent corrosion resistance and method for manufacturing thereof
US10253386B2 (en) 2012-03-07 2019-04-09 Jfe Steel Corporation Steel sheet for hot press-forming, method for manufacturing the same, and method for producing hot press-formed parts using the same
WO2015004902A1 (en) 2013-07-09 2015-01-15 Jfeスチール株式会社 High-carbon hot-rolled steel sheet and production method for same
EP3190202A1 (en) 2013-07-09 2017-07-12 JFE Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
KR20160010579A (en) 2013-07-09 2016-01-27 제이에프이 스틸 가부시키가이샤 High-carbon hot-rolled steel sheet and production method for same
US10400298B2 (en) 2013-07-09 2019-09-03 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
JP2015205305A (en) * 2014-04-21 2015-11-19 大同特殊鋼株式会社 Ring manufacturing method
CN115216689A (en) * 2022-06-20 2022-10-21 江苏永钢集团有限公司 Microalloy steel for railway wheels and production process thereof

Also Published As

Publication number Publication date
JP4012475B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3966493B2 (en) Cold forging wire and method for producing the same
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP5716640B2 (en) Rolled steel bar for hot forging
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP2020521048A (en) Steel part manufacturing method and corresponding steel part
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP2020510749A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature and method for producing the same
JP2020504236A (en) High-strength steel excellent in fracture initiation and propagation resistance at low temperature, and method for producing the same
CN113366137A (en) High carbon hot-rolled steel sheet and method for producing same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP4012475B2 (en) Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
US11434542B2 (en) High-carbon hot-rolled steel sheet and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2756534B2 (en) Manufacturing method for high ductility steel bars

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070907

R151 Written notification of patent or utility model registration

Ref document number: 4012475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees