EP2707515B1 - Producing method for very high yield strength martensitic steel sheet and steel sheet obtained - Google Patents

Producing method for very high yield strength martensitic steel sheet and steel sheet obtained Download PDF

Info

Publication number
EP2707515B1
EP2707515B1 EP12724659.3A EP12724659A EP2707515B1 EP 2707515 B1 EP2707515 B1 EP 2707515B1 EP 12724659 A EP12724659 A EP 12724659A EP 2707515 B1 EP2707515 B1 EP 2707515B1
Authority
EP
European Patent Office
Prior art keywords
sheet
less
steel sheet
temperature
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12724659.3A
Other languages
German (de)
French (fr)
Other versions
EP2707515A1 (en
Inventor
Kangying ZHU
Olivier Bouaziz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal Investigacion y Desarrollo SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal Investigacion y Desarrollo SL filed Critical ArcelorMittal Investigacion y Desarrollo SL
Priority to PL12724659T priority Critical patent/PL2707515T3/en
Publication of EP2707515A1 publication Critical patent/EP2707515A1/en
Application granted granted Critical
Publication of EP2707515B1 publication Critical patent/EP2707515B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a method of manufacturing steel sheets with a thickness of less than 3 millimeters with a totally martensitic structure with a mechanical strength greater than that which could be obtained by a simple quenching treatment with martensitic quenching, and resistance properties. mechanical and elongation allowing their application to the manufacture of energy absorbing parts in motor vehicles.
  • (C) denotes the carbon content of the steel, expressed as a percentage by weight.
  • a method of manufacture is thus sought which makes it possible to obtain an ultimate tensile strength of 50 MPa at expression (1), ie a strength greater than 3220 ( C) + 958 MPa for this steel. It seeks to have a method for the manufacture of sheet with a very high yield strength, that is greater than 1300 MPa. It is also sought to have a method for the manufacture of directly usable sheets, that is to say without the imperative need of a tempering treatment after quenching.
  • the present invention aims to solve the problems mentioned above. It aims in particular at providing sheets with a thickness of less than 3 millimeters with a yield strength greater than 1300 MPa, tensile strength, expressed in megapascals, greater than (3220 (C) +958) MPa, and preferably a total elongation of greater than 3%.
  • the average size of austenitic grains is less than 5 micrometers.
  • the sheet is subjected to a subsequent thermal treatment of tempering at a temperature T 4 of between 150 and 600 ° C. for a period of between 5 and 30 minutes.
  • the subject of the invention is also a sheet of steel with a thickness of less than 3 millimeters and no yield strength greater than 1300 MPa, obtained by a method according to one of the above methods of manufacture, with a totally reduced structure. martensitic, having an average slat size of less than 1.2 micrometers, the average elongation factor of slats being between 2 and 5.
  • the subject of the invention is also a steel sheet having a thickness of less than 3 millimeters obtained by the process with the above-mentioned tempering treatment, the steel having a totally martensitic structure with an average slat size of less than 1.2. micrometer, the average elongation factor of the slats being between 2 and 5.
  • Manganese lowers the initial formation temperature of martensite and slows the decomposition of austenite. In order to obtain sufficient effects, the manganese content must not be less than 1.5%. Moreover, when the manganese content exceeds 3%, segregated zones are present in excessive amount which impairs the implementation of the invention. A preferred range for the implementation of the invention is 1.8 to 2.5% Mn.
  • the silicon content must be greater than 0.005% so as to participate in the deoxidation of the steel in the liquid phase.
  • the silicon must not exceed 2% by weight because of the formation of surface oxides which significantly reduce the coating ability, in the case where it would be desirable to coat the sheet by passing through a metal coating bath, in particular by continuous galvanizing.
  • the aluminum content of the steel according to the invention is not less than 0.005% so as to obtain sufficient deoxidation of the steel in the liquid state.
  • the aluminum content is greater than 0.1% by weight, casting problems can occur. It is also possible to form inclusions of alumina in too large quantities or sizes which play a detrimental role on toughness.
  • the sulfur and phosphorus contents of the steel are respectively limited to 0.05 and 0.1% in order to avoid a reduction in the ductility or toughness of the parts or sheets produced according to the invention.
  • the steel also contains niobium in an amount between 0.025 and 0.1%, and optionally titanium in an amount between 0.01 and 0.1%.
  • Chromium and molybdenum are very effective elements for delaying the transformation of austenite and can be used optionally for the implementation of the invention. These elements have the effect of separating the ferrito-pearlitic and bainitic transformation domains, the transformation Ferritic-pearlitic occurring at temperatures above the bainitic transformation. These transformation domains are then in the form of two distinct "noses" in an isothermal transformation diagram (Transformation-Temperature-Time)
  • the chromium content must be less than or equal to 4%. Beyond this content, its effect on the quenchability is practically saturated; an additional addition is then expensive without corresponding beneficial effect.
  • the molybdenum content must not exceed 2% because of its excessive cost.
  • the steel can also contain boron: indeed, the significant deformation of the austenite can accelerate the conversion to ferrite on cooling, a phenomenon that should be avoided. Addition of boron in an amount of between 0.0005 and 0.005% by weight makes it possible to guard against early ferritic transformation.
  • the steel may also contain calcium in an amount between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium prevents the formation of large inclusions that are harmful to the ductility of the sheets or parts thus manufactured.
  • the rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.
  • the steel sheets manufactured according to the invention are characterized by a totally martensitic slatted structure of great fineness: due to the specific thermomechanical cycle and composition, the average size of the martensitic slats is less than 1.2 micrometers and their average elongation factor is between 2 and 5.
  • These microstructural characteristics are determined, for example, by observing the microstructure by Scanning Electron Microscopy by means of a field effect gun ("MEB-FEG" technique) at a magnification. greater than 1200x, coupled to an EBSD detector ("Electron Backscatter Diffraction"). It is defined that two contiguous slats are distinct when their disorientation is greater than 5 degrees.
  • the average slat size is defined by the known intercepts method: the average size of slats intercepted by defined lines is evaluated. random with respect to the microstructure. The measurement is performed on at least 1000 martensitic slats in order to obtain a representative average value. The morphology of the individual slats is then determined by image analysis using software known in itself: the maximum I max and minimum I min dimension of each martensitic slat and its elongation factor are determined. l max l min . In order to be statistically representative, this observation concerns at least 1000 martensitic slats. The average elongation factor l max l min is then determined for all of these slats observed.
  • the invention is not limited to this geometry and to this type of product, and can also be adapted the manufacture of long products, bars, profiles, by successive stages of hot deformation.
  • the steel sheets may be used as such or subjected to a heat treatment of tempered temperature T 4 between 150 and 600 ° C for a period of between 5 and 30 minutes.
  • This treatment of income generally has the effect of increasing the ductility at the price of a decrease of the limit of elasticity and the resistance.
  • the inventors have however demonstrated that the method according to the invention, which gives a tensile strength of at least 50 MPa higher than that obtained after conventional quenching, retained this advantage even after a tempering treatment with temperatures ranging from from 150 to 600 ° C. The fineness characteristics of the microstructure are preserved by this income treatment.
  • the sheets were rolled in this temperature range in 5 passes with a cumulative reduction rate ⁇ b of 76%, ie up to a thickness of 2.8 mm, then cooled. then to room temperature with a speed of 80 ° C / sec so as to obtain a completely martensitic microstructure.
  • steel sheets of the above composition were heated at a temperature of 1250 ° C., held for 30 minutes at this temperature and then cooled with water so as to obtain a completely martensitic microstructure (reference condition).
  • the yield strength Re By means of tensile tests, the yield strength Re, the breaking strength Rm and the total elongation A have been determined for sheets obtained by these different methods of manufacture.
  • Steel B does not contain enough niobium: it does not reach a yield strength of 1300 MPa, both after simple martensitic quenching (test B2) and in the case of rolling with roughing and finishing at temperature.
  • T 3 (test B1)
  • microstructure of the plates obtained by Scanning Electron Microscopy was also observed by means of a field effect gun ("MEB-FEG" technique) and EBSD detector, and quantified the average size. slats of the martensitic structure and their average elongation factor l max l min .
  • the method according to the invention makes it possible to obtain a martensitic structure with an average slat size of 0.9 micrometres and an elongation factor of 3. This structure is considerably thinner than that observed after simple martensitic quenching, whose average slat size is of the order of 2 micrometers.
  • the plates produced according to the invention because of their lower carbon content, have good weldability by the usual processes, in particular spot resistance welding. They also have good ability to be coated, for example by galvanizing or continuous dipping aluminization.
  • the invention allows the manufacture of sheets of thickness less than 3 millimeters or bare or coated with very high mechanical characteristics, under very satisfactory economic conditions.

Description

L'invention concerne un procédé de fabrication de tôles en acier d'épaisseur inférieure à 3 millimètres à structure totalement martensitique avec une résistance mécanique supérieure à celle qui pourrait être obtenue par un simple traitement de refroidissement rapide avec trempe martensitique, et des propriétés de résistance mécanique et d'allongement permettant leur application à la fabrication de pièces à absorption d'énergie dans les véhicules automobiles.The invention relates to a method of manufacturing steel sheets with a thickness of less than 3 millimeters with a totally martensitic structure with a mechanical strength greater than that which could be obtained by a simple quenching treatment with martensitic quenching, and resistance properties. mechanical and elongation allowing their application to the manufacture of energy absorbing parts in motor vehicles.

Dans certaines applications, on cherche à réaliser des pièces à partir de tôle en acier à très haute résistance mécanique. Ce type de combinaison est particulièrement désirable dans l'industrie automobile où l'on recherche un allégement significatif des véhicules. Ceci peut être notamment obtenu grâce à l'utilisation de pièces d'aciers à très hautes caractéristiques mécaniques dont la microstructure est totalement martensitique. Des pièces anti-intrusion, de structure ou participant à la sécurité des véhicules automobiles telles que : traverses de pare-choc, renforts de portière ou de pied milieu, bras de roue, nécessitent par exemple de telles caractéristiques. Leur épaisseur est préférablement inférieure à 3 millimètres.In some applications, it is sought to produce parts from steel sheet with very high mechanical strength. This type of combination is particularly desirable in the automotive industry where significant vehicle lightening is sought. This can be achieved in particular by the use of steels with very high mechanical properties whose microstructure is totally martensitic. Anti-intrusion parts, structure or participating in the safety of motor vehicles such as: bumper cross members, door or center pillar reinforcements, wheel arms, require for example such characteristics. Their thickness is preferably less than 3 millimeters.

On cherche à obtenir des tôles avec une résistance mécanique encore supérieure. Il est bien connu la possibilité d'augmenter la résistance mécanique d'un acier à structure martensitique au moyen d'une addition de carbone. Cependant, cette teneur en carbone plus élevée diminue l'aptitude au soudage des tôles ou des pièces fabriquées à partir de ces tôles, et accroît le risque de fissuration lié à la présence d'hydrogène.We seek to obtain sheets with an even higher mechanical strength. It is well known the possibility of increasing the mechanical strength of a steel martensitic structure by means of a carbon addition. However, this higher carbon content reduces the weldability of the sheets or parts made from these sheets, and increases the risk of cracking due to the presence of hydrogen.

On cherche donc à disposer d'un procédé de fabrication de tôles d'acier ne présentant pas les inconvénients ci-dessus, qui seraient dotées d'une résistance à la rupture supérieure de plus de 50 MPa à celle que l'on pourrait obtenir grâce à une austénitisation suivie d'une simple trempe martensitique de l'acier en question. Les inventeurs ont mis en évidence que, pour des teneurs en carbone allant de 0,15 à 0,40% en poids, la résistance à la rupture en traction Rm de tôles, d'aciers fabriquées par austénitisation totale suivie d'une simple trempe martensitique, ne dépendait pratiquement que de la teneur en carbone et était reliée à celle-ci avec une très bonne précision, selon l'expression (1) : Rm (mégapascals) = 3220(C) + 908.It is therefore sought to have a method of manufacturing steel sheets not having the above disadvantages, which would have a higher tensile strength of more than 50 MPa to that which could be obtained through austenitization followed by a simple martensitic quenching of the steel in question. The inventors have demonstrated that, for carbon contents ranging from 0.15 to 0.40% by weight, the tensile strength Rm of sheets, steels manufactured by total austenitization followed of a simple martensitic quench, practically depended only on the carbon content and was connected to it with a very good precision, according to the expression (1): Rm (megapascals) = 3220 (C) + 908.

Dans cette expression, (C) désigne la teneur en carbone de l'acier exprimée en pourcentage pondéral. A teneur en carbone C donnée d'un acier, on cherche donc un procédé de fabrication permettant d'obtenir une résistance à la rupture supérieure de 50 MPa à l'expression (1), c'est à dire une résistance supérieure à 3220(C)+ 958 MPa pour cet acier. On cherche à disposer d'un procédé permettant la fabrication de tôle à très haute limite d'élasticité, c'est à dire supérieure à 1300 MPa. On cherche également à disposer d'un procédé permettant la fabrication de tôles utilisables directement, c'est à dire sans nécessité impérative d'un traitement de revenu après trempe.In this expression, (C) denotes the carbon content of the steel, expressed as a percentage by weight. Given the carbon content C of a steel, a method of manufacture is thus sought which makes it possible to obtain an ultimate tensile strength of 50 MPa at expression (1), ie a strength greater than 3220 ( C) + 958 MPa for this steel. It seeks to have a method for the manufacture of sheet with a very high yield strength, that is greater than 1300 MPa. It is also sought to have a method for the manufacture of directly usable sheets, that is to say without the imperative need of a tempering treatment after quenching.

Ces tôles doivent être soudables par les procédés usuels et ne pas comporter d'additions coûteuses d'éléments d'alliage.These sheets must be weldable by the usual methods and do not include expensive additions of alloying elements.

La présente invention a pour but de résoudre les problèmes évoqués ci-dessus. Elle vise en particulier à mettre à disposition des tôles d'épaisseur inférieure à 3 millimètres avec une limite d'élasticité supérieure à 1300 MPa, une résistance mécanique en traction, exprimée en mégapascals, supérieure à (3220(C)+958) MPa, et de préférence un allongement total supérieur à 3%.The present invention aims to solve the problems mentioned above. It aims in particular at providing sheets with a thickness of less than 3 millimeters with a yield strength greater than 1300 MPa, tensile strength, expressed in megapascals, greater than (3220 (C) +958) MPa, and preferably a total elongation of greater than 3%.

Dans ce but, l'invention a pour objet un procédé de fabrication d'une d'épaisseur inférieure à 3 millimètres de structure totalement martensitique à limite d'élasticité supérieure à 1300 MPa, comprenant les étapes successives et dans cet ordre selon lesquelles :

  • on approvisionne un demi-produit d'acier dont la composition comprend, les teneurs étant exprimées en poids : 0,15% ≤ C ≤0,40%, 1,5%≤ Mn ≤ 3%, 0,005% ≤ Si ≤ 2%, 0,005%≤ Al ≤ 0,1%, S ≤ 0,05%, P≤ 0,1%, 0,025%≤ Nb≤0,1% et optionnellement : 0,01%≤ Ti≤0,1%, 0%≤ Cr≤ 4%, 0%≤ Mo ≤2%, 0,0005% ≤ B ≤ 0,005%, 0,0005% ≤ Ca ≤ 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration.
  • on réchauffe le demi-produit à une température T1 comprise entre 1050°C et 1250°C, puis
  • on effectue un laminage de dégrossissage du demi-produit réchauffé, à une température T2 comprise entre 1050 et 1150°C, avec un taux de réduction εa cumulé supérieur à 100% de façon à obtenir une tôle avec une structure austénitique non totalement recristallisée de taille moyenne de grain inférieure à 40 micromètres, puis
  • on refroidit non complètement la tôle jusqu'à une température T3 comprise entre 970°C et Ar3+30°C, de façon à éviter une transformation de l'austénite, à une vitesse VR1 supérieure à 2°C/s, puis
  • on effectue un laminage à chaud de finition à la température T3, de la tôle non complètement refroidie, avec un taux de réduction cumulé εb supérieur à 50% de façon à obtenir une tôle, d'épaisseur inférieure à 3 millimètres puis
  • on refroidit la tôle à une vitesse VR2 supérieure à la vitesse critique de trempe martensitique.
For this purpose, the subject of the invention is a method of manufacturing a thickness of less than 3 millimeters of totally martensitic structure with a yield strength greater than 1300 MPa, comprising the successive steps and in this order in which:
  • supplying a semi-finished steel product whose composition comprises, the contents being expressed by weight: 0.15% ≤ C ≤ 0.40%, 1.5% ≤ Mn ≤ 3%, 0.005% ≤ Si ≤ 2% , 0.005% ≤ Al ≤ 0.1%, S ≤ 0.05%, P ≤ 0.1%, 0.025% ≤ Nb ≤ 0.1% and optionally: 0.01% ≤ Ti ≤ 0.1%, 0 % ≤ Cr≤4%, 0% ≤ Mo ≤2%, 0.0005% ≤ B ≤ 0.005%, 0.0005% ≤ Ca ≤ 0.005%, the remainder of the composition consisting of iron and unavoidable impurities resulting of elaboration.
  • the semi-finished product is heated to a temperature T 1 of between 1050 ° C. and 1250 ° C., and then
  • the heat-treated semi-product is rolled at a temperature T 2 of between 1050 and 1150 ° C. with a reduction ratio ε a cumulative greater than 100% so as to obtain a sheet with a non-totally recrystallized austenitic structure with a mean grain size of less than 40 microns, then
  • the sheet is cooled to a temperature T 3 between 970 ° C. and Ar 3 + 30 ° C. so as to avoid a transformation of the austenite, at a speed V R1 greater than 2 ° C./s, then
  • a final hot rolling is carried out at the temperature T 3 of the sheet which is not completely cooled, with a cumulative reduction ratio ε b greater than 50% so as to obtain a sheet having a thickness of less than 3 millimeters then
  • the sheet is cooled to a speed V R2 greater than the critical speed of martensitic quenching.

Selon un mode préféré, la taille moyenne de grains austénitiques est inférieure à 5 micromètres.In a preferred embodiment, the average size of austenitic grains is less than 5 micrometers.

Préférentiellement, on soumet la tôle à un traitement thermique ultérieur de revenu à une température T4 comprise entre 150 et 600°C pendant une durée comprise entre 5 et 30 minutes.Preferably, the sheet is subjected to a subsequent thermal treatment of tempering at a temperature T 4 of between 150 and 600 ° C. for a period of between 5 and 30 minutes.

L'invention a également pour objet une tôle d'acier d'épaisseur inférieure à 3 millimètres non revenue de limite d'élasticité supérieure à 1300 MPa, obtenue par un procédé selon l'un des modes de fabrication ci-dessus, de structure totalement martensitique, présentant une taille moyenne de lattes inférieure à 1,2 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5.The subject of the invention is also a sheet of steel with a thickness of less than 3 millimeters and no yield strength greater than 1300 MPa, obtained by a method according to one of the above methods of manufacture, with a totally reduced structure. martensitic, having an average slat size of less than 1.2 micrometers, the average elongation factor of slats being between 2 and 5.

L'invention a encore pour objet une tôle d'acier d'épaisseur inférieure à 3 millimètres obtenue par le procédé avec traitement de revenu ci-dessus, l'acier ayant une structure totalement martensitique avec une taille moyenne de lattes inférieure à 1,2 micromètre, le facteur d'allongement moyen des lattes étant compris entre 2 et 5.The subject of the invention is also a steel sheet having a thickness of less than 3 millimeters obtained by the process with the above-mentioned tempering treatment, the steel having a totally martensitic structure with an average slat size of less than 1.2. micrometer, the average elongation factor of the slats being between 2 and 5.

La composition des aciers mis en oeuvre dans le procédé selon l'invention va maintenant être détaillée :

  • Lorsque la teneur en carbone de l'acier est inférieure à 0,15% en poids, la trempabilité de l'acier est insuffisante et il n'est pas possible d'obtenir une structure totalement martensitique compte tenu du procédé mis en oeuvre.
  • Lorsque cette teneur est supérieure à 0,40%, les joints soudés réalisés à partir de ces tôles ou de ces pièces présentent une ténacité insuffisante. La teneur optimale en carbone pour la mise en oeuvre de l'invention est comprise entre 0,16 et 0,28%.
The composition of the steels used in the process according to the invention will now be detailed:
  • When the carbon content of the steel is less than 0.15% by weight, the hardenability of the steel is insufficient and it is not possible to obtain a totally martensitic structure taking into account the process used.
  • When this content is greater than 0.40%, welded joints made from these sheets or these parts have insufficient toughness. The optimum carbon content for the implementation of the invention is between 0.16 and 0.28%.

Le manganèse abaisse la température de début de formation de la martensite et ralentit la décomposition de l'austénite. Afin d'obtenir des effets suffisants, la teneur en manganèse ne doit pas être inférieure à 1,5%. Par ailleurs, lorsque la teneur en manganèse dépasse 3%, des zones ségrégées sont présentes en en quantité excessive ce qui nuit à la mise en oeuvre de l'invention. Une gamme préférentielle pour la mise en oeuvre de l'invention est 1,8 à 2,5%Mn.Manganese lowers the initial formation temperature of martensite and slows the decomposition of austenite. In order to obtain sufficient effects, the manganese content must not be less than 1.5%. Moreover, when the manganese content exceeds 3%, segregated zones are present in excessive amount which impairs the implementation of the invention. A preferred range for the implementation of the invention is 1.8 to 2.5% Mn.

La teneur en silicium doit être supérieure à 0,005% de façon à participer à la désoxydation de l'acier en phase liquide. Le silicium ne doit pas excéder 2% en poids en raison de la formation d'oxydes superficiels qui réduisent notablement la revêtabilité, dans le cas où on souhaiterait revêtir la tôle par passage dans un bain métallique de revêtement, notamment par galvanisation en continu.The silicon content must be greater than 0.005% so as to participate in the deoxidation of the steel in the liquid phase. The silicon must not exceed 2% by weight because of the formation of surface oxides which significantly reduce the coating ability, in the case where it would be desirable to coat the sheet by passing through a metal coating bath, in particular by continuous galvanizing.

La teneur en aluminium de l'acier selon l'invention n'est pas inférieure à 0,005% de façon à obtenir une désoxydation suffisante de l'acier à l'état liquide. Lorsque la teneur en aluminium est supérieure à 0,1% en poids, des problèmes de coulée peuvent apparaitre. Il peut également se former des inclusions d'alumine en quantité ou en taille trop importantes qui jouent un rôle néfaste sur la ténacité.The aluminum content of the steel according to the invention is not less than 0.005% so as to obtain sufficient deoxidation of the steel in the liquid state. When the aluminum content is greater than 0.1% by weight, casting problems can occur. It is also possible to form inclusions of alumina in too large quantities or sizes which play a detrimental role on toughness.

Les teneurs en soufre et en phosphore de l'acier sont respectivement limitées à 0,05 et 0,1% pour éviter une réduction de ductilité ou de la ténacité des pièces ou des tôles fabriquées selon l'invention.The sulfur and phosphorus contents of the steel are respectively limited to 0.05 and 0.1% in order to avoid a reduction in the ductility or toughness of the parts or sheets produced according to the invention.

L'acier contient également du niobium en quantité comprise entre 0,025 et 0,1%, et optionnellement du titane en quantité comprise entre 0,01 et 0,1%. Ces additions de niobium et éventuellement de titane permettent la mise en oeuvre du procédé selon l'invention en retardant la recristallisation de l'austénite à haute température et permettent d'obtenir une taille de grain suffisamment fine à haute température.The steel also contains niobium in an amount between 0.025 and 0.1%, and optionally titanium in an amount between 0.01 and 0.1%. These additions of niobium and optionally titanium allow the implementation of the process according to the invention by delaying the recrystallization of the austenite at high temperature and allow to obtain a sufficiently fine grain size at high temperature.

Le chrome et le molybdène sont des éléments très efficaces pour retarder la transformation de l'austénite et peuvent être utilisés optionnellement pour la mise en oeuvre de l'invention. Ces éléments ont pour effet de séparer les domaines de transformation ferrito-perlitique et bainitique, la transformation ferrito-perlitique intervenant à des températures supérieures à la transformation bainitique. Ces domaines de transformation se présentent alors sous forme de deux « nez » bien distincts dans un diagramme de transformation isotherme (Transformation-Température-Temps)Chromium and molybdenum are very effective elements for delaying the transformation of austenite and can be used optionally for the implementation of the invention. These elements have the effect of separating the ferrito-pearlitic and bainitic transformation domains, the transformation Ferritic-pearlitic occurring at temperatures above the bainitic transformation. These transformation domains are then in the form of two distinct "noses" in an isothermal transformation diagram (Transformation-Temperature-Time)

La teneur en chrome doit être inférieure ou égale à 4%. Au delà de cette teneur, son effet sur la trempabilité est pratiquement saturé ; une addition supplémentaire est alors coûteuse sans effet bénéfique correspondant.The chromium content must be less than or equal to 4%. Beyond this content, its effect on the quenchability is practically saturated; an additional addition is then expensive without corresponding beneficial effect.

La teneur en molybdène ne doit cependant pas excéder 2% en raison de son coût excessif.However, the molybdenum content must not exceed 2% because of its excessive cost.

A titre optionnel, l'acier peut également contenir du bore : en effet, la déformation importante de l'austénite peut accélérer la transformation en ferrite au refroidissement, phénomène qu'il convient d'éviter. Une addition de bore, en quantité comprise entre 0,0005 et 0,005% en poids permet de se prémunir d'une transformation ferritique précoce.As an option, the steel can also contain boron: indeed, the significant deformation of the austenite can accelerate the conversion to ferrite on cooling, a phenomenon that should be avoided. Addition of boron in an amount of between 0.0005 and 0.005% by weight makes it possible to guard against early ferritic transformation.

A titre optionnel, l'acier peut également contenir du calcium en quantité comprise entre 0,0005 et 0,005% : en se combinant avec l'oxygène et le soufre, le calcium permet d'éviter la formation d'inclusions de grande taille qui sont néfastes pour la ductilité des tôles ou des pièces ainsi fabriquées.As an option, the steel may also contain calcium in an amount between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium prevents the formation of large inclusions that are harmful to the ductility of the sheets or parts thus manufactured.

Le reste de la composition de l'acier est constitué de fer et d'impuretés inévitables résultant de l'élaboration.The rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.

Les tôles d'acier fabriquées selon l'invention sont caractérisées par une structure totalement martensitique en lattes d'une grande finesse : en raison du cycle thermomécanique et de la composition spécifiques, la taille moyenne des lattes martensitiques est inférieure à 1,2 micromètre et leur facteur d'allongement moyen est compris entre 2 et 5. Ces caractéristiques microstructurales sont déterminées par exemple en observant la microstructure par Microscopie Electronique à Balayage au moyen d'un canon à effet de champ (technique « MEB-FEG ») à un grandissement supérieur à 1200x, couplé à un détecteur EBSD (« Electron Backscatter Diffraction »). On définit que deux lattes contigües sont distinctes lorsque leur désorientation est supérieure à 5 degrés. La taille moyenne de lattes est définie par la méthode des intercepts connue en elle-même : on évalue la taille moyenne des lattes interceptées par des lignes définies de façon aléatoire par rapport à la microstructure. La mesure est réalisée sur au moins 1000 lattes martensitiques de façon à obtenir une valeur moyenne représentative. La morphologie des lattes individualisées est ensuite déterminée par analyse d'images au moyen de logiciels connus en eux-même : on détermine la dimension maximale Imax et minimale Imin de chaque latte martensitique et son facteur d'allongement l max l min .

Figure imgb0001
Afin d'être statistiquement représentative, cette observation porte sur au moins 1000 lattes martensitiques. Le facteur d'allongement moyen l max l min
Figure imgb0002
est ensuite déterminé pour l'ensemble de ces lattes observées.The steel sheets manufactured according to the invention are characterized by a totally martensitic slatted structure of great fineness: due to the specific thermomechanical cycle and composition, the average size of the martensitic slats is less than 1.2 micrometers and their average elongation factor is between 2 and 5. These microstructural characteristics are determined, for example, by observing the microstructure by Scanning Electron Microscopy by means of a field effect gun ("MEB-FEG" technique) at a magnification. greater than 1200x, coupled to an EBSD detector ("Electron Backscatter Diffraction"). It is defined that two contiguous slats are distinct when their disorientation is greater than 5 degrees. The average slat size is defined by the known intercepts method: the average size of slats intercepted by defined lines is evaluated. random with respect to the microstructure. The measurement is performed on at least 1000 martensitic slats in order to obtain a representative average value. The morphology of the individual slats is then determined by image analysis using software known in itself: the maximum I max and minimum I min dimension of each martensitic slat and its elongation factor are determined. l max l min .
Figure imgb0001
In order to be statistically representative, this observation concerns at least 1000 martensitic slats. The average elongation factor l max l min
Figure imgb0002
is then determined for all of these slats observed.

Le procédé de fabrication de tôles laminées à chaud selon l'invention comporte les étapes suivantes :

  • On approvisionne tout d'abord un demi-produit d'acier dont la composition a été exposée ci-dessus. Ce demi-produit peut se présenter par exemple sous forme de brame issue de coulée continue, de brame mince, ou de lingot. A titre d'exemple indicatif, une brame de coulée continue a une épaisseur de l'ordre de 200mm, une brame mince une épaisseur de l'ordre de 50-80mm.
  • On réchauffe ce demi-produit à une température T1 comprise entre 1050°C et 1250°C. La température T1 est supérieure à Ac3, température de transformation totale en austénite au chauffage. Ce réchauffage permet donc d'obtenir une austénitisation complète de l'acier ainsi que la dissolution d'éventuels carbonitrures de niobium existant dans le demi-produit. Cette étape de réchauffage permet également de réaliser les différentes opérations ultérieures de laminage à chaud qui vont être présentées : on effectue un laminage dit de dégrossissage du demi-produit : ce laminage de dégrossissage est effectué à une température T2 comprise entre 1050 et 1150°C. Le taux de réduction cumulé des différentes étapes de laminage au dégrossissage est noté εa. Si eia désigne l'épaisseur du demi-produit avant le laminage à chaud de dégrossissage et efa l'épaisseur de la tôle après ce laminage, on définit le taux de réduction cumulé par ε a = Ln e i a e f a .
    Figure imgb0003
    Selon l'invention, le taux de réduction εa doit être supérieur à 100%, c'est-à-dire supérieur à 1. Dans ces conditions de laminage, la présence de niobium, et optionnellement de titane, retarde la recristallisation et permet d'obtenir une austénite non totalement recristallisée à haute température. La taille moyenne de grain austénitique ainsi obtenue est inférieure à 40 micromètres, voire à 5 micromètres lorsque la teneur en niobium est comprise entre 0,030 et 0,050%. Cette taille de grain peut être mesurée par exemple grâce à des essais où l'on trempe directement après laminage la tôle. On observe ensuite une coupe polie et attaquée de celle-ci, l'attaque étant effectuée grâce à un réactif connu en lui-même, tel que par exemple le réactif de Béchet-Beaujard qui révèle les anciens joints de grains austénitiques.
  • On refroidit ensuite non complètement, c'est à dire jusqu'à une température intermédiaire T3, la tôle à une vitesse VR1 supérieure à 2°C/s, de façon à éviter une transformation et une éventuelle recristallisation de l'austénite puis on effectue un laminage à chaud de finition de la tôle avec un taux de réduction cumulé εb supérieur à 50%. Si ei2 désigne l'épaisseur de la tôle avant le laminage de finition et ef2 l'épaisseur de la tôle après ce laminage, on définit le taux de réduction cumulé par ε b = Ln e i b e f b .
    Figure imgb0004
    Ce laminage de finition est effectué à une température T3 comprise entre 970 et Ar3+30°C, Ar3 désignant la température de début de transformation de l'austénite au refroidissement. Ceci permet d'obtenir à l'issue du laminage de finition une austénite déformée à grains fins, celle-ci n'ayant pas tendance à recristalliser. On refroidit ensuite cette tôle à une vitesse VR2 supérieure à la vitesse de trempe critique martensitique et l'on obtient ainsi une tôle caractérisée par une structure martensitique très fine dont les propriétés mécaniques sont supérieures à celles que l'on peut obtenir par un simple traitement thermique de trempe.
The process for manufacturing hot-rolled sheets according to the invention comprises the following steps:
  • First, a semi-finished steel product, the composition of which has been described above, is supplied. This semi-finished product may for example be in the form of slab from continuous casting, thin slab or ingot. As an indicative example, a continuous casting slab has a thickness of about 200 mm, a thin slab a thickness of about 50-80 mm.
  • This half-product is heated to a temperature T 1 of between 1050 ° C. and 1250 ° C. The temperature T 1 is greater than A c3 , the total conversion temperature to austenite during heating. This reheating thus makes it possible to obtain a complete austenitization of the steel as well as the dissolution of any possible niobium carbonitrides in the semi-finished product. This reheating step also makes it possible to carry out the various subsequent hot rolling operations which will be presented: a so-called roughing operation of the semi-finished product is carried out: this roughing rolling is carried out at a temperature T 2 of between 1050 and 1150 ° C. vs. The cumulative reduction rate of the various stages of rolling at roughing is noted ε a . If e ia denotes the thickness of the semi-finished product before the hot rolling of roughing and e fa the thickness of the sheet after this rolling, the reduction rate cumulated by ε at = Ln e i at e f at .
    Figure imgb0003
    According to the invention, the reduction rate ε a must be greater than 100%, that is to say greater than 1. Under these rolling conditions, the presence of niobium, and optionally titanium, delays the recrystallization and allows to obtain austenite not completely recrystallized at high temperature. The average austenitic grain size thus obtained is less than 40 micrometers, or even 5 micrometers when the niobium content is between 0.030 and 0.050%. This grain size can be measured, for example, by means of tests in which the sheet is quenched directly after rolling. A polished and etched section thereof is then observed, the attack being carried out using a reagent known in itself, such as, for example, the Béchet-Beaujard reagent which reveals the old austenitic grain boundaries.
  • Then is cooled not completely, that is to say up to an intermediate temperature T 3 , the sheet at a speed V R1 greater than 2 ° C / s, so as to avoid a transformation and a possible recrystallization of the austenite then the sheet is hot-rolled with a cumulative reduction ratio ε b greater than 50%. If e i2 denotes the thickness of the sheet before the finish rolling and e f2 the thickness of the sheet after this rolling, the cumulative reduction ratio is defined by ε b = Ln e i b e f b .
    Figure imgb0004
    This finishing rolling is carried out at a temperature T 3 of between 970 and Ar3 + 30 ° C, Ar3 denoting the starting temperature of transformation from austenite to cooling. This makes it possible to obtain, at the end of the finishing lamination, a deformed austenite with fine grains, the latter having no tendency to recrystallize. This sheet is then cooled to a speed V R2 greater than the martensitic critical quenching speed and a sheet is thus obtained characterized by a very fine martensitic structure whose mechanical properties are greater than those which can be obtained by a simple quenching heat treatment.

Bien que le procédé ci-dessus décrive la fabrication de tôles, c'est à dire de produits plats, à partir de brames, l'invention n'est pas limitée à cette géométrie et à ce type de produits, et peut être aussi adaptée à la fabrication de produits longs, de barres, profilés, par des étapes successives de déformation à chaud.Although the above method describes the manufacture of sheets, ie flat products, from slabs, the invention is not limited to this geometry and to this type of product, and can also be adapted the manufacture of long products, bars, profiles, by successive stages of hot deformation.

Les tôles d'acier peuvent être utilisées telles quelles ou soumises à un traitement thermique de revenu effectué à une température T4 comprise entre 150 et 600°C pendant une durée comprise entre 5 et 30 minutes. Ce traitement de revenu a généralement pour effet d'augmenter la ductilité au prix d'une diminution de la limite d'élasticité et de la résistance. Les inventeurs ont cependant mis en évidence que le procédé selon l'invention, qui confère une résistance mécanique en traction d'au moins 50 MPa plus élevée que celle obtenue après trempe conventionnelle, conservait cet avantage même après un traitement de revenu avec des températures allant de 150 à 600°C. Les caractéristiques de finesse de la microstructure sont conservées par ce traitement de revenu.The steel sheets may be used as such or subjected to a heat treatment of tempered temperature T 4 between 150 and 600 ° C for a period of between 5 and 30 minutes. This treatment of income generally has the effect of increasing the ductility at the price of a decrease of the limit of elasticity and the resistance. The inventors have however demonstrated that the method according to the invention, which gives a tensile strength of at least 50 MPa higher than that obtained after conventional quenching, retained this advantage even after a tempering treatment with temperatures ranging from from 150 to 600 ° C. The fineness characteristics of the microstructure are preserved by this income treatment.

A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention.By way of non-limiting example, the following results will show the advantageous characteristics conferred by the invention.

Exemple:Example:

On a approvisionné des demi-produits d'acier dont les compositions, exprimées en teneurs pondérales (%) sont les suivantes : C Mn Si Cr Mo Al S P Nb Ti B Ca A 0,27 1,91 0,01 0,01 0,01 0,03 0,003 0,020 0,042 0,010 0,0016 0,001 B 0,198 1,94 0,01 1,909 0,01 0,03 0,003 0,020 0,003 0,012 0,0014 0,0004 Les valeurs soulignées sont non-conformes à l'invention Steel semi-finished products have been supplied whose compositions, expressed in contents by weight (%) are as follows: VS mn Yes Cr MB al S P Nb Ti B It AT 0.27 1.91 0.01 0.01 0.01 0.03 0,003 0,020 0,042 0,010 0.0016 0,001 B 0.198 1.94 0.01 1,909 0.01 0.03 0,003 0,020 0,003 0.012 0.0014 0.0004 The underlined values are not in accordance with the invention

Des demi-produits de 31mm d'épaisseur ont été réchauffés et maintenus 30 minutes à une température T1 de 1250°C puis soumis à un laminage en 4 passes à une température T2 de 1100°C avec un taux de réduction cumulé ε1 de 164%, soit jusqu'à une épaisseur de 6mm. A ce stade, à haute température après dégrossissage, la structure est totalement austénitique, non complètement recristallisée avec une taille moyenne de grain de 30 micromètres. Les tôles ainsi obtenues ont été ensuite refroidies à la vitesse de 3°C/s jusqu'à une température T3 comprise entre 955°C et 840°C, cette dernière température étant égale à Ar3+60°C. Les tôles ont été laminées dans cette gamme de température en 5 passes avec un taux de réduction cumulé εb de 76%, soit jusqu'à une épaisseur de 2,8mm, puis refroidies ensuite jusqu'à la température ambiante avec une vitesse de 80°C/s de façon à obtenir une microstructure complètement martensitique.Semi-finished products 31 mm thick were heated and held for 30 minutes at a temperature T 1 of 1250 ° C. and then subjected to rolling in 4 passes at a temperature T 2 of 1100 ° C. with a cumulative reduction rate ε 1 164%, up to a thickness of 6mm. At this stage, at high temperature after roughing, the structure is totally austenitic, not completely recrystallized with an average grain size of 30 microns. The sheets thus obtained were then cooled at a rate of 3 ° C./s up to a temperature T 3 of between 955 ° C. and 840 ° C., the latter temperature being equal to Ar 3 + 60 ° C. The sheets were rolled in this temperature range in 5 passes with a cumulative reduction rate ε b of 76%, ie up to a thickness of 2.8 mm, then cooled. then to room temperature with a speed of 80 ° C / sec so as to obtain a completely martensitic microstructure.

Par comparaison, des tôles d'aciers de composition ci-dessus ont été chauffées à une température de 1250°C, maintenues 30 minutes à cette température puis refroidies à l'eau de façon à obtenir une microstructure complètement martensitique (condition de référence)By comparison, steel sheets of the above composition were heated at a temperature of 1250 ° C., held for 30 minutes at this temperature and then cooled with water so as to obtain a completely martensitic microstructure (reference condition).

Au moyen d'essais de traction, on a déterminé la limite d'élasticité Re, la résistance à la rupture Rm et l'allongement total A des tôles obtenues par ces différents modes de fabrication. On a également fait figurer la valeur estimée de la résistance après trempe martensitique simple (3220(C)+908 (MPa), ainsi que la différence ΔRm entre cette valeur estimée et la résistance effectivement mesurée. Acier Essai Température de réduction T3 (°C) Re (MPa) Rm (MPa) A (%) 3220 (C)+908 (MPa) ΔRm (MPa) A A1 955 1410 1840 5,2 1777 63 A2 860 1584 1949 4,9 1777 172 B B1 840 1270 1692 6,5 1545 147 B2 Sans 1223 1576 6,9 1545 31 Conditions d'essais et résultats mécaniques obtenus
Valeurs soulignées : non conformes à l'invention
By means of tensile tests, the yield strength Re, the breaking strength Rm and the total elongation A have been determined for sheets obtained by these different methods of manufacture. The estimated value of the resistance after single martensitic hardening (3220 (C) +908 (MPa)) and the difference ΔRm between this estimated value and the actually measured resistance were also included. Steel Trial Reduction temperature T 3 (° C) Re (MPa) Rm (MPa) AT (%) 3220 (C) +908 (MPa) ΔRm (MPa) AT A1 955 1410 1840 5.2 1777 63 A2 860 1584 1949 4.9 1777 172 B B1 840 1270 1692 6.5 1545 147 B2 Without 1223 1576 6.9 1545 31 Test conditions and mechanical results obtained
Underlined values: not in accordance with the invention

L'acier B ne contient pas suffisamment de niobium : on n'atteint alors pas une limite d'élasticité de 1300MPa, aussi bien après trempe martensitique simple (essai B2) que dans le cas d'un laminage avec dégrossissage et finissage à la température T3 (essai B1)Steel B does not contain enough niobium: it does not reach a yield strength of 1300 MPa, both after simple martensitic quenching (test B2) and in the case of rolling with roughing and finishing at temperature. T 3 (test B1)

Dans le cas de l'essai B2 (trempe martensitique simple), on observe que la valeur de la résistance estimée (1545MPa) à partir de l'expression (1) est voisine de celle déterminée expérimentalement (1576MPa)In the case of the B2 test (simple martensitic quenching), it is observed that the value of the estimated resistance (1545 MPa) from expression (1) is close to that determined experimentally (1576 MPa)

On a également observé la microstructure des tôles obtenues par Microscopie Electronique à Balayage au moyen d'un canon à effet de champ (technique « MEB-FEG ») et détecteur EBSD, et quantifié la taille moyenne des lattes de la structure martensitique ainsi que leur facteur d'allongement moyen l max l min .

Figure imgb0005
The microstructure of the plates obtained by Scanning Electron Microscopy was also observed by means of a field effect gun ("MEB-FEG" technique) and EBSD detector, and quantified the average size. slats of the martensitic structure and their average elongation factor l max l min .
Figure imgb0005

Dans les essais A1 et A2, le procédé selon l'invention permet d'obtenir une structure martensitique avec une taille moyenne de lattes de 0,9 micromètre et un facteur d'allongement de 3. Cette structure est nettement plus fine que celle observée après simple trempe martensitique, dont la taille moyenne de lattes est de l'ordre de 2 micromètres.In tests A1 and A2, the method according to the invention makes it possible to obtain a martensitic structure with an average slat size of 0.9 micrometres and an elongation factor of 3. This structure is considerably thinner than that observed after simple martensitic quenching, whose average slat size is of the order of 2 micrometers.

Dans les essais A1 et A2 selon l'invention, les valeurs de ΔRm sont respectivement de 63 et de 172 MPa respectivement. Le procédé selon l'invention permet donc d'obtenir des valeurs de résistance mécanique significativement supérieures à celles qui seraient obtenues par une trempe martensitique simple. Dans le cas de l'essai A2 par exemple, cette augmentation de résistance (172 MPa) est équivalente à celle qui serait obtenue, d'après la relation (1), grâce à une trempe martensitique simple appliquée à des aciers dans lesquels une addition supplémentaire de 0,05% environ aurait été réalisée. Une telle augmentation de la teneur en carbone aurait cependant des conséquences néfastes vis-à-vis de la soudabilité et de la ténacité, alors que le procédé selon l'invention permet d'accroître la résistance mécanique sans ces inconvénients.In tests A1 and A2 according to the invention, the values of ΔRm are respectively 63 and 172 MPa respectively. The process according to the invention therefore makes it possible to obtain mechanical strength values significantly greater than those which would be obtained by simple martensitic quenching. In the case of test A2 for example, this increase in resistance (172 MPa) is equivalent to that which would be obtained, according to relation (1), thanks to a simple martensitic quenching applied to steels in which an addition additional 0.05% would have been achieved. Such an increase in the carbon content would however have adverse consequences with respect to the weldability and toughness, whereas the method according to the invention makes it possible to increase the mechanical strength without these disadvantages.

Les tôles fabriquées selon l'invention, en raison de leur teneur en carbone plus faible, présentent une bonne aptitude au soudage par les procédés usuels, en particulier au soudage par résistance par points. Elles présentent également une bonne aptitude à être revêtues, par exemple par galvanisation ou aluminiage au trempé en continu.The plates produced according to the invention, because of their lower carbon content, have good weldability by the usual processes, in particular spot resistance welding. They also have good ability to be coated, for example by galvanizing or continuous dipping aluminization.

Ainsi, l'invention permet la fabrication de tôles d'épaisseur inférieure à 3 millimètres ou nues ou revêtues à très hautes caractéristiques mécaniques, dans des conditions économiques très satisfaisantes.Thus, the invention allows the manufacture of sheets of thickness less than 3 millimeters or bare or coated with very high mechanical characteristics, under very satisfactory economic conditions.

Claims (5)

  1. Method for producing a steel sheet having a thickness of less than 3 millimetres, having a completely martensitic structure and having a yield strength of more than 1300 MPa, comprising the successive steps, in this order, according to which:
    - a steel semi-finished product is provided, the composition of which comprises, the contents being expressed by weight, 0.15 % C 0.40 %
    Figure imgb0030
    1.5 % Mn 3 %
    Figure imgb0031
    0.005 % Si 2 %
    Figure imgb0032
    0.005 % Al 0.1 %
    Figure imgb0033
    S 0.05 %
    Figure imgb0034
    P 0.1 %
    Figure imgb0035
    0.025 % Nb 0.1 %
    Figure imgb0036

    and optionally: 0.01 % Ti 0.1 %
    Figure imgb0037
    0 % Cr 4 %
    Figure imgb0038
    0 % Mo 2 %
    Figure imgb0039
    0.0005 % B 0.005 %
    Figure imgb0040
    0.0005 % Ca 0.005 % ,
    Figure imgb0041

    the remainder of the composition consisting of iron and inevitable impurities resulting from production,
    - said semi-finished product is heated to a temperature T1 between 1050°C and 1250°C, then
    - said heated semi-finished product is rough-rolled at a temperature T2 between 1050 and 1150°C, with a cumulative reduction rate εa greater than 100%, so as to obtain a sheet with an austenitic structure, not fully recrystallized, with an average grain size of less than 40 micrometres, then
    - said sheet is cooled, not completely, to a temperature T3 between 970°C and Ar3+30°C, at a rate VR1 greater than 2°C/s, then
    - said sheet, which is not completely cooled, is subjected to hot finish-rolling at said temperature T3, with a cumulative reduction rate εb greater than 50%, so as to obtain a sheet having a thickness of less than 3 millimetres, then
    - said sheet is cooled at a rate VR2 which is greater than a critical martensitic quenching rate.
  2. Method for producing a steel sheet according to claim 1, characterized in that said average austenitic grain size is less than 5 micrometres.
  3. Method for producing a steel sheet according to any one of claims 1 or 2, characterized in that said sheet is subjected to a subsequent tempering heat treatment at a temperature T4 between 150 and 600°C for a duration between 5 and 30 minutes.
  4. Steel sheet having a thickness of less than 3 millimetres and having a yield strength of more than 1300 MPa, obtained by a method according to any one of claims 1 or 2, having a completely martensitic structure, having an average lath size of less than 1.2 micrometres, the average elongation factor of said laths being between 2 and 5.
  5. Steel sheet obtained by a method according to claim 3, having a completely martensitic structure, having an average lath size of less than 1.2 micrometres, the average elongation factor of said laths being between 2 and 5.
EP12724659.3A 2011-05-12 2012-04-20 Producing method for very high yield strength martensitic steel sheet and steel sheet obtained Active EP2707515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12724659T PL2707515T3 (en) 2011-05-12 2012-04-20 Producing method for very high yield strength martensitic steel sheet and steel sheet obtained

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/FR2011/000295 WO2012153009A1 (en) 2011-05-12 2011-05-12 Method for the production of very-high-strength martensitic steel and sheet thus obtained
PCT/FR2012/000156 WO2012153013A1 (en) 2011-05-12 2012-04-20 Method for the production of martensitic steel having a very high yield point and sheet or part thus obtained

Publications (2)

Publication Number Publication Date
EP2707515A1 EP2707515A1 (en) 2014-03-19
EP2707515B1 true EP2707515B1 (en) 2015-08-19

Family

ID=46197584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12724659.3A Active EP2707515B1 (en) 2011-05-12 2012-04-20 Producing method for very high yield strength martensitic steel sheet and steel sheet obtained

Country Status (16)

Country Link
US (1) US9963756B2 (en)
EP (1) EP2707515B1 (en)
JP (1) JP6161597B2 (en)
KR (2) KR101903823B1 (en)
CN (1) CN103517996B (en)
BR (1) BR112013029012B1 (en)
CA (1) CA2834967C (en)
ES (1) ES2551005T3 (en)
HU (1) HUE027986T2 (en)
MA (1) MA35059B1 (en)
MX (1) MX356324B (en)
PL (1) PL2707515T3 (en)
RU (1) RU2550682C1 (en)
UA (1) UA111200C2 (en)
WO (2) WO2012153009A1 (en)
ZA (1) ZA201307845B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX354354B (en) * 2012-02-23 2018-02-28 Jfe Steel Corp Method for producing electromagnetic steel sheet.
CN103146997B (en) 2013-03-28 2015-08-26 宝山钢铁股份有限公司 A kind of low-alloy high-flexibility wear-resistant steel plate and manufacture method thereof
MX2016007570A (en) 2013-12-11 2016-10-04 Arcelormittal Martensitic steel with delayed fracture resistance and manufacturing method.
KR102134950B1 (en) 2014-09-22 2020-07-17 아르셀러미탈 Vehicle underbody structure and vehicle body
EP3262205A1 (en) 2015-02-25 2018-01-03 ArcelorMittal Post annealed high tensile strength coated steel sheet having improved yield strength and hole expansion
WO2019226197A1 (en) * 2018-05-25 2019-11-28 Kingston William R Impact resistant high strength steel
WO2019186928A1 (en) * 2018-03-29 2019-10-03 日本製鉄株式会社 Hot-stamped formed product
TW202003873A (en) 2018-05-07 2020-01-16 日商日本製鐵股份有限公司 Hot rolled steel sheet and manufacturing method thereof
KR102109271B1 (en) * 2018-10-01 2020-05-11 주식회사 포스코 Ultra high strength hot rolled steel sheet having excellent surface qualities and low mechanical properties deviation and method of manufacturing the same
CN110129670B (en) * 2019-04-25 2020-12-15 首钢集团有限公司 1300 MPa-grade high-strength high-plasticity steel for hot stamping and preparation method thereof
CN113528944B (en) * 2021-06-17 2022-12-16 首钢集团有限公司 1000MPa easily-formed wear-resistant steel plate and preparation method thereof
CN113755758B (en) * 2021-09-03 2023-02-03 本钢板材股份有限公司 8 mm-thick hot stamping steel prepared by adding cerium microalloy and hot stamping process thereof

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619714A (en) * 1984-08-06 1986-10-28 The Regents Of The University Of California Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JPS63134628A (en) * 1986-11-25 1988-06-07 Sumitomo Metal Ind Ltd Production of hot rolled thick steel plate having high strength and high toughness
JPH01275719A (en) * 1988-04-26 1989-11-06 Sumitomo Metal Ind Ltd Manufacture of thick steel plate having high strength and high toughness
CN1106070A (en) * 1994-01-31 1995-08-02 沈阳重型机器厂 Low-temp. weldable thin-grain steel plate
BR9811051A (en) * 1997-07-28 2000-08-15 Exxonmobil Upstream Res Co Steel plate, and, process to prepare it
TW459052B (en) 1997-12-19 2001-10-11 Exxon Production Research Co Ultra-high strength steels with excellent cryogenic temperature toughness
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP2004010971A (en) * 2002-06-07 2004-01-15 Nippon Steel Corp Method for producing steel sheet having excellent strength and toughness and satisfactory flatness at high efficiency
US6811624B2 (en) * 2002-11-26 2004-11-02 United States Steel Corporation Method for production of dual phase sheet steel
FR2849864B1 (en) * 2003-01-15 2005-02-18 Usinor VERY HIGH STRENGTH HOT-ROLLED STEEL AND METHOD OF MANUFACTURING STRIPS
FR2885142B1 (en) * 2005-04-27 2007-07-27 Aubert & Duval Soc Par Actions CURED MARTENSITIC STEEL, METHOD FOR MANUFACTURING A WORKPIECE THEREFROM, AND PIECE THUS OBTAINED
JP2007154305A (en) * 2005-07-05 2007-06-21 Jfe Steel Kk Steel for mechanical structure with excellent strength, ductility and toughness, and its manufacturing method
EP1832667A1 (en) * 2006-03-07 2007-09-12 ARCELOR France Method of producing steel sheets having high strength, ductility and toughness and thus produced sheets.
JP5277648B2 (en) * 2007-01-31 2013-08-28 Jfeスチール株式会社 High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5266804B2 (en) * 2008-03-07 2013-08-21 Jfeスチール株式会社 Method for producing rolled non-heat treated steel
JP4538094B2 (en) * 2008-09-17 2010-09-08 新日本製鐵株式会社 High strength thick steel plate and manufacturing method thereof
CN101676425B (en) 2008-09-18 2011-07-20 宝山钢铁股份有限公司 Martensite abrasion-resistant steel with high strength
JP2010106287A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp High-tension steel excellent in fatigue characteristic, and producing method thereof
US8500924B2 (en) * 2008-11-11 2013-08-06 Nippon Steel & Sumitomo Metal Corporation High-strength steel plate and producing method therefor
JP5182642B2 (en) * 2008-12-03 2013-04-17 新日鐵住金株式会社 High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
KR101091306B1 (en) * 2008-12-26 2011-12-07 주식회사 포스코 High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof
JP5439819B2 (en) * 2009-01-09 2014-03-12 Jfeスチール株式会社 High-strength steel material with excellent fatigue characteristics and method for producing the same
JP5412915B2 (en) * 2009-03-27 2014-02-12 Jfeスチール株式会社 Ferrite-pearlite rolled non-heat treated steel
CN101586217B (en) * 2009-06-25 2011-03-16 莱芜钢铁集团有限公司 Low-cost and ultra-high strength and toughness martensite steel and manufacturing method thereof
JP5609383B2 (en) 2009-08-06 2014-10-22 Jfeスチール株式会社 High strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
MX2012014594A (en) * 2010-06-14 2013-02-21 Nippon Steel & Sumitomo Metal Corp Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article.

Also Published As

Publication number Publication date
CN103517996A (en) 2014-01-15
WO2012153013A1 (en) 2012-11-15
WO2012153009A1 (en) 2012-11-15
US20140144559A1 (en) 2014-05-29
UA111200C2 (en) 2016-04-11
MX356324B (en) 2018-05-23
KR20140018382A (en) 2014-02-12
PL2707515T3 (en) 2016-01-29
HUE027986T2 (en) 2016-11-28
US9963756B2 (en) 2018-05-08
MX2013013218A (en) 2013-12-12
EP2707515A1 (en) 2014-03-19
MA35059B1 (en) 2014-04-03
CA2834967A1 (en) 2012-11-15
CA2834967C (en) 2017-02-21
ZA201307845B (en) 2015-06-24
RU2550682C1 (en) 2015-05-10
JP6161597B2 (en) 2017-07-12
BR112013029012B1 (en) 2018-10-09
BR112013029012A2 (en) 2017-01-17
KR101903823B1 (en) 2018-10-02
CN103517996B (en) 2016-05-11
KR20160066007A (en) 2016-06-09
JP2014517873A (en) 2014-07-24
ES2551005T3 (en) 2015-11-13

Similar Documents

Publication Publication Date Title
EP2707515B1 (en) Producing method for very high yield strength martensitic steel sheet and steel sheet obtained
EP2707513B1 (en) Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
EP2155915B2 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP3084014B1 (en) High strength steel and method of production of the same
EP3783116B1 (en) Pre-coated sheets allowing the production of press-hardened and coated steel parts
EP2171112B1 (en) Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained
EP1649069B1 (en) Method of producing austenitic iron/carbon/manganese steel sheets having a high strength and excellent toughness and being suitable for cold forming, and sheets thus produced
EP2155916B2 (en) Low density steel with good stamping capability
CA2680623C (en) Steel for tool-less hot forming or quenching with improved ductility
EP3307921A2 (en) High-strength steel and production method
FR2536765A1 (en) PROCESS FOR MANUFACTURING STEEL PLATES HAVING HIGH TENSILE STRENGTH
FR2881144A1 (en) PROCESS FOR MANUFACTURING FERRO-CARBON-MANGANIZED AUSTENITIC STEEL TILES HAVING HIGH RESISTANCE TO DELAYED CRACKING, AND SHEETS THUS PRODUCED
FR2878257A1 (en) PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY
CA3065036A1 (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
EP3274483B1 (en) Parts with a bainitic structure having high strength properties and manufacturing process
RU2623945C1 (en) Heavy plate manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012009787

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0006000000

Ipc: C22C0038120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20150205BHEP

Ipc: C22C 38/26 20060101ALI20150205BHEP

Ipc: C22C 38/04 20060101ALI20150205BHEP

Ipc: C22C 38/38 20060101ALI20150205BHEP

Ipc: C22C 38/22 20060101ALI20150205BHEP

Ipc: B62D 29/00 20060101ALI20150205BHEP

Ipc: C22C 38/28 20060101ALI20150205BHEP

Ipc: C22C 38/32 20060101ALI20150205BHEP

Ipc: C22C 38/12 20060101AFI20150205BHEP

Ipc: C22C 38/06 20060101ALI20150205BHEP

Ipc: C22C 38/14 20060101ALI20150205BHEP

Ipc: C22C 38/00 20060101ALI20150205BHEP

Ipc: C22C 38/02 20060101ALI20150205BHEP

Ipc: C21D 6/00 20060101ALI20150205BHEP

Ipc: C21D 8/02 20060101ALI20150205BHEP

INTG Intention to grant announced

Effective date: 20150311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 743888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012009787

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2551005

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151113

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151221

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ARCELORMITTAL

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012009787

Country of ref document: DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 20120

Country of ref document: SK

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E027986

Country of ref document: HU

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160420

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 743888

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 12

Ref country code: FI

Payment date: 20230321

Year of fee payment: 12

Ref country code: CZ

Payment date: 20230323

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230323

Year of fee payment: 12

Ref country code: SK

Payment date: 20230323

Year of fee payment: 12

Ref country code: SE

Payment date: 20230327

Year of fee payment: 12

Ref country code: PL

Payment date: 20230323

Year of fee payment: 12

Ref country code: IT

Payment date: 20230322

Year of fee payment: 12

Ref country code: GB

Payment date: 20230321

Year of fee payment: 12

Ref country code: BE

Payment date: 20230321

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230419

Year of fee payment: 12

Ref country code: ES

Payment date: 20230502

Year of fee payment: 12

Ref country code: DE

Payment date: 20230321

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230329

Year of fee payment: 12

Ref country code: AT

Payment date: 20230322

Year of fee payment: 12