EP2171112B1 - Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained - Google Patents

Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained Download PDF

Info

Publication number
EP2171112B1
EP2171112B1 EP08830766A EP08830766A EP2171112B1 EP 2171112 B1 EP2171112 B1 EP 2171112B1 EP 08830766 A EP08830766 A EP 08830766A EP 08830766 A EP08830766 A EP 08830766A EP 2171112 B1 EP2171112 B1 EP 2171112B1
Authority
EP
European Patent Office
Prior art keywords
steel
sheet
steel sheet
composition
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08830766A
Other languages
German (de)
French (fr)
Other versions
EP2171112A1 (en
Inventor
Pascal Drillet
Damien Ormston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
ArcelorMittal France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal France SA filed Critical ArcelorMittal France SA
Priority to EP08830766A priority Critical patent/EP2171112B1/en
Priority to PL08830766T priority patent/PL2171112T3/en
Publication of EP2171112A1 publication Critical patent/EP2171112A1/en
Application granted granted Critical
Publication of EP2171112B1 publication Critical patent/EP2171112B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the invention relates to the manufacture of sheets or hot-rolled parts of so-called "multiphase" steels, simultaneously having a very high strength and a deformation capacity for performing cold or warm shaping operations.
  • the invention more specifically relates to predominantly bainitic microstructure steels having a strength greater than 800 MPa and an elongation rate greater than 10% rupture.
  • the automotive industry is in particular a preferred field of application for these hot-rolled steel sheets.
  • TRIP Transform Induced Plasticity
  • JP 2003 321739 A discloses a steel sheet with high characteristics of strength and ductility and the method of manufacturing this sheet.
  • the sheet composition comprises, the contents being expressed by weight: 0.03-0.1% C, 0.5-1.7% Mn, 0-0.1% Al, 0-2% Si, 0.1-0.5% Mo, 0-0.01% S, 0 -0.06% P, 0-0.006% N, 0.01-0.15% V, 0.007-0.2% Ti, 0.005-0.02% Nb, remains Fe and unavoidable impurities resulting from the elaboration.
  • the microstructure is composed of 5-70% bainite, the rest being essentially ferrite.
  • the present invention aims to solve the problems mentioned above. It aims to provide a hot-rolled steel sheet having a mechanical strength greater than 800 MPa together with an elongation rate greater than 10% fracture, both in long direction and in cross-direction relative to the rolling .
  • the invention also aims at providing a steel sheet that is not very sensitive to damage during cutting by a mechanical method.
  • the invention also aims to provide a method of manufacturing a steel sheet in the uncoated, electrogalvanized or galvanized, or aluminized state. This therefore requires that the mechanical characteristics of this steel are insensitive to the thermal cycles associated with continuous dipping zinc coating processes.
  • the invention also aims to have a sheet or piece of hot rolled steel available even in small thickness, that is to say for example between 1 and 5mm.
  • the hot hardness of the steel must not be too high to facilitate rolling.
  • composition of the steel preferably comprises the content being expressed by weight: 0.050% ⁇ C ⁇ 0.070%
  • the composition comprises, the content being expressed by weight: 0.070% ⁇ C ⁇ 0.090%
  • the composition comprises: 1.4% ⁇ Mn ⁇ 1.8%.
  • the composition comprises: 0.020% ⁇ Al ⁇ 0.040%.
  • the composition of the steel preferably comprises: 0.12% ⁇ V ⁇ 0.16%. In a preferred embodiment, the composition of the steel comprises 0.18% ⁇ Mo ⁇ 0.30%.
  • the composition comprises: Nb ⁇ 0.005%
  • the composition comprises: 0.20% ⁇ Cr ⁇ 0.45%
  • the sheet or the part is coated with a coating based on zinc or aluminum-based.
  • the subject of the invention is also a piece of steel with a composition and a microstructure defined above, characterized in that it is obtained by heating at a temperature T of between 400 and 690 ° C. and then a warm stamping in a temperature range between 350 ° C and (T-20 ° C), then a subsequent cooling to room temperature.
  • the invention also relates to a beam welded assembly with high energy density made from a sheet or piece of steel in one of the modes above.
  • the invention also relates to a method of manufacturing a sheet or piece of hot-rolled steel with a resistance greater than 800 MPa, elongation at break greater than 10%, according to which a steel of the above composition is supplied, a semi-product is cast which is heated to a temperature above 1150 ° C.
  • the semi-finished product is hot rolled to a temperature T FL in a temperature range where the microstructure of the steel is entirely austenitic so as to obtain a sheet.
  • This is then cooled to a cooling rate V R of 75 and 200 ° C./s, then the sheet is reeled at a temperature T bob of between 500 and 600 ° C.
  • the end of rolling temperature T FL is between 870 and 930 ° C.
  • the cooling rate V R is between 80 and 150 ° C / s.
  • the sheet is pickled, then optionally skin-passed, and then coated with zinc or zinc alloy.
  • the coating is carried out continuously by dipping.
  • the subject of the invention is also a process for manufacturing a hot-stamped part, according to which a steel sheet is supplied according to one of the above characteristics, or manufactured by a method according to one of the above-mentioned characteristics. above, then cutting said sheet to obtain a blank.
  • the blank is heated partially or completely to a temperature T of between 400 and 690 ° C., where a holding time of less than 15 minutes is carried out so as to obtain a heated blank, and then the blank heated to a temperature is pressed. between 350 and T-20 ° C to obtain a piece that is cooled to room temperature with a speed V ' R
  • the speed V ' R is between 25 and 100 ° C / s.
  • the invention also relates to the use of a hot-rolled steel sheet according to one of the above modes, or manufactured by a method according to one of the above modes for the manufacture of parts of structure or reinforcement elements, in the automotive field.
  • carbon plays an important role in the formation of the microstructure and in the mechanical properties.
  • the carbon content is between 0.050 and 0.090% by weight: Below 0.050%, sufficient strength can not be obtained. Beyond 0.090%, the microstructure formed consists mainly of lower bainite, this structure being characterized by the presence of carbides precipitated within bainitic ferrite slats: the mechanical strength thus obtained is high but the elongation is then significantly reduced.
  • the carbon content is between 0.050 and 0.070%.
  • the figure 1 illustrates the influence of carbon content on the long-term elongation of LASER beam splicing welds: a particularly high elongation at break of 17-23% is associated with a carbon content of 0.050 at 0.070%.
  • the carbon content is greater than 0.070% and less than or equal to 0.090%: even if this range does not lead to such a high ductility, the elongation at break of the LASER welds is greater than 15% and remains comparable to that of the base steel sheet.
  • manganese increases the quenchability and avoids the formation of ferrite cooling after rolling.
  • Manganese also helps to deoxidize steel during liquid phase processing.
  • the addition of manganese also contributes to effective solid solution hardening and increased strength.
  • the manganese is between 1.4 and 1.8%: thus forming a completely bainitic structure without risk of appearance of harmful band structure.
  • aluminum is an effective element for the deoxidation of steel. This efficiency is obtained in a particularly economical and stable manner when the aluminum content is between 0.020 and 0.040%.
  • silicon contributes to liquid phase deoxidation and hardening in solid solution.
  • An addition of silicon above 0.3% causes the formation of strongly adherent oxides and the possible appearance of surface defects, due in particular to a lack of wettability in dip galvanizing operations.
  • molybdenum retards bainitic transformation during cooling after rolling, contributes to hardening by solid solution and refines the size of bainitic slats.
  • the molybdenum content is less than or equal to 0.40% to prevent the excessive formation of quenching structures. This limited molybdenum content also makes it possible to lower the manufacturing cost.
  • the molybdenum content is greater than or equal to 0.18% and less than or equal to 0.30%. In this way, the level is ideally adjusted to avoid the formation of ferrite or perlite in the steel sheet on the cooling table after hot rolling.
  • Phosphorus is a known element to segregate at grain boundaries. Its content must be limited to 0.025% in order to maintain sufficient hot ductility.
  • the composition may comprise chromium in an amount of less than or equal to 0.45%. Thanks to the other elements of the composition and to the process according to the invention, its presence is however not absolutely necessary, which has the advantage of avoiding expensive additions.
  • chromium between 0.20 and 0.45% can be carried out in addition to the other elements increasing the quenchability: below 0.20%, the effect on the quenchability is not sufficiently marked. Above 0.45%, the coating can be reduced.
  • the steel contains less than 0.005% Ti and less than 0.020% Nb.
  • these elements fix too much nitrogen in the form of nitrides or carbonitrides. There is not enough nitrogen available to precipitate with vanadium. In addition, excessive precipitation of niobium would increase the hot hardness and would not easily allow the realization of thin-rolled hot-rolled sheets.
  • the niobium content is less than 0.005%
  • Vanadium is an important element according to the invention: the steel contains a vanadium content of between 0.12 and 0.22%. Compared to a vanadium-free steel, the increase in strength due to a hardening precipitation of carbonitrides can be up to 300 MPa. Below 0.12%, there is no significant effect on the mechanical tensile characteristics. Beyond 0.22% of vanadium, under the manufacturing conditions according to the invention, there is a saturation of the effect on the mechanical characteristics. A content of less than 0.22% thus makes it possible to obtain high mechanical characteristics in a very economical manner with respect to steels which contain higher levels of vanadium.
  • microstructure refinement and structural hardening are particularly effective.
  • the nitrogen content is greater than or equal to 0.003% in order to obtain a precipitation of vanadium carbonitrides in a sufficient quantity.
  • the nitrogen content is less than or equal to 0.009% to avoid the presence of solid solution nitrogen or the formation of larger carbonitrides, which would reduce ductility.
  • the rest of the composition consists of unavoidable impurities resulting from the preparation, such as for example Sb, Sn, As.
  • microstructural percentages above are surface fractions that can be measured on polished and etched sections.
  • the microstructure therefore does not include primary or proeutectoid ferrite: it then has a great homogeneity since the difference in mechanical properties between the matrix (upper bainite) and the other possible constituents (lower bainite and martensite) is small. During a mechanical stress, the deformations are distributed homogeneously. Accumulation of dislocations does not occur at the interfaces between the constituents and premature damage is avoided, as opposed to this can be noted in structures with a significant amount of primary ferrite, phase whose flow limit is very low, or martensite with a very high level of resistance. In this way, the steel sheet according to the invention has a particular aptitude for certain demanding deformation modes such as the expansion of holes, the mechanical stressing of cut edges, folding.
  • the cast semifinished products are first brought to a temperature higher than 1150 ° C. to reach at any point a temperature favorable to the high deformations which the steel will undergo during rolling.
  • the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting. that an intermediate heating step is not necessary in this case.
  • the semi-finished product is hot-rolled in a temperature range where the structure of the steel is totally austenitic up to an end-of-rolling temperature T FL .
  • the temperature T FL is preferably between 870 and 930 ° C to obtain a grain size adapted to the bainitic transformation that follows.
  • Cooling is then carried out at a speed V R of between 75 and 200 ° C./s: a minimum speed of 75 ° C./s makes it possible to avoid the formation of proeutectoid ferrite and of perlite, whereas a lower speed V R or 200 ° C / s avoids excessive formation of martensite.
  • the speed V R is between 80 and 150 ° C / s:
  • a minimum speed of 80 ° C / s leads to the formation of upper bainite with a very small slat size, combined with excellent mechanical properties.
  • a speed of less than 150 ° C / s makes it possible to avoid, for the most part, the formation of martensite.
  • the sheet can be used in the bare state or coated.
  • the coating may be for example a coating based on zinc or aluminum.
  • the sheet is scoured after rolling according to a method known per se, so as to obtain a surface state suitable for promoting the implementation of the subsequent coating.
  • the sheet may be subjected to a slight cold deformation, usually less than 1% ("skin-pass").
  • the sheet is then coated with zinc or aluminum.
  • a zinc-based alloy for example by electrogalvanizing or continuous galvanizing dipping.
  • electrogalvanizing or continuous galvanizing dipping it has been demonstrated that the particular microstructure of the steel, mainly composed of higher bainite, is not very sensitive to the thermal conditions of the subsequent galvanizing treatment, so that the mechanical characteristics of the sheets coated continuously with dipping have a great stability even in case of untimely fluctuation of these conditions.
  • the sheet in the galvanized state therefore has mechanical characteristics very similar to those in the naked state.
  • the sheets are then cut by methods known in themselves from in order to obtain blanks suitable for shaping.
  • the microstructure of steel I1 illustrated in figure 2 comprises more than 80% higher bainite, the remainder being lower bainite and MA compounds.
  • the total content of martensite and residual austenite is less than 5%.
  • the size of the old austenitic grains and bainitic batten bundles is about 10 microns.
  • the limitation of the size of the batten packets and the strong disorientation between the adjacent packets results in a high resistance to the propagation of any microcracks. Due to the small difference in hardness between the various constituents of the microstructure, the steel is not very sensitive to damage during cutting by a mechanical process.
  • the steel sheet R1 having a carbon content too high and a vanadium content too low, has an elongation insufficient rupture.
  • the R2 steel has a carbon content and phosphorus too high, its winding temperature is also too low. As a result, its elongation at break is also significantly less than 10%.
  • LASER autogenous welded joints were made under the following conditions: power: 4.5kW, welding speed: 2.5m / min.
  • the lengthwise elongation of the LASER welds of I-1 steel is 17%, whereas it is 10 and 13% respectively for the R-1 and R-2 steels. These values lead, particularly for steel R1, to difficulties in stamping welded joints.
  • Steel sheets I1 according to the invention were also galvanized under the following conditions: after heating at 680 ° C., the sheets were cooled to 455 ° C. and then quenched continuously in a Zn bath at this temperature and finally cooled to room temperature.
  • a steel sheet I-1 manufactured using the parameters defined in Table 2 for this steel, was cut to obtain blanks. After heating at temperatures of 400 ° C. or 690 ° C., held at these temperatures for 7 or 10 minutes and hot-drawing at temperatures of 350 ° C. or 640 ° C. respectively, the parts obtained were cooled to a speed V 'R 25 ° C / sec 100 ° C / s to room temperature.
  • the speed V ' R denotes the average speed of cooling between the temperature T and the ambient temperature.
  • the mechanical strength Rm of the parts thus obtained is indicated in Table 4: Table 4: Resistance Rm obtained after hot stamping under various conditions Cooling 25 ° C / s 100 ° C / s cooling Heating: 400 ° C- 7 minutes 880 MPa 875MPa Heating: 400 ° C- 10 minutes 875 MPa 885MPa Heating: 690 ° C-10 minutes 810MPa 810MPa
  • the stamped parts according to the conditions of the invention thus have a low sensitivity to a variation of the manufacturing conditions: after heating at 400 ° C., the final resistance varies little (10 MPa) when the duration of the heating and / or the speed of the cooling are modified.
  • the resistance of the piece obtained is greater than 800 MPa.
  • the invention allows the manufacture of laminations or pieces of bainitic matrix steels without excessive addition of expensive elements. These combine high strength and high ductility.
  • the steel sheets according to the invention are used profitably for the manufacture of structural parts or reinforcement elements in the automotive field and general industry.

Abstract

The invention relates to a hot-rolled steel sheet having a resistance higher than 800 MPa and an elongation at break higher than 10%, and having the following composition in weight: 0.050% ≤ C ≤ 0.090%, 1%< Mn ≤ 2%, 0.015% ≤ Al ≤ 0.050 %, 0.1 %≤Si ≤ 0.3%, 0.10% ≤ Mo ≤ 0.40%, S ≤ 0.010%, P≤ 0.025%, 0.003% ≤ N ≤ 0.009%, 0.12% ≤ V ≤ 0.22%, Ti≤ 0.005%, Nb ≤ 0.020% and optionally Cr ≤ 0.45%, the balance consisting of iron and unavoidable impurities resulting from the production, wherein the microstructure of the sheet or the part includes, in surface fraction, at least 80% of upper bainite, the optional balance consisting of lower bainite, martensite and residual austenite, the sum of the martensite and residual austensite contents being lower than 5%.

Description

L'invention concerne la fabrication de tôles ou de pièces laminées à chaud d'aciers dits « multiphasés », présentant simultanément une très haute résistance et une capacité de déformation permettant de réaliser des opérations de mise en forme à froid ou à tiède. L'invention concerne plus précisément des aciers à microstructure majoritairement bainitique présentant une résistance supérieure à 800 MPa et un taux d'allongement à rupture supérieur à 10%.The invention relates to the manufacture of sheets or hot-rolled parts of so-called "multiphase" steels, simultaneously having a very high strength and a deformation capacity for performing cold or warm shaping operations. The invention more specifically relates to predominantly bainitic microstructure steels having a strength greater than 800 MPa and an elongation rate greater than 10% rupture.

L'industrie automobile constitue en particulier un domaine privilégié d'application de ces tôles d'aciers laminées à chaud.The automotive industry is in particular a preferred field of application for these hot-rolled steel sheets.

Il existe en particulier dans cette industrie un besoin continu d'allègement des véhicules et d'accroissement de la sécurité. C'est ainsi que l'on a proposé différentes familles d'aciers pour répondre aux besoins croissants :In particular, there is a continuing need in this industry for lighter vehicles and increased safety. Thus, different families of steels have been proposed to meet the growing needs:

On a tout d'abord proposé des aciers comportant des éléments de micro-alliage dont le durcissement est obtenu simultanément par précipitation et par affinement de la taille de grains. Le développement de ces aciers a été suivi par celui d'aciers « Dual-Phase » où la présence de martensite au sein d'une matrice ferritique permet d'obtenir une résistance supérieure à 450MPa associée à une bonne aptitude au formage à froid.Steels were first proposed comprising micro-alloy elements whose hardening is obtained simultaneously by precipitation and by grain size refinement. The development of these steels was followed by that of "Dual-Phase" steels where the presence of martensite within a ferritic matrix makes it possible to obtain a strength greater than 450 MPa combined with a good cold forming ability.

Pour obtenir des niveaux de résistance supérieurs, on a développé des aciers présentant un comportement « TRIP » (Transformation Induced Plasticity ») avec des combinaisons de propriétés (résistance-aptitude à la déformation) avantageuses : ces propriétés sont liées à la structure de ces aciers constituée d'une matrice ferritique comportant de la bainite et de l'austénite résiduelle. Sous l'effet d'une déformation, l'austénite résiduelle d'une pièce en acier TRIP se transforme progressivement en martensite, ce qui se traduit par une consolidation importante et retarde l'apparition d'une striction.To obtain higher resistance levels, steels with a "Transform Induced Plasticity" (TRIP) behavior have been developed with advantageous combinations of properties (resistance-ability to deformation): these properties are related to the structure of these steels. consisting of a ferritic matrix comprising bainite and residual austenite. Under the effect of a deformation, the residual austenite of a TRIP steel part gradually changes to martensite, which results in a significant consolidation and delays the appearance of a necking.

Pour atteindre simultanément un rapport limite d'élasticité/résistance élevé, une résistance encore plus importante, c'est à dire un niveau supérieur à 800 MPa, on a développé des aciers multiphasés à structure majoritairement bainitiques ; dans l'industrie automobile ou dans l'industrie générale, ces aciers sont utilisés avec profit pour la fabrication de pièces structurales. L'aptitude à la mise en forme de ces pièces requiert cependant simultanément un allongement suffisant. Cette exigence peut également être requise lorsque les pièces sont soudées puis mises en forme : dans ce cas, les joints soudés doivent présenter une aptitude suffisante à la mise en forme et ne pas conduire à des ruptures prématurées au niveau des assemblages.To achieve a high yield strength / resistance ratio at the same time, an even greater resistance, ie a level greater than 800 MPa, multiphase steels with predominantly bainitic structure have been developed; in the automotive industry or in the general industry, these steels are used profitably for the manufacture of structural parts. The ability to shape these parts, however, simultaneously requires sufficient elongation. This requirement may also be required when the parts are welded and then shaped: in this case, the welded joints must have a sufficient fitness for shaping and not lead to premature fractures at the joints.

JP 2003 321739 A décrit une tôle d'acier a haute caractéristiques de résistance et de ductilité et le procédé de fabrication de cette tôle. La composition de tôle comprend, les teneurs étant exprimées en poids: 0.03-0.1% C, 0.5-1.7% Mn, 0-0.1% Al, 0-2% Si, 0.1-0.5% Mo, 0-0.01% S, 0-0.06% P, 0-0.006% N, 0.01-0.15% V, 0.007-0.2% Ti, 0.005-0.02% Nb, reste Fe et d'impuretés inévitables résultant de l'élaboration. La microstructure est composée de 5-70% de bainite, le reste étant essentiellement de la ferrite. JP 2003 321739 A discloses a steel sheet with high characteristics of strength and ductility and the method of manufacturing this sheet. The sheet composition comprises, the contents being expressed by weight: 0.03-0.1% C, 0.5-1.7% Mn, 0-0.1% Al, 0-2% Si, 0.1-0.5% Mo, 0-0.01% S, 0 -0.06% P, 0-0.006% N, 0.01-0.15% V, 0.007-0.2% Ti, 0.005-0.02% Nb, remains Fe and unavoidable impurities resulting from the elaboration. The microstructure is composed of 5-70% bainite, the rest being essentially ferrite.

La présente invention a pour but de résoudre les problèmes évoqués ci-dessus. Elle vise à mettre à disposition une tôle d'acier laminé à chaud présentant une résistance mécanique supérieure à 800 MPa conjointement avec un taux d'allongement à rupture supérieur à 10%, aussi bien en sens long qu'en sens travers par rapport au laminage.The present invention aims to solve the problems mentioned above. It aims to provide a hot-rolled steel sheet having a mechanical strength greater than 800 MPa together with an elongation rate greater than 10% fracture, both in long direction and in cross-direction relative to the rolling .

L'invention vise également à mettre à disposition une tôle d'acier peu sensible à l'endommagement lors de la découpe par un procédé mécanique.The invention also aims at providing a steel sheet that is not very sensitive to damage during cutting by a mechanical method.

Elle vise également à disposer d'une tôle d'acier présentant une bonne aptitude à la mise en forme d'assemblages soudés fabriqués à partir de cet acier, en particulier d'assemblages obtenus par soudage LASER.It also aims to have a steel sheet having a good aptitude for forming welded assemblies made from this steel, in particular assemblies obtained by welding LASER.

L'invention vise également à disposer d'un procédé de fabrication d'une tôle d'acier à l'état non revêtu, électrozingué ou galvanisé, ou aluminié. Ceci nécessite donc que les caractéristiques mécaniques de cet acier soient peu sensibles aux cycles thermiques associés aux procédés de revêtement de zinc au trempé en continu.The invention also aims to provide a method of manufacturing a steel sheet in the uncoated, electrogalvanized or galvanized, or aluminized state. This therefore requires that the mechanical characteristics of this steel are insensitive to the thermal cycles associated with continuous dipping zinc coating processes.

L'invention vise également à disposer d'une tôle ou pièce d'acier laminé à chaud disponible même en faible épaisseur, c'est à dire par exemple entre 1 et 5mm. La dureté à chaud de l'acier ne doit donc pas être trop élevée pour faciliter le laminage.The invention also aims to have a sheet or piece of hot rolled steel available even in small thickness, that is to say for example between 1 and 5mm. The hot hardness of the steel must not be too high to facilitate rolling.

Dans ce but, l'invention a pour objet une tôle ou une pièce d'acier laminée à chaud de résistance supérieure à 800 MPa, d'allongement à rupture supérieur à 10%, dont la composition comprend, les teneurs étant exprimées en poids :

  • 0,050% ≤ C ≤ 0,090%, 1% ≤ Mn ≤ 2%, 0,015% ≤ Al ≤ 0,050 %, 0,1%≤Si ≤ 0,3%, 0,10% ≤ Mo ≤ 0,40%, S ≤ 0,010%, P≤ 0,025%, 0,003%≤N≤0,009%, 0, 12% ≤ V ≤ 0,22%, Ti≤ 0,005%, Nb≤ 0,020% et à titre optionnel, Cr≤ 0,45%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration, la microstructure de la tôle ou de la pièce d'acier comprenant, en fraction surfacique, au moins 80% de bainite supérieure, le complément éventuel étant constitué de bainite inférieure, de martensite et d'austénite résiduelle, la somme des teneurs en martensite et en austénite résiduelle étant inférieure à 5%.
For this purpose, the subject of the invention is a sheet or piece of hot-rolled steel with a resistance greater than 800 MPa, with an elongation at break greater than 10%, the composition of which comprises the contents being expressed by weight:
  • 0.050% ≤ C ≤ 0.090%, 1% ≤ Mn ≤ 2%, 0.015% ≤ Al ≤ 0.050%, 0.1% ≤Si ≤ 0.3%, 0.10% ≤ Mo ≤ 0.40%, S ≤ 0.010%, P ≤ 0.025%, 0.003% ≤N ≤ 0.009%, 0.12% ≤ V ≤ 0.22%, Ti ≤ 0.005 %, Nb 0,0 0.020% and optionally Cr 0,4 0.45%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation, the microstructure of the sheet or the steel piece comprising, in surface fraction, at least 80% of higher bainite, the optional supplement consisting of lower bainite, martensite and residual austenite, the sum of the martensite and residual austenite contents being less than 5%.

La composition de l'acier comprend préférentiellement, la teneur étant exprimée en poids : 0,050% ≤ C ≤ 0,070%The composition of the steel preferably comprises the content being expressed by weight: 0.050% ≤ C ≤ 0.070%

A titre préféré, la composition comprend, la teneur étant exprimée en poids : 0,070% <C ≤ 0,090%Preferably, the composition comprises, the content being expressed by weight: 0.070% <C ≤ 0.090%

Selon un mode préféré, la composition comprend : 1,4% ≤ Mn ≤ 1,8%.In a preferred embodiment, the composition comprises: 1.4% ≤ Mn ≤ 1.8%.

A titre préféré, la composition comprend : 0,020% ≤ Al ≤ 0,040 %.Preferably, the composition comprises: 0.020% ≤ Al ≤ 0.040%.

La composition de l'acier comprend préférentiellement : 0,12% ≤ V ≤ 0,16 %. Selon un mode préféré, la composition de l'acier comprend 0,18% ≤ Mo ≤ 0,30 %.The composition of the steel preferably comprises: 0.12% ≤ V ≤ 0.16%. In a preferred embodiment, the composition of the steel comprises 0.18% ≤ Mo ≤ 0.30%.

A titre préféré, la composition comprend : Nb ≤ 0,005 %By way of preference, the composition comprises: Nb ≤ 0.005%

Préférentiellement, la composition comprend : 0,20% ≤ Cr ≤ 0,45%Preferably, the composition comprises: 0.20% ≤ Cr ≤ 0.45%

Selon un mode particulier, la tôle ou la pièce est revêtue d'un revêtement à base de zinc ou à base d'aluminium.In a particular embodiment, the sheet or the part is coated with a coating based on zinc or aluminum-based.

L'invention a également pour objet une pièce d'acier avec une composition et une microstructure définie ci-dessus, caractérisée en ce qu'elle est obtenue par chauffage à une température T comprise entre 400 et 690°C puis un emboutissage à tiède dans un domaine de température compris entre 350°C et (T-20°C), puis un refroidissement ultérieur jusqu'à la température ambiante.The subject of the invention is also a piece of steel with a composition and a microstructure defined above, characterized in that it is obtained by heating at a temperature T of between 400 and 690 ° C. and then a warm stamping in a temperature range between 350 ° C and (T-20 ° C), then a subsequent cooling to room temperature.

L'invention a également pour objet un assemblage soudé par faisceau à haute densité d'énergie réalisé à partir d'une tôle ou pièce d'acier selon l'un des modes ci-dessus.The invention also relates to a beam welded assembly with high energy density made from a sheet or piece of steel in one of the modes above.

L'invention a également pour objet un procédé de fabrication d'une tôle ou d'une pièce d'acier laminée à chaud de résistance supérieure à 800 MPa, d'allongement à rupture supérieur à 10%, selon lequel on approvisionne un acier de composition ci-dessus, on coule un demi-produit qu'on porte à une température supérieure à 1150°C. On lamine à chaud le demi-produit jusqu'à une température TFL dans un domaine de température où la microstructure de l'acier est entièrement austénitique de façon à obtenir une tôle. On refroidit ensuite celle-ci à une vitesse de refroidissement VR comprise 75 et 200°C/s, puis on bobine la tôle à une température Tbob comprise entre 500 et 600°C. Selon un mode préféré, la température de fin de laminage TFL est comprise entre 870 et 930°C.The invention also relates to a method of manufacturing a sheet or piece of hot-rolled steel with a resistance greater than 800 MPa, elongation at break greater than 10%, according to which a steel of the above composition is supplied, a semi-product is cast which is heated to a temperature above 1150 ° C. The semi-finished product is hot rolled to a temperature T FL in a temperature range where the microstructure of the steel is entirely austenitic so as to obtain a sheet. This is then cooled to a cooling rate V R of 75 and 200 ° C./s, then the sheet is reeled at a temperature T bob of between 500 and 600 ° C. According to a preferred embodiment, the end of rolling temperature T FL is between 870 and 930 ° C.

A titre préférentiel, la vitesse de refroidissement VR est comprise entre 80 et 150°C/s.Preferably, the cooling rate V R is between 80 and 150 ° C / s.

Préférentiellement, la tôle est décapée, puis optionnellement skin-passée, puis revêtue de zinc ou d'alliage de zinc.Preferably, the sheet is pickled, then optionally skin-passed, and then coated with zinc or zinc alloy.

Selon un mode préféré, le revêtement est réalisé en continu au trempé.According to a preferred embodiment, the coating is carried out continuously by dipping.

L'invention a également pour objet un procédé de fabrication d'une pièce emboutie à tiède, selon lequel on approvisionne une tôle d'acier selon l'une des caractéristiques ci-dessus, ou fabriquée par un procédé selon l'une des caractéristiques ci-dessus, puis on découpe ladite tôle pour obtenir un flan. On chauffe partiellement ou totalement le flan à une température T comprise entre 400 et 690°C où l'on effectue un maintien d'une durée inférieure à 15 minutes de façon à obtenir un flan chauffé, puis on emboutit le flan chauffé à une température comprise entre 350 et T-20°C, pour obtenir une pièce que l'on refroidit la pièce jusqu'à la température ambiante avec une vitesse V'R The subject of the invention is also a process for manufacturing a hot-stamped part, according to which a steel sheet is supplied according to one of the above characteristics, or manufactured by a method according to one of the above-mentioned characteristics. above, then cutting said sheet to obtain a blank. The blank is heated partially or completely to a temperature T of between 400 and 690 ° C., where a holding time of less than 15 minutes is carried out so as to obtain a heated blank, and then the blank heated to a temperature is pressed. between 350 and T-20 ° C to obtain a piece that is cooled to room temperature with a speed V ' R

Selon un mode particulier, la vitesse V'R est comprise entre 25 et 100°C/s.According to a particular mode, the speed V ' R is between 25 and 100 ° C / s.

L'invention a également pour objet l'utilisation d'une tôle d'acier laminée à chaud selon l'un des modes ci-dessus, ou fabriquée par un procédé selon l'un des modes ci-dessus pour la fabrication de pièces de structure ou d'éléments de renfort, dans le domaine automobile.The invention also relates to the use of a hot-rolled steel sheet according to one of the above modes, or manufactured by a method according to one of the above modes for the manufacture of parts of structure or reinforcement elements, in the automotive field.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous, donnée à titre d'exemple et faite en référence aux figures annexées ci-jointes selon lesquelles :

  • La figure 1 illustre l'influence de la teneur en carbone sur l'allongement en sens long de soudures de raboutage réalisées par faisceau LASER
  • La figure 2 illustre la microstructure d'une tôle ou pièce d'acier selon l'invention
  • La figure 3 illustre la microstructure d'une pièce d'acier emboutie à tiède selon l'invention
Other features and advantages of the invention will become apparent from the description below, given by way of example and with reference to the appended accompanying figures in which:
  • The figure 1 illustrates the influence of carbon content on long-term elongation of LASER beam splicing welds
  • The figure 2 illustrates the microstructure of a sheet or piece of steel according to the invention
  • The figure 3 illustrates the microstructure of a piece of hot-stamped steel according to the invention

En ce qui concerne la composition chimique de l'acier, le carbone joue un rôle important sur la formation de la microstructure et sur les propriétés mécaniques.With regard to the chemical composition of steel, carbon plays an important role in the formation of the microstructure and in the mechanical properties.

Selon l'invention, la teneur en carbone est comprise entre 0,050 et 0,090% en poids : Au dessous de 0,050%, une résistance suffisante ne peut pas être obtenue. Au delà de 0,090%, la microstructure formée est constituée majoritairement de bainite inférieure, cette structure étant caractérisée par la présence de carbures précipités au sein des lattes de ferrite bainitique : la résistance mécanique ainsi obtenue est élevée mais l'allongement est alors notablement réduit.According to the invention, the carbon content is between 0.050 and 0.090% by weight: Below 0.050%, sufficient strength can not be obtained. Beyond 0.090%, the microstructure formed consists mainly of lower bainite, this structure being characterized by the presence of carbides precipitated within bainitic ferrite slats: the mechanical strength thus obtained is high but the elongation is then significantly reduced.

Selon un mode particulier de l'invention, la teneur en carbone est comprise entre 0,050 et 0,070%. La figure 1 illustre l'influence de la teneur en carbone sur l'allongement en sens long de soudures de raboutage par faisceau LASER : un allongement à rupture particulièrement élevé, de l'ordre de 17 à 23% est associé à une teneur en carbone allant de 0,050 à 0,070%. Ces valeurs d'allongement élevées permettent d'assurer que des tôles soudées par LASER pourront être embouties de façon satisfaisante, même en tenant compte d'éventuelles imperfections locales telles que des singularités géométriques de cordons de soudure entraînant des concentrations de contraintes, ou des microporosités au sein du métal fondu. Par rapport à des aciers à 0,12%C de l'art antérieur, il était attendu que la réduction du carbone améliore la soudabilité. Cependant, on a mis en évidence qu'un abaissement important de la teneur en carbone permet non seulement d'obtenir un allongement à rupture élevé, mais encore de maintenir simultanément la résistance mécanique à un niveau supérieur à 800MPa, ce qui n'était pas attendu pour des teneurs aussi basses que 0,050%C.According to a particular embodiment of the invention, the carbon content is between 0.050 and 0.070%. The figure 1 illustrates the influence of carbon content on the long-term elongation of LASER beam splicing welds: a particularly high elongation at break of 17-23% is associated with a carbon content of 0.050 at 0.070%. These high elongation values make it possible to ensure that LASER-welded sheets can be stamped satisfactorily, even taking into account any local imperfections such as geometrical singularities of weld seams resulting in stress concentrations, or microporosities. in the molten metal. Compared with 0.12% C steels of the prior art, carbon reduction was expected to improve weldability. However, it has been demonstrated that a significant lowering of the carbon content not only makes it possible to obtain a high breaking elongation, but also simultaneously maintains the mechanical strength at a level greater than 800 MPa, which was not expected for contents as low as 0.050% C.

Selon un autre mode préféré, la teneur en carbone est supérieure à 0,070% et inférieure ou égale à 0,090% : même si cette gamme ne conduit pas à une ductilité aussi élevée, l'allongement à rupture des soudures LASER est supérieure à 15% et reste comparable à celui de la tôle d'acier de base.According to another preferred embodiment, the carbon content is greater than 0.070% and less than or equal to 0.090%: even if this range does not lead to such a high ductility, the elongation at break of the LASER welds is greater than 15% and remains comparable to that of the base steel sheet.

En quantité comprise entre 1 et 2% en poids, le manganèse augmente la trempabilité et permet d'éviter la formation de ferrite au refroidissement après laminage. Le manganèse contribue également à désoxyder l'acier lors de l'élaboration en phase liquide. L'addition de manganèse participe également à un durcissement efficace en solution solide et à l'obtention d'une résistance accrue. Préférentiellement, le manganèse est compris entre 1,4 et 1,8% : on forme de la sorte une structure totalement bainitique sans risque d'apparition de structure en bandes néfaste.In an amount of between 1 and 2% by weight, manganese increases the quenchability and avoids the formation of ferrite cooling after rolling. Manganese also helps to deoxidize steel during liquid phase processing. The addition of manganese also contributes to effective solid solution hardening and increased strength. Preferentially, the manganese is between 1.4 and 1.8%: thus forming a completely bainitic structure without risk of appearance of harmful band structure.

Dans une gamme de teneurs comprises entre 0,015% et 0,050%, l'aluminium est un élément efficace pour la désoxydation de l'acier. Cette efficacité est obtenue de façon particulièrement économique et stable lorsque la teneur en aluminium est comprise entre 0,020 et 0,040%.In a range of contents between 0.015% and 0.050%, aluminum is an effective element for the deoxidation of steel. This efficiency is obtained in a particularly economical and stable manner when the aluminum content is between 0.020 and 0.040%.

En quantité supérieure ou égale à 0,1%, le silicium contribue à la désoxydation en phase liquide et au durcissement en solution solide. Une addition de silicium au delà de 0,3% provoque cependant la formation d'oxydes fortement adhérents et l'apparition éventuelle de défauts de surface, dus notamment à un manque de mouillabilité dans les opérations de galvanisation au trempé.In an amount greater than or equal to 0.1%, silicon contributes to liquid phase deoxidation and hardening in solid solution. An addition of silicon above 0.3%, however, causes the formation of strongly adherent oxides and the possible appearance of surface defects, due in particular to a lack of wettability in dip galvanizing operations.

En quantité supérieure ou égale à 0,10%, le molybdène retarde la transformation bainitique lors du refroidissement après laminage, contribue au durcissement par solution solide et affine la taille des lattes bainitiques. Selon l'invention, la teneur en molybdène est inférieure ou égale à 0,40% pour éviter la formation excessive de structures de trempe. Cette teneur limitée en molybdène permet également d'abaisser le coût de fabrication.In an amount greater than or equal to 0.10%, molybdenum retards bainitic transformation during cooling after rolling, contributes to hardening by solid solution and refines the size of bainitic slats. According to the invention, the molybdenum content is less than or equal to 0.40% to prevent the excessive formation of quenching structures. This limited molybdenum content also makes it possible to lower the manufacturing cost.

Selon un mode préféré, la teneur en molybdène est supérieure ou égale à 0,18% et inférieure ou égale à 0,30%. De la sorte, le niveau est idéalement ajusté pour éviter la formation de ferrite ou de perlite dans la tôle d'acier sur la table de refroidissement après laminage à chaud.In a preferred embodiment, the molybdenum content is greater than or equal to 0.18% and less than or equal to 0.30%. In this way, the level is ideally adjusted to avoid the formation of ferrite or perlite in the steel sheet on the cooling table after hot rolling.

En quantité supérieure à 0,010%, le soufre tend à précipiter en quantité excessive sous forme de sulfures de manganèse qui réduisent fortement l'aptitude à la mise en forme.In excess of 0.010%, sulfur tends to precipitate excessively in the form of manganese sulphides which greatly reduce the shaping ability.

Le phosphore est un élément connu pour ségréger aux joints de grains. Sa teneur doit être limitée à 0,025% de façon à maintenir une ductilité à chaud suffisante.Phosphorus is a known element to segregate at grain boundaries. Its content must be limited to 0.025% in order to maintain sufficient hot ductility.

A titre optionnel, la composition peut comporter du chrome en quantité inférieure ou égale à 0,45%. Grâce aux autres éléments de la composition et au procédé selon l'invention, sa présence n'est cependant pas absolument nécessaire, ce qui présente l'avantage d'éviter des additions coûteuses.As an option, the composition may comprise chromium in an amount of less than or equal to 0.45%. Thanks to the other elements of the composition and to the process according to the invention, its presence is however not absolutely necessary, which has the advantage of avoiding expensive additions.

Une addition de chrome entre 0,20 et 0,45% peut être effectuée en complément des autres éléments augmentant la trempabilité : au dessous de 0,20%, l'effet sur la trempabilité n'est pas assez marqué. Au delà de 0,45%, la revêtabilité peut être diminuée.An addition of chromium between 0.20 and 0.45% can be carried out in addition to the other elements increasing the quenchability: below 0.20%, the effect on the quenchability is not sufficiently marked. Above 0.45%, the coating can be reduced.

Selon l'invention, l'acier contient moins de 0,005%Ti et moins de 0,020%Nb Dans le cas contraire, ces éléments fixent une quantité trop importante d'azote sous forme de nitrures ou de carbonitrures. Il ne reste pas alors suffisamment d'azote disponible pour précipiter avec le vanadium. De plus, une précipitation excessive de niobium augmenterait la dureté à chaud et ne permettrait pas aisément la réalisation de tôles laminées à chaud de faible épaisseur.According to the invention, the steel contains less than 0.005% Ti and less than 0.020% Nb. In the opposite case, these elements fix too much nitrogen in the form of nitrides or carbonitrides. There is not enough nitrogen available to precipitate with vanadium. In addition, excessive precipitation of niobium would increase the hot hardness and would not easily allow the realization of thin-rolled hot-rolled sheets.

Selon un mode particulièrement économique, la teneur en niobium est inférieure à 0,005%In a particularly economical mode, the niobium content is less than 0.005%

Le Vanadium est un élément important selon l'invention : l'acier contient une teneur en vanadium comprise entre 0,12 et 0,22%. Par rapport à un acier sans vanadium, l'augmentation de la résistance grâce à une précipitation durcissante de carbonitrures peut aller jusqu'à 300MPa. Au dessous de 0,12%, on ne note pas d'effet significatif sur les caractéristiques mécaniques de traction. Au delà de 0,22% de vanadium, dans les conditions de fabrication selon l'invention, on note une saturation de l'effet sur les caractéristiques mécaniques. Une teneur inférieure à 0,22% permet donc d'obtenir des caractéristiques mécaniques élevées de façon très économique par rapport à des aciers qui comporteraient des teneurs plus élevées en vanadium.Vanadium is an important element according to the invention: the steel contains a vanadium content of between 0.12 and 0.22%. Compared to a vanadium-free steel, the increase in strength due to a hardening precipitation of carbonitrides can be up to 300 MPa. Below 0.12%, there is no significant effect on the mechanical tensile characteristics. Beyond 0.22% of vanadium, under the manufacturing conditions according to the invention, there is a saturation of the effect on the mechanical characteristics. A content of less than 0.22% thus makes it possible to obtain high mechanical characteristics in a very economical manner with respect to steels which contain higher levels of vanadium.

Pour une teneur en vanadium comprise entre 0,13 et 0,15%, on obtient un affinement de la microstructure et un durcissement structural tout particulièrement efficaces.For a vanadium content between 0.13 and 0.15%, microstructure refinement and structural hardening are particularly effective.

Selon l'invention, la teneur en azote est supérieure ou égale à 0,003% pour obtenir une précipitation de carbonitrures de vanadium en quantité suffisante. Cependant, la teneur en azote est inférieure ou égale à 0,009% pour éviter la présence d'azote en solution solide ou la formation de carbonitrures de taille plus importante, qui réduiraient la ductilité.According to the invention, the nitrogen content is greater than or equal to 0.003% in order to obtain a precipitation of vanadium carbonitrides in a sufficient quantity. However, the nitrogen content is less than or equal to 0.009% to avoid the presence of solid solution nitrogen or the formation of larger carbonitrides, which would reduce ductility.

Le reste de la composition est constitué d'impuretés inévitables résultant de l'élaboration, telles que par exemple Sb, Sn, As.The rest of the composition consists of unavoidable impurities resulting from the preparation, such as for example Sb, Sn, As.

La microstructure de la tôle ou pièce d'acier selon l'invention est constituée :

  • d'au moins 80% de bainite supérieure, cette structure étant constituée de lattes de ferrite bainitique et de carbures situés entre ces lattes, la précipitation intervenant lors de la transformation bainitique. Cette matrice présente des propriétés de résistance élevées combinées à une ductilité importante. Très préférentiellement, la microstructure est constituée d'au moins 90% de bainite supérieure : la microstructure est alors très homogène et permet d'éviter une localisation des déformations.
  • en complément éventuel, la structure contient :
  • De la bainite inférieure, dont la précipitation de carbures intervient au sein des lattes ferritiques ; par rapport à la bainite supérieure, la bainite inférieure présente une résistance un peu plus importante mais une ductilité moins grande.
  • Eventuellement de la martensite. Celle-ci est fréquemment associée à de l'austénite résiduelle sous forme de composés « M-A » (martensite-austénite résiduelle) La teneur totale en martensite et en austénite résiduelle doit être limitée à 5% pour ne pas diminuer la ductilité.
The microstructure of the sheet or piece of steel according to the invention consists of:
  • at least 80% higher bainite, this structure consisting of bainitic ferrite slats and carbides located between these laths, the precipitation occurring during the bainitic transformation. This matrix has high strength properties combined with high ductility. Very preferably, the microstructure consists of at least 90% higher bainite: the microstructure is then very homogeneous and avoids a localization of the deformations.
  • as a possible complement, the structure contains:
  • Lower bainite, the precipitation of carbides intervenes within the ferritic slats; compared with the upper bainite, the lower bainite has a somewhat greater resistance but a smaller ductility.
  • Possibly martensite. This is frequently associated with residual austenite in the form of "MA" compounds (residual martensite-austenite). The total content of martensite and residual austenite must be limited to 5% in order not to reduce the ductility.

Les pourcentages microstructuraux ci-dessus correspondent aux fractions surfaciques que l'on peut mesurer sur des coupes polies et attaquées.The microstructural percentages above are surface fractions that can be measured on polished and etched sections.

La microstructure ne comporte donc pas de ferrite primaire ou proeutectoïde : elle présente alors une grande homogénéité puisque l'écart de propriétés mécaniques entre la matrice (bainite supérieure) et les autres constituants éventuels (bainite inférieure et martensite) est faible. Lors d'une sollicitation mécanique, les déformations se répartissent de façon homogène. Une accumulation de dislocations n'intervient pas au niveau des interfaces entre les constituants et un endommagement prématuré est évité, contrairement à ce qui peut être noté dans des structures comportant une quantité significative de ferrite primaire, phase dont la limite d'écoulement est très faible, ou de martensite à très haut niveau de résistance. De la sorte, la tôle d'acier selon l'invention présente une aptitude particulière à certains modes de déformation exigeants tels que l'expansion de trous, la sollicitation mécanique de bords découpés, le pliage.The microstructure therefore does not include primary or proeutectoid ferrite: it then has a great homogeneity since the difference in mechanical properties between the matrix (upper bainite) and the other possible constituents (lower bainite and martensite) is small. During a mechanical stress, the deformations are distributed homogeneously. Accumulation of dislocations does not occur at the interfaces between the constituents and premature damage is avoided, as opposed to this can be noted in structures with a significant amount of primary ferrite, phase whose flow limit is very low, or martensite with a very high level of resistance. In this way, the steel sheet according to the invention has a particular aptitude for certain demanding deformation modes such as the expansion of holes, the mechanical stressing of cut edges, folding.

La mise en oeuvre du procédé de fabrication d'une tôle ou pièce d'acier laminée à chaud selon l'invention est la suivante :

  • On approvisionne un acier de composition selon l'invention, puis on procède à la coulée d'un demi-produit à partir de cet acier. Cette coulée peut être réalisée en lingots, ou en continu sous forme de brames d'épaisseur de l'ordre de 200mm. On peut également effectuer la coulée sous forme de brames minces de quelques dizaines de millimètres d'épaisseur, ou de bandes minces, entre cylindres d'acier contra-rotatifs.
The method of manufacturing a sheet or piece of hot-rolled steel according to the invention is implemented as follows:
  • A steel composition is supplied according to the invention, and then a semi-finished product is cast from this steel. This casting may be carried out in ingots, or continuously in the form of slabs of thickness of the order of 200 mm. The casting can also be carried out in the form of thin slabs of a few tens of millimeters thick, or thin strips, between contra-rotating steel rolls.

Les demi-produits coulés sont tout d'abord portés à une température supérieure à 1150°C pour atteindre en tout point une température favorable aux déformations élevées que va subir l'acier lors du laminage.The cast semifinished products are first brought to a temperature higher than 1150 ° C. to reach at any point a temperature favorable to the high deformations which the steel will undergo during rolling.

Naturellement, dans le cas d'une coulée directe de brames minces ou de bandes minces entre cylindres contra-rotatifs, l'étape de laminage à chaud de ces demi-produits débutant à plus de 1150°C peut se faire directement après coulée si bien qu'une étape de réchauffage intermédiaire n'est pas nécessaire dans ce cas.Naturally, in the case of a direct casting of thin slabs or thin strips between contra-rotating rolls, the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting. that an intermediate heating step is not necessary in this case.

On lamine à chaud le demi-produit dans un domaine de température où la structure de l'acier est totalement austénitique jusqu'à une température de fin de laminage TFL. La température TFL est comprise préférentiellement entre 870 et 930°C pour obtenir une taille de grain adaptée à la transformation bainitique qui va suivre.The semi-finished product is hot-rolled in a temperature range where the structure of the steel is totally austenitic up to an end-of-rolling temperature T FL . The temperature T FL is preferably between 870 and 930 ° C to obtain a grain size adapted to the bainitic transformation that follows.

On effectue ensuite un refroidissement à une vitesse VR comprise entre 75 et 200°C/s : une vitesse minimale de 75°C/s permet d'éviter la formation de ferrite proeutectoïde et de perlite, alors qu'une vitesse VR inférieure ou égale à 200°C/s permet d'éviter la formation excessive de martensite.Cooling is then carried out at a speed V R of between 75 and 200 ° C./s: a minimum speed of 75 ° C./s makes it possible to avoid the formation of proeutectoid ferrite and of perlite, whereas a lower speed V R or 200 ° C / s avoids excessive formation of martensite.

D'une façon optimale, la vitesse VR est comprise entre 80 et 150°C/s : Une vitesse minimale de 80°C/s conduit à la formation de bainite supérieure avec une taille de lattes très réduite, associée à d'excellentes propriétés mécaniques. Une vitesse inférieure à 150°C/s permet d'éviter très majoritairement la formation de martensite.Optimally, the speed V R is between 80 and 150 ° C / s: A minimum speed of 80 ° C / s leads to the formation of upper bainite with a very small slat size, combined with excellent mechanical properties. A speed of less than 150 ° C / s makes it possible to avoid, for the most part, the formation of martensite.

La gamme de vitesse de refroidissement selon l'invention peut être obtenue au moyen d'une pulvérisation d'eau ou d'un mélange air-eau, en fonction de l'épaisseur de la tôle, à la sortie du laminoir finisseur.

  • Après cette phase de refroidissement rapide, la tôle laminée à chaud est bobinée à une température Tbob comprise entre 500 et 600°C. La transformation bainitique se produit pendant cette phase de bobinage ; de la sorte, on évite la formation de ferrite proeutectoïde ou de perlite causée par une température de bobinage trop élevée et on évite également la formation de constituants de trempe qui serait causée par une température de bobinage trop basse. De plus, la précipitation de carbonitrures intervenant dans cette gamme de température de bobinage permet d'obtenir un durcissement supplémentaire.
The cooling rate range according to the invention can be obtained by means of a water spray or an air-water mixture, depending on the thickness of the sheet, at the output of the finishing mill.
  • After this rapid cooling phase, the hot-rolled sheet is wound at a T bob temperature of between 500 and 600 ° C. The bainitic transformation occurs during this winding phase; in this way, the formation of proeutectoid ferrite or perlite caused by a too high winding temperature is avoided and the formation of quenching constituents which is caused by a too low winding temperature is also avoided. In addition, the precipitation of carbonitrides occurring in this winding temperature range makes it possible to obtain additional hardening.

La tôle peut être utilisée à l'état nu ou revêtu. Dans ce dernier cas, le revêtement peut être par exemple un revêtement à base de zinc ou d'aluminium. Selon l'utilisation envisagée, on décape la tôle après laminage selon un procédé connu en soi, de façon à obtenir un état de surface propre à favoriser la mise oeuvre du revêtement ultérieur.The sheet can be used in the bare state or coated. In the latter case, the coating may be for example a coating based on zinc or aluminum. Depending on the use envisaged, the sheet is scoured after rolling according to a method known per se, so as to obtain a surface state suitable for promoting the implementation of the subsequent coating.

Afin d'effacer le palier observé lors d'un essai mécanique de traction, la tôle peut être éventuellement soumise à une légère déformation à froid, usuellement inférieure à 1% (« skin-pass ») La tôle est ensuite revêtue de zinc ou d'un alliage à base de zinc, par exemple par électrozingage ou par galvanisation en continu au trempé. Dans ce dernier cas, on a mis en évidence que la microstructure particulière de l'acier, composée majoritairement de bainite supérieure, est peu sensible aux conditions thermiques du traitement ultérieur de galvanisation, si bien que les caractéristiques mécaniques des tôles revêtues en continu au trempé présentent une grande stabilité même en cas de fluctuation intempestive de ces conditions. La tôle à l'état galvanisé présente donc des caractéristiques mécaniques très similaires à celles à l'état nu.In order to erase the bearing observed during a mechanical tensile test, the sheet may be subjected to a slight cold deformation, usually less than 1% ("skin-pass"). The sheet is then coated with zinc or aluminum. a zinc-based alloy, for example by electrogalvanizing or continuous galvanizing dipping. In the latter case, it has been demonstrated that the particular microstructure of the steel, mainly composed of higher bainite, is not very sensitive to the thermal conditions of the subsequent galvanizing treatment, so that the mechanical characteristics of the sheets coated continuously with dipping have a great stability even in case of untimely fluctuation of these conditions. The sheet in the galvanized state therefore has mechanical characteristics very similar to those in the naked state.

On découpe ensuite les tôles par des procédés connus en eux-mêmes de façon à obtenir des flans aptes à la mise en forme.The sheets are then cut by methods known in themselves from in order to obtain blanks suitable for shaping.

Les inventeurs ont également mis en évidence qu'il était possible de tirer parti de la microstructure selon l'invention pour réaliser des pièces embouties de façon particulièrement avantageuse selon le procédé suivant:

  • On chauffe tout d'abord les flans définis ci-dessus à une température T comprise entre 400 et 690°C. La durée de maintien à cette température peut aller jusqu'à 15 minutes sans qu'il y ait de risque que la résistance Rm de la pièce finale ne diminue au dessous de 800MPa. La température de chauffage doit être supérieure à 400°C pour diminuer suffisamment la limite d'écoulement de l'acier et permettre l'emboutissage qui va suivre avec des efforts peu importants, et faire en sorte que le retour élastique de la pièce emboutie soit également minime ce qui permet la fabrication de pièce avec une bonne précision géométrique. Cette température est limitée à 690°C d'une part pour éviter une transformation partielle au chauffage en austénite, qui conduirait à la formation de constituants de trempe au refroidissement, d'autre part pour éviter un adoucissement de la matrice qui conduirait à une résistance inférieure à 800MPa sur la pièce emboutie.
  • On effectue ensuite un emboutissage de ces flans chauffés dans une gamme de température allant de 350°C à (T-20°C) pour former une pièce que l'on refroidit jusqu'à température ambiante. On réalise de la sorte un emboutissage « à tiède » avec les effets suivants :
  • On diminue la contrainte d'écoulement de l'acier. Ceci permet d'utiliser des presses d'emboutissage moins puissantes et/ou de fabriquer des pièces plus difficiles à réaliser que par emboutissage à froid.
  • La gamme de température de l'emboutissage à tiède tient compte de la légère diminution de température lorsque le flan est extrait du four et transféré à la presse d'emboutissage : pour une température de chauffage de T°C, l'emboutissage peut débuter à une température de (T-20°C). La température d'emboutissage doit cependant être supérieure à 350°C afin de limiter le retour élastique et le niveau de contraintes résiduelles sur la pièce finale. Par rapport à un emboutissage à froid, cette diminution du retour élastique permet la fabrication de pièces avec une meilleure tolérance géométrique finale.
  • De façon surprenante, on a découvert que la microstructure particulière des aciers selon l'invention présente une grande stabilité de propriétés mécaniques (résistance, allongement) lors de l'emboutissage à tiède : en effet, une variation de la température d'emboutissage ou de vitesse de refroidissement après emboutissage, ne conduisent pas à une modification importante de la microstructure et des précipités telles que les carbonitrures.
  • Dans la limite des conditions de l'invention, une modification inopinée ou une fluctuation des paramètres de chauffage (température ou temps de maintien) ou de refroidissement (contact plus ou moins parfait de la pièce avec l'outillage) ne conduisent pas alors à un rejet des pièces ainsi produites.
  • Lors du chauffage et de l'emboutissage à tiède, une modification des composés M-A éventuellement présents en faible quantité initiale ne se traduit pas par une dégradation des propriétés mécaniques. On ne note pas par exemple d'influence négative lié à une déstabilisation de l'austénite résiduelle.
  • La microstructure après emboutissage à tiède est très proche de la microstructure avant emboutissage. De la sorte, si on chauffe et on emboutit à tiède non pas la totalité d'un flan, mais seulement une partie (la partie à emboutir ayant été chauffée localement par un moyen approprié, par exemple par induction) la microstructure et les propriétés de la pièce finale seront bien homogènes dans ses différentes parties.
The inventors have also demonstrated that it was possible to take advantage of the microstructure according to the invention to produce parts stamped particularly advantageously according to the following method:
  • The blanks defined above are first heated to a temperature T of between 400 and 690 ° C. The holding time at this temperature can be up to 15 minutes without there being any risk that the resistance Rm of the final part decreases below 800 MPa. The heating temperature must be greater than 400 ° C to sufficiently decrease the flow limit of the steel and allow the stamping to follow with little effort, and ensure that the elastic return of the stamped part is also minimal which allows the manufacture of part with a good geometric precision. This temperature is limited to 690 ° C on the one hand to avoid a partial transformation to austenite heating, which would lead to the formation of cooling quenching constituents, on the other hand to avoid a softening of the matrix that would lead to a resistance less than 800MPa on the stamped part.
  • These heated blanks are then stamped in a temperature range of 350 ° C to (-20 ° C) to form a part which is cooled to room temperature. In this way, a "warm" stamping is carried out with the following effects:
  • The flow stress of the steel is reduced. This makes it possible to use less powerful stamping presses and / or to make parts that are more difficult to produce than by cold stamping.
  • The temperature range of warm stamping takes into account the slight decrease in temperature when the blank is removed from the oven and transferred to the stamping press: for a heating temperature of T ° C, stamping can begin at a temperature of (T-20 ° C). The drawing temperature must however be greater than 350 ° C in order to limit the springback and the level of residual stresses on the final part. Compared to a cold stamping, this reduction of the springback allows the manufacture of parts with a better final geometric tolerance.
  • Surprisingly, it has been found that the particular microstructure of the steels according to the invention has a high stability of mechanical properties (strength, elongation) during hot stamping: indeed, a variation of the stamping temperature or the cooling rate after stamping, do not lead to a significant modification of the microstructure and precipitates such as carbonitrides.
  • Within the limits of the conditions of the invention, an unexpected modification or a fluctuation of the heating parameters (temperature or hold time) or cooling (more or less perfect contact of the workpiece with the tooling) do not then lead to a rejection of the parts thus produced.
  • During heating and hot stamping, a modification of the MA compounds possibly present in a small initial quantity does not result in a degradation of the mechanical properties. For example, there is no negative influence related to a destabilization of the residual austenite.
  • The microstructure after warm stamping is very close to the microstructure before stamping. In this way, if one warms and hot stamps not all of a blank, but only a part (the part to be stamped having been locally heated by a suitable means, for example by induction) the microstructure and the properties of the final piece will be homogeneous in its different parts.

Exemple 1:Example 1

On a élaboré des aciers dont la composition figure au tableau ci-dessous, exprimée en pourcentage pondéral. Outre l'acier I-1 ayant servi à la fabrication de tôles selon l'invention, on a indiqué à titre de comparaison la composition d'aciers R-1 et R-2 ayant servi à la fabrication de tôles de référence. Tableau 1 Compositions d'aciers (% poids). Acier C (%) Mn (%) Si (%) Al(%) S(%) P(%) Mo (%) Cr(%) N(%) V(%) Nb (%) I-1 0,070 1,604 0,218 0,028 0,002 0,014 0,313 0,400 0,006 0,150 - I2 0,072 1,592 0,204 0,031 0,003 0,024 0,200 0,414 0,006 0,211 0,017 R1 0,125 1,670 0,205 0,030 0,002 0,025 0,307 0,414 0,004 0,105 - R2 0,102 1,680 0,204 0,023 0,002 0,028 0,315 0,408 0,007 0,205 - I= Selon l'invention. R= référence
Valeurs soulignées : Non conforme à l'invention.
Steels have been developed, the composition of which is given in the table below, expressed in percentage by weight. In addition to the steel I-1 used for the production of sheets according to the invention, the composition of R-1 and R-2 steels used for the manufacture of reference sheets has been indicated for comparison. Table 1 Compositions of steel (% by weight). Steel VS (%) Mn (%) Yes (%) Al (%) S (%) P (%) Mo (%) Cr (%) NOT(%) V (%) Nb (%) I-1 0,070 1,604 0.218 0,028 0,002 0.014 0.313 0,400 0.006 0,150 - I2 0,072 1,592 0,204 0.031 0,003 0,024 0,200 0.414 0.006 0.211 0,017 R1 0,125 1,670 0,205 0,030 0,002 0,025 0.307 0.414 0,004 0.105 - R2 0,102 1,680 0,204 0,023 0,002 0,028 0,315 0,408 0,007 0,205 - I = according to the invention. R = reference
Underlined values: Not in accordance with the invention.

Des demi-produits correspondant aux compositions ci-dessus ont été réchauffés à 1220°C et laminés à chaud jusqu'à une épaisseur de 2,3 mm dans un domaine où la structure est entièrement austénitique. Les conditions de fabrication de ces aciers (température de fin de laminage TFL, vitesse de refroidissement VR, température de bobinage Tbob) sont indiquées au tableau 2 Tableau 2 Conditions de fabrication. Acier TFL(°C) VR(°C/s) Tbob(°C) I1 910 80 520 I2 875 80 600 R1 880 80 520 R2 885 100 450 Valeurs soulignées : non conforme à l'invention Semi-finished products corresponding to the above compositions were reheated to 1220 ° C and hot rolled to a thickness of 2.3 mm in a field where the structure is fully austenitic. The manufacturing conditions of these steels (end of rolling temperature T FL , cooling rate V R , winding temperature T bob ) are indicated in table 2 Table 2 Manufacturing conditions. Steel T FL (° C) V R (° C / s) T bob (° C) I1 910 80 520 I2 875 80 600 R1 880 80 520 R2 885 100 450 Underlined values: not in accordance with the invention

Les propriétés mécaniques de traction obtenues (limite d'élasticité Re, résistance Rm, allongement à rupture A) ont été portées au tableau 3 ci-dessous. Tableau 3 : Caractéristiques mécaniques (sens long par rapport au laminage) Acier Re(MPa) Rm (MPa) Allongement à rupture A (%) I1 820 880 11 I2 767 831 16 R1 740 835 8 R2 870 927 7,5 Valeurs soulignées : non conforme à l'invention The tensile mechanical properties obtained (elastic limit Re, resistance Rm, elongation at break A) were given in Table 3 below. Table 3: Mechanical characteristics (long direction compared to rolling) Steel Re (MPa) Rm (MPa) Elongation at break A (%) I1 820 880 11 I2 767 831 16 R1 740 835 8 R2 870 927 7.5 Underlined values: not in accordance with the invention

Les valeurs élevées des caractéristiques mécaniques sont obtenues aussi bien en sens long qu'en sens travers par rapport au laminage pour les aciers selon l'invention.The high values of the mechanical characteristics are obtained both in the long direction and in the transverse direction with respect to rolling for the steels according to the invention.

La microstructure de l'acier I1 illustrée à la figure 2 comprend plus de 80% de bainite supérieure, le reste étant constitué de bainite inférieure et de composés M-A. La teneur totale en martensite et en austénite résiduelle est inférieure à 5%. La taille des anciens grains austénitiques et des paquets de lattes bainitiques est d'environ 10 micromètres. La limitation de la taille des paquets de lattes et la forte désorientation entre les paquets adjacents a pour conséquence une grande résistance à la propagation d'éventuelles microfissures. Grâce à la faible différence de dureté entre les différents constituants de la microstructure, l'acier est peu sensible à l'endommagement lors de la découpe par un procédé mécanique.The microstructure of steel I1 illustrated in figure 2 comprises more than 80% higher bainite, the remainder being lower bainite and MA compounds. The total content of martensite and residual austenite is less than 5%. The size of the old austenitic grains and bainitic batten bundles is about 10 microns. The limitation of the size of the batten packets and the strong disorientation between the adjacent packets results in a high resistance to the propagation of any microcracks. Due to the small difference in hardness between the various constituents of the microstructure, the steel is not very sensitive to damage during cutting by a mechanical process.

La tôle d'acier R1, présentant une teneur en carbone trop élevée et une teneur en vanadium trop faible, a un allongement à rupture insuffisant. L'acier R2 présente une teneur en carbone et en phosphore trop élevée, sa température de bobinage est également trop faible. En conséquence, son allongement à rupture est également nettement inférieur à 10%.The steel sheet R1, having a carbon content too high and a vanadium content too low, has an elongation insufficient rupture. The R2 steel has a carbon content and phosphorus too high, its winding temperature is also too low. As a result, its elongation at break is also significantly less than 10%.

Des joints soudés autogènes LASER ont été réalisés dans les conditions suivantes : puissance : 4,5kW, vitesse de soudage : 2,5m/mn. L'allongement en sens long des soudures LASER de l'acier I-1 est de 17%, alors qu'il est de 10 et 13% respectivement pour les aciers R-1 et R-2. Ces valeurs conduisent, particulièrement pour l'acier R1, à des difficultés lors d'emboutissage de joints soudés.LASER autogenous welded joints were made under the following conditions: power: 4.5kW, welding speed: 2.5m / min. The lengthwise elongation of the LASER welds of I-1 steel is 17%, whereas it is 10 and 13% respectively for the R-1 and R-2 steels. These values lead, particularly for steel R1, to difficulties in stamping welded joints.

Des tôles d'acier I1 selon l'invention ont été également galvanisées dans les conditions suivantes : après chauffage à 680°C, les tôles ont été refroidies à 455°C puis revêtues au trempé en continu dans un bain de Zn à cette température et enfin refroidies à température ambiante. Les caractéristiques mécaniques des tôles galvanisées sont les suivantes : Re=824MPa, Rm=879MPa, A=12%. Ces propriétés sont pratiquement identiques à celles de la tôle non revêtue, ce qui indique que la microstructure des aciers selon l'invention est très stable vis-à-vis des cycles thermiques de galvanisation.Steel sheets I1 according to the invention were also galvanized under the following conditions: after heating at 680 ° C., the sheets were cooled to 455 ° C. and then quenched continuously in a Zn bath at this temperature and finally cooled to room temperature. The mechanical characteristics of the galvanized sheets are as follows: Re = 824 MPa, Rm = 879 MPa, A = 12%. These properties are virtually identical to those of the uncoated sheet, which indicates that the microstructure of the steels according to the invention is very stable vis-à-vis the thermal cycles of galvanization.

Exemple 2 :Example 2

Une tôle d'acier I-1, fabriquée au moyen des paramètres définis au tableau 2 pour cet acier, a été découpée de façon à obtenir des flans. Après chauffage à des températures T de 400 ou de 690°C, maintien à ces températures pendant 7 ou 10 minutes et emboutissage à tiède à des températures respectives de 350°C ou 640°C, les pièces obtenues ont été refroidies à une vitesse V'R de 25°C/s ou de 100°C/s jusqu'à la température ambiante. La vitesse V'R désigne la vitesse moyenne de refroidissement entre la température T et la température ambiante. La résistance mécanique Rm des pièces ainsi obtenues est indiquée au tableau 4 : Tableau 4 : Résistance Rm obtenue après emboutissage à tiède dans diverses conditions Refroidissement 25°C/s Refroidissement 100°C/s Chauffage : 400°C- 7 minutes 880 MPa 875MPa Chauffage : 400°C- 10 minutes 875 MPa 885MPa Chauffage : 690°C-10 minutes 810MPa 810MPa A steel sheet I-1, manufactured using the parameters defined in Table 2 for this steel, was cut to obtain blanks. After heating at temperatures of 400 ° C. or 690 ° C., held at these temperatures for 7 or 10 minutes and hot-drawing at temperatures of 350 ° C. or 640 ° C. respectively, the parts obtained were cooled to a speed V 'R 25 ° C / sec 100 ° C / s to room temperature. The speed V ' R denotes the average speed of cooling between the temperature T and the ambient temperature. The mechanical strength Rm of the parts thus obtained is indicated in Table 4: Table 4: Resistance Rm obtained after hot stamping under various conditions Cooling 25 ° C / s 100 ° C / s cooling Heating: 400 ° C- 7 minutes 880 MPa 875MPa Heating: 400 ° C- 10 minutes 875 MPa 885MPa Heating: 690 ° C-10 minutes 810MPa 810MPa

Les pièces embouties selon les conditions de l'invention présentent donc une faible sensibilité à une variation des conditions de fabrication : après chauffage à 400°C, la résistance finale varie peu (10 MPa) lorsque la durée du chauffage et/ou la vitesse de refroidissement sont modifiées.The stamped parts according to the conditions of the invention thus have a low sensitivity to a variation of the manufacturing conditions: after heating at 400 ° C., the final resistance varies little (10 MPa) when the duration of the heating and / or the speed of the cooling are modified.

Même pour un chauffage à 690°C, la résistance de la pièce obtenue est supérieure à 800MPa.Even for heating at 690 ° C, the resistance of the piece obtained is greater than 800 MPa.

Par rapport à la microstructure initiale, on note une faible précipitation supplémentaire de carbures. La structure reste pratiquement identique à celle de la tôle non emboutie à tiède, comme l'illustre la figure 3 relative à une pièce réchauffée à 400°C pendant 7 minutes puis emboutie à 380°C.Compared to the initial microstructure, there is a slight additional precipitation of carbides. The structure remains practically identical to that of the non-hot stamped sheet metal, as illustrated by figure 3 relating to a room heated at 400 ° C for 7 minutes and then swirled at 380 ° C.

Ainsi, l'invention permet la fabrication de tôles ou de pièces d'aciers à matrice bainitique sans addition excessive d'éléments coûteux. Celles-ci allient une haute résistance et une ductilité élevée. Les tôles d'aciers selon l'invention sont utilisées avec profit pour la fabrication de pièces de structure ou d'éléments de renfort dans le domaine automobile et de l'industrie générale.Thus, the invention allows the manufacture of laminations or pieces of bainitic matrix steels without excessive addition of expensive elements. These combine high strength and high ductility. The steel sheets according to the invention are used profitably for the manufacture of structural parts or reinforcement elements in the automotive field and general industry.

Claims (18)

  1. Hot-rolled steel sheet or part having a tensile strength greater than 800 MPa and an elongation at break greater than 10%, the composition of which comprises, the contents being expressed by weight:
    0.050% ≤ C ≤ 0.090%
    1% ≤ Mn ≤ 2%
    0.015% ≤ Al ≤ 0.050%
    0.1% ≤ Si ≤ 0.3%
    0.10% ≤ Mo ≤ 0.40%
    S ≤ 0.010%
    P ≤ 0.025%
    0.003% ≤ N ≤ 0.009%
    0.12% ≤ V ≤ 0.22%
    Ti ≤ 0.005%
    Nb ≤ 0.020%
    and, optionally,
    Cr ≤ 0.45%
    the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the microstructure of said sheet or said part comprising, as a surface fraction, at least 80% upper bainite, the possible complement consisting of lower bainite, martensite and residual austenite, the sum of the martensite and residual austenite contents being less than 5%.
  2. Steel sheet or part according to Claim 1, characterized in that the composition of said steel comprises, the content being expressed by weight:
    0.050% ≤ C ≤ 0.070%.
  3. Steel sheet or part according to Claim 1, characterized in that the composition of said steel comprises, the content being expressed by weight:
    0.070% < C ≤ 0.090%.
  4. Steel sheet or part according to any one of Claims 1 to 3, characterized in that the composition of said steel comprises, the content being expressed by weight:
    1.4% ≤ Mn ≤ 1.8%.
  5. Steel sheet or part according to any one of Claims 1 to 4, characterized in that the composition of said steel comprises, the content being expressed by weight:
    0.020% ≤ Al ≤ 0.040%.
  6. Steel sheet or part according to any one of Claims 1 to 5, characterized in that the composition of said steel comprises, the content being expressed by weight:
    0.12% ≤ V ≤ 0.16%.
  7. Steel sheet or part according to any one of Claims 1 to 6, characterized in that the composition of said steel comprises, the content being expressed by weight:
    0.18% ≤ Mo ≤ 0.30%.
  8. Steel sheet or part according to any one of Claims 1 to 7, characterized in that the composition of said steel comprises, the content being expressed by weight:
    Nb ≤ 0.005%.
  9. Steel sheet or part according to any one of Claims 1 to 8, characterized in that the composition of said steel comprises, the content being expressed by weight:
    0.20% ≤ Cr ≤ 0.45%.
  10. Steel sheet or part according to any one of Claims 1 to 9, characterized in that said sheet or said part is coated with a zinc-based or aluminium-based coating.
  11. Process for manufacturing a hot-rolled steel sheet having a tensile strength greater than 800 MPa and an elongation at break greater than 10%, in which:
    - a steel with the composition according to any one of Claims 1 to 9 is provided;
    - a semi-finished product is cast from this steel;
    - said semi-finished product is heated to a temperature above 1150°C;
    - said semi-finished product is hot-rolled to a temperature TER in a temperature range in which the microstructure of the steel is entirely austenitic so as to obtain a sheet;
    - said sheet is cooled in such a way that the cooling rate Vc is between 75 and 200°C/s; and then
    - said sheet is coiled at a temperature Tcoil of between 500 and 600°C.
  12. Process for manufacturing a hot-rolled steel sheet according to Claim 11, characterized in that the end-of-rolling temperature TER is between 870 and 930°C.
  13. Process for manufacturing a hot-rolled steel sheet according to Claim 11 or 12, characterized in that the cooling rate Vc is between 80 and 150°C/s.
  14. Manufacturing process in which a sheet manufactured according to any one of Claims 11 to 13 is pickled, then optionally skin-passed and then coated with zinc or a zinc alloy or else with aluminium or an aluminium alloy.
  15. Process for manufacturing a steel sheet according to Claim 14, characterized in that said coating is carried out continuously by hot-dip coating.
  16. Process for manufacturing a warm-drawn part, characterized in that:
    - a steel sheet according to any one of Claims 1 to 10, or manufactured by a process according to any one of Claims 11 to 15, is provided; then
    - said sheet is cut so as to obtain a blank; then
    - said blank is partly or completely heated to a temperature T of between 400 and 690°C, where it is maintained for a time of less than 15 minutes so as to obtain a heated blank; then
    - said heated blank is drawn at a temperature of between 350 and T-20°C in order to obtain a part; and then
    - said part is cooled down to ambient temperature at a rate V'c.
  17. Manufacturing process according to Claim 16, characterized in that the rate V'c is between 25 and 100°C/s.
  18. Use of a hot-rolled steel sheet according to any one of Claims 1 to 10, or manufactured by a process according to any one of Claims 11 to 17, for the manufacture of structural parts or reinforcing elements in the automotive field.
EP08830766A 2007-07-19 2008-07-09 Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained Active EP2171112B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08830766A EP2171112B1 (en) 2007-07-19 2008-07-09 Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained
PL08830766T PL2171112T3 (en) 2007-07-19 2008-07-09 Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07290908A EP2020451A1 (en) 2007-07-19 2007-07-19 Method of manufacturing sheets of steel with high levels of strength and ductility, and sheets produced using same
PCT/FR2008/000993 WO2009034250A1 (en) 2007-07-19 2008-07-09 Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained
EP08830766A EP2171112B1 (en) 2007-07-19 2008-07-09 Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained

Publications (2)

Publication Number Publication Date
EP2171112A1 EP2171112A1 (en) 2010-04-07
EP2171112B1 true EP2171112B1 (en) 2011-11-23

Family

ID=38775251

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07290908A Withdrawn EP2020451A1 (en) 2007-07-19 2007-07-19 Method of manufacturing sheets of steel with high levels of strength and ductility, and sheets produced using same
EP08830766A Active EP2171112B1 (en) 2007-07-19 2008-07-09 Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP07290908A Withdrawn EP2020451A1 (en) 2007-07-19 2007-07-19 Method of manufacturing sheets of steel with high levels of strength and ductility, and sheets produced using same

Country Status (16)

Country Link
US (3) US20100221573A1 (en)
EP (2) EP2020451A1 (en)
JP (1) JP5298127B2 (en)
KR (5) KR20150123957A (en)
CN (1) CN101784688B (en)
AR (1) AR067594A1 (en)
AT (1) ATE534756T1 (en)
BR (1) BRPI0814514B1 (en)
CA (1) CA2694069C (en)
ES (1) ES2375429T3 (en)
MA (1) MA31525B1 (en)
PL (1) PL2171112T3 (en)
RU (1) RU2451764C2 (en)
UA (1) UA98798C2 (en)
WO (1) WO2009034250A1 (en)
ZA (1) ZA201000290B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509102B (en) * 2009-03-27 2011-01-05 攀钢集团研究院有限公司 Steel for hot-rolled low carbon punching and producing method thereof
JP5672946B2 (en) * 2010-10-22 2015-02-18 Jfeスチール株式会社 Thin steel sheet for warm forming excellent in formability and strength increasing ability, and warm forming method using the same
BR112013011409A2 (en) * 2010-11-10 2016-08-02 Posco cold rolled / hot rolled high tensile steelmaking process having 590 mpa grade tensile strength, superior functionality and low mechanical property deviation
WO2012127125A1 (en) 2011-03-24 2012-09-27 Arcelormittal Investigatión Y Desarrollo Sl Hot-rolled steel sheet and associated production method
US9994942B2 (en) * 2012-08-21 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel material
CN103205636B (en) * 2013-04-18 2015-08-26 内蒙古包钢钢联股份有限公司 The production method of the continuous yield band steel of low-carbon bainite
KR101318060B1 (en) * 2013-05-09 2013-10-15 현대제철 주식회사 Hot stamping product with advanced toughness and method of manufacturing the same
CN105518162B (en) * 2013-09-10 2017-06-06 株式会社神户制钢所 The manufacture method of stamping product and stamping product
CA2916941C (en) * 2013-09-18 2018-01-09 Nippon Steel & Sumitomo Metal Corporation Hot-stamped part and method of manufacturing the same
ES2745428T3 (en) 2014-01-06 2020-03-02 Nippon Steel Corp Steel and method to make it
CN114438418A (en) * 2014-01-06 2022-05-06 日本制铁株式会社 Hot-formed member and method for manufacturing same
JP6177733B2 (en) * 2014-01-28 2017-08-09 株式会社神戸製鋼所 Low yield ratio high-strength steel sheet with large work-hardening ability and excellent uniform elongation and weldability, and its manufacturing method
EP2905348B1 (en) 2014-02-07 2019-09-04 ThyssenKrupp Steel Europe AG High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
WO2016001700A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength, ductility and formability
WO2016001702A1 (en) * 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel sheet having improved strength, ductility and formability
WO2016001710A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength coated steel having improved strength and ductility and obtained sheet
WO2016001706A1 (en) 2014-07-03 2016-01-07 Arcelormittal Method for producing a high strength steel sheet having improved strength and formability and obtained sheet
WO2016005780A1 (en) 2014-07-11 2016-01-14 Arcelormittal Investigación Y Desarrollo Sl Hot-rolled steel sheet and associated manufacturing method
KR102207969B1 (en) * 2015-07-17 2021-01-26 잘쯔기터 플래시슈탈 게엠베하 Method for producing a hot strip consisting of bainite multiphase steel with a Zn-Mg-Al coating and the corresponding hot strip
US10590615B2 (en) * 2016-06-28 2020-03-17 Vigor Industrial Llc Orthotropic deck
CN110643894B (en) * 2018-06-27 2021-05-14 宝山钢铁股份有限公司 Ultra-high strength hot rolled steel sheet and steel strip having good fatigue and hole expansion properties, and method for manufacturing same
WO2020065381A1 (en) 2018-09-28 2020-04-02 Arcelormittal Hot rolled steel sheet and a method of manufacturing thereof
CN112962021B (en) * 2021-01-25 2022-06-10 唐山钢铁集团有限责任公司 Strong plastic steel plate for integral hot stamping forming after laser tailor-welding and production method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807990A (en) * 1968-09-11 1974-04-30 Nippon Steel Corp Low-alloy high-tensile strength steel
SU1749307A1 (en) * 1990-10-30 1992-07-23 Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина Steel
JP3015923B2 (en) * 1991-06-04 2000-03-06 新日本製鐵株式会社 Manufacturing method for tough steel
RU2016127C1 (en) * 1991-06-22 1994-07-15 Эфрон Леонид Иосифович Steel
US5545270A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method of producing high strength dual phase steel plate with superior toughness and weldability
JPH1096042A (en) * 1996-09-24 1998-04-14 Sumitomo Metal Ind Ltd High tensile strength steel plate excellent in toughness in surface layer part and its production
BR9811051A (en) * 1997-07-28 2000-08-15 Exxonmobil Upstream Res Co Steel plate, and, process to prepare it
WO1999005328A1 (en) 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
JP2000282175A (en) * 1999-04-02 2000-10-10 Kawasaki Steel Corp Superhigh strength hot-rolled steel sheet excellent in workability, and its production
FR2807068B1 (en) 2000-03-29 2002-10-11 Usinor HOT ROLLED STEEL WITH VERY HIGH LIMIT OF ELASTICITY AND MECHANICAL STRENGTH FOR USE IN PARTICULAR FOR THE PRODUCTION OF PARTS OF MOTOR VEHICLES
DE10130744A1 (en) 2001-06-26 2003-01-02 Carl Zeiss Vision Gmbh Determining magnitude and direction of scalar field gradient and surface normal of object in data field involves computing gradient from difference between means of data values in two classes
TWI236503B (en) * 2001-10-04 2005-07-21 Nippon Steel Corp High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same
JP3775341B2 (en) * 2002-04-30 2006-05-17 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent workability, manufacturing method and processing method thereof
JP4091894B2 (en) 2003-04-14 2008-05-28 新日本製鐵株式会社 High-strength steel sheet excellent in hydrogen embrittlement resistance, weldability, hole expansibility and ductility, and method for producing the same
TWI248977B (en) * 2003-06-26 2006-02-11 Nippon Steel Corp High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same
EP1681363B1 (en) * 2003-09-30 2012-01-11 Nippon Steel Corporation High-yield-ratio high-strength hot-rolled thin steel sheet and high-yield-ratio high-strength hot-dip galvanized hot rolled thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized hot rolled thin steel sheet and process for producing the same
KR100881048B1 (en) 2004-03-31 2009-01-30 제이에프이 스틸 가부시키가이샤 High-rigidity high-strength thin steel sheet and method for producing same
JP4358022B2 (en) 2004-04-27 2009-11-04 シロキ工業株式会社 Power window safety device
US7648597B2 (en) * 2004-07-07 2010-01-19 Jfe Steel Corporation Method for manufacturing high tensile strength steel plate

Also Published As

Publication number Publication date
ZA201000290B (en) 2010-10-27
AR067594A1 (en) 2009-10-14
UA98798C2 (en) 2012-06-25
JP5298127B2 (en) 2013-09-25
KR20180014843A (en) 2018-02-09
US10214792B2 (en) 2019-02-26
WO2009034250A1 (en) 2009-03-19
EP2171112A1 (en) 2010-04-07
US20180163282A9 (en) 2018-06-14
ATE534756T1 (en) 2011-12-15
CN101784688B (en) 2011-11-23
EP2020451A1 (en) 2009-02-04
KR20130010030A (en) 2013-01-24
KR20100037147A (en) 2010-04-08
US10428400B2 (en) 2019-10-01
ES2375429T3 (en) 2012-02-29
CN101784688A (en) 2010-07-21
KR101892423B1 (en) 2018-08-27
RU2010105699A (en) 2011-08-27
PL2171112T3 (en) 2012-04-30
KR20150123957A (en) 2015-11-04
US20150203932A1 (en) 2015-07-23
BRPI0814514A2 (en) 2015-02-03
KR20140044407A (en) 2014-04-14
CA2694069C (en) 2013-05-21
CA2694069A1 (en) 2009-03-19
US20100221573A1 (en) 2010-09-02
JP2010533791A (en) 2010-10-28
US20180148806A1 (en) 2018-05-31
BRPI0814514B1 (en) 2019-09-03
MA31525B1 (en) 2010-07-01
RU2451764C2 (en) 2012-05-27

Similar Documents

Publication Publication Date Title
EP2171112B1 (en) Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained
EP2155915B1 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP3783116B1 (en) Pre-coated sheets allowing the production of press-hardened and coated steel parts
CA2680623C (en) Steel for tool-less hot forming or quenching with improved ductility
EP2291547B1 (en) Method for manufacturing very high strength, cold-rolled, dual phase steel sheets, and sheets thus produced
CA2617879C (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
EP3024951B1 (en) Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets
EP3146083B1 (en) Double-annealed steel sheet having high mechanical strength and ductility characteristics, method of manufacture and use of such sheets
CA2834967C (en) Method for the production of martensitic steel having a very high yield point and sheet or part thus obtained
WO2018220540A1 (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
WO2011104443A1 (en) Method for making a part from a metal sheet coated with aluminium or an aluminium alloy
JP2023507960A (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and electric resistance spot weldability and its manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ORMSTON, DAMIEN

Inventor name: DRILLET, PASCAL

17Q First examination report despatched

Effective date: 20100715

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008011594

Country of ref document: DE

Effective date: 20120202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2375429

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120229

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 10829

Country of ref document: SK

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120223

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120323

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120223

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008011594

Country of ref document: DE

Effective date: 20120824

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E014740

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230630

Year of fee payment: 16

Ref country code: NL

Payment date: 20230622

Year of fee payment: 16

Ref country code: IT

Payment date: 20230620

Year of fee payment: 16

Ref country code: FR

Payment date: 20230621

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230623

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230626

Year of fee payment: 16

Ref country code: SK

Payment date: 20230623

Year of fee payment: 16

Ref country code: SE

Payment date: 20230622

Year of fee payment: 16

Ref country code: PL

Payment date: 20230622

Year of fee payment: 16

Ref country code: FI

Payment date: 20230622

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230622

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 16

Ref country code: ES

Payment date: 20230801

Year of fee payment: 16

Ref country code: AT

Payment date: 20230622

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230630

Year of fee payment: 16

Ref country code: DE

Payment date: 20230620

Year of fee payment: 16