US3807990A - Low-alloy high-tensile strength steel - Google Patents

Low-alloy high-tensile strength steel Download PDF

Info

Publication number
US3807990A
US3807990A US00236742A US23674272A US3807990A US 3807990 A US3807990 A US 3807990A US 00236742 A US00236742 A US 00236742A US 23674272 A US23674272 A US 23674272A US 3807990 A US3807990 A US 3807990A
Authority
US
United States
Prior art keywords
steel
low
present
tensile strength
steels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00236742A
Inventor
S Gohda
H Higashiyama
K Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP6532068A external-priority patent/JPS5020006B1/ja
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to US00236742A priority Critical patent/US3807990A/en
Application granted granted Critical
Publication of US3807990A publication Critical patent/US3807990A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • This invention relates to an Mn-Nb steel made by .adding 2.3 to 4.0% Mn to a low-carbon steel to obtain a low-alloy high-tensile strength steel having an excellent toughness at a low temperature.
  • the present invention has as an object to provide a new type of low-alloy high-tensile strength steel which has a fine and uniformly-sized upper bainite structure and is very high in low temperature toughness by improving such conventional low-alloy high-tensile strength steels as are mentioned above and to provide particularly a steel which is high in both strength and low temperature toughness as rolled and tempered).
  • Nb once solid-dissolved in austenite has the effect of remarkably suppressing the recrystallization of austenite during or after the hotrolling in the case of the steel composition having such a large amount of Mn as mentioned above.
  • a bainite ferrite is formed from crystal grain boundaries of unrecrystallized austenite. Consequently, the distance (range) in which crystal grain can grow becomes very short, whereby a very fine structure can be obtained.
  • the steel of the present invention is characterized by having high inner stress, and therefore much greater strength
  • FIG. 1 shows the relation between tensile strength and impact value at 0 C. of steels of the present invention and conventional steels as rolled;
  • FIG. 2 shows the relation between tensile strength and facture transition temperature (vTrs) in 2 mm V- notch impact tests of steels of the present invention and conventional steels as rolled.
  • the present invention relates to a steel consisting of 0.05 to 0.08% C (percent being by weight herein), 0.1 to 1.0% Si, 2.3 to 4.0% Mn, 0.03 to 0.15% Nb and 0.01 to 0.10% Al, the rest being iron and impurities. Further, the steel of the present invention is formed by adding to such steel for the purpose of securing a further improvement of the strength or the toughness at a low temperature one or more of 0. l 0 to 0.60% Cu, 0.10 to 1.00% Ni, 0.10 to 1.00% Cr, 0.10 to 0.50% Mo, 0.02 to 0.15% V, 0.01 to 0.10% Ti, 0.01 to 0.10% Zr and 0.0005 to 0.0080 B.
  • the steel of the present invention is particularly characterized in composition by the composite addition of Mn and Nb to a low-carbon steel with a carbon content ranging from 0.05 to 0.08 percent and in the structure thus formed being a fine and uniformly-sized upper bainite.
  • C is contained in order to impart a strehgth to a steel. If C is less than 0.05 percent, it is difficult to obtain a tensile strength of more than 60 kg/mm, preferably more than kg/mm. But if more than 0.08% C is present, a time and uniformly sized upper bainite cannot be obtained, whereby the impact transition temperature becomes suddenly high, the impact value (vEo) is reduced, and the weldability is also reduced. Therefore, in the steel of the present invention, the carbon content is limited to a range of 0.05 to 0.08 percent.
  • 0.10% Si is the lower limit required for making the steel. However, if Si is more than 1.00 percent, its effeet on strength is not high and low temperature toughness is deteriorated. Therefore, it is desirable that the steel contain -no more than 1.00% Si.
  • Mn is one of the most important additive elements in the steel of the present invention. lf Mn is less than 2.3 percent, a polygonal proeutectoid ferrite is produced in the locality of the steel, and no fine and uniformly sized upper bainite structure as characteristic of the steel of the present invention can be obtained. However, if Mn exceeds 4 percent, the weldability is deteriorated. Therefore, the upper limit is made 4.0 percent. But, Mn is added, preferably in a range of from 2.55 to 4.0 percent.
  • Nb is one of the most important additive elements for the steel of the present invention.
  • the composite effect of the coexistence of Nb and Mn in a very low-carbon steel is the greatest feature of the present invention. But, if Nb is less than 0.02 percent, it has no effect. On the other hand, if more than 0.16% Nb is added, no more improvement in strength can be expected, but the toughness is rather reduced. Therefore, it is desirable to add Nb in an amount of less than 0.15%.
  • Mn and Nb a further explanation must be added.
  • the strength of the steel tends to increase, but the rate of the increaseis gradually diminished with an increase in the added amount of Mn. This is to be explained by means of the solid solution hardening phenomenon.
  • the toughness of the steel increases to some extent of the added amount of Mn, for instance, up to 1.5% Mn, but shows rather a deterioration if the addition of Mn is further increased.
  • Nb is added within the range specified in the present invention, a remarkable improvement in strength occurs by the addition of Mn in amounts above 2.3 percent.
  • the toughness of the steel is also improved with the increase of the amount of Mn.
  • Al is added as a deoxidizing agent, and its proper amount necessary and sufficient for making a steel is 0.01 to 0.10 percent.
  • Cu, Ni, Cr, Mo, V, Zr, Ti and B contribute also to the improvement and stabilization of the strength or the toughness of a steel by forming fine precipitations and their intermetallic compounds, which effect can be obtained by the addition of one or more of V, Zr or Ti, in the ranges of 0.02 to 0.15% V, 0.01 to 0.10% Zr and 0.01 to 0.10% Ti. Below the said lower limits, no effect is obtained. Above the upper limits, no remarkable effect can be observed. Particularly, it is to be noted that the addition of Ti is not generally very effective to the toughness of ferrite and pearlite steels, but when Ti is added to the steel of the present invention, a further improvement of the low temperature toughness can be obtained.
  • Cu, Ni, Cr and Mo they are properly added for the above mentioned purpose in respective ranges, as follows: Cu in a range of 0.10 to 0.60 percent, Ni in a range of 0.10 to 1.00 percent, Cr in a range of 0. 10 to 1.00 percent and M in a range of 0. 1 0 to 0.50 percent.
  • B has a hardening effect in making a bainite structure. Particularly, it shows a striking effect by the composite addition with Al and Ti. Therefore, it may be added in a range of 0.0005 to 0.0080 percent.
  • the composite addition of Mn and Nb is the most important condition for making the steel of the present invention.
  • the following explanation must be further added.
  • part of the Mn is replaced with an equivalent amount of Cr, M0 or Cr Mo on the basis of the known calculating formula multiplying factor of hardenability, there cannot be obtained a steel having such a fine, uniform upper bainite structure as is seen 5 in the steel of the present invention, and also the favorable combination of the strength and toughness cannot be obtained.
  • Nb the situation is almost the same as in the case of Mn.
  • Table 2 shows the strength and toughness of the steels of the present invention as compared with those of some reference steels, said steels of both kinds being so-called non-tempered high-tensile strength steels in the state as hot-rolled after being ingottcd and bloomed.
  • Steels marked with as H, l, M, N, O and the like, are all the steels of the present invention, and the others are reference steels.
  • the steelsK and L are examples having no addition of Nb. When no Nb is present, such strength and toughness as of the steel of the present invention cannot be obtained, even if nearly 3% Mn is added.
  • the steel of the present invention having Mn-Nb as basic components can be said to be a new type low-alloy high-tensile strength steel.
  • FIGS. 1 and 2 showing the relations between the strength and the toughness of these steels as rolled (in the graphs the marks epresent steels of the present invention, the marks represent steels partly deviated from the ranges claimed for the steels of the present invention, and the marks represent conventional steels), that those other than the steels of the present invention reside in the range shown by the hatching, but that the steels of the present invention are remarkably excellent in the combination of strength and toughness.
  • M to T in the graphs are those steels containing proper amounts of Cu, Ni, Mo, Ti, V, Zr and the like added to the basic composition of the present invention, respectively, and are characterized by a further improvement of strength or toughness.
  • T515163 showsmechanical properties when the steel.
  • the transition temperature was reduced and in general a stabilized material could be obtained.

Abstract

A low-alloy high-tensile strength steel having an excellent toughness at a low temperature in the state as hot-rolled, the basic composition of said steel being developed by adding 2.3 to 4.0% Mn and 0.03 to 0.15% NR to a very low-carbon steel.

Description

United States Patent Gohda et al.
[ 1 Apr. 30, 1974 LOW-ALLOY l-llGH-TENSILE STRENGTH STEEL Inventors: Susumu Gohda; l-lirokichi Higashiyama; Katuzi Nakamura, all of Kitayushu, Japan Assignee: Nippon Steel Corporation, Tokyo,
Japan Filed: Mar. 21, 1972 Appl. No.1 236,742
Related US. Application Data Continuation-impart of Ser. No. 856,342, Sept. 9, 1969, abandoned.
Foreign Application Priority Data [58] Field of Search 75/124 [56] References Cited UNITED STATES PATENTS 3,562,028 2/1971 Heitmann 75/124 2,140,237 12/1938 Leitner 75/124 3,178,279 4/1965 Nakamura 75/124 3,681,057 8/1972 Kawakami 75/124 Primary ExaminerHyland Bizot Attorney, Agent, or FirmWenderoth, Lind & Ponack [57] ABSTRACT A low-alloy high-tensile strength steel having an excellent toughness at a low temperature in the state as hotrolled, the basic composition of said steel being developed by adding 2.3 to 4.0% Mn and 0.03 to 0.15% NR to a very low-carbon steel.
4 Claims, 2 Drawing Figures vEo (kg m/cm TENSILE STRENGTH (kg-/cm 1 LOW-ALLOY HIGH-TENSILE STRENGTH STEEL This is a continuation-in-part of co-pending application Ser. No. 856,342 filed Sept. 9, 1969 now abandoned.
This invention relates to an Mn-Nb steel made by .adding 2.3 to 4.0% Mn to a low-carbon steel to obtain a low-alloy high-tensile strength steel having an excellent toughness at a low temperature.
Heretofore, for a low-alloy high-tensile strength steel there have been developed many steels such as Si-Mn, Mn-Nb and Si-Mn-V steels or steels prepared by the composite addition of Ni, Cr, Mo and V to these steels, and they have been used as hot-rolled or thereafter subjected to heat treatments comprising normalizing and- /or tempering.
Tlowe ver, as showniri l aldle 1, these lowalloy hightensile strength steels do not have sufficient low temperature toughness when used as rolled. Therefore, they have been usually used after being heat-treated.
The present invention has as an object to provide a new type of low-alloy high-tensile strength steel which has a fine and uniformly-sized upper bainite structure and is very high in low temperature toughness by improving such conventional low-alloy high-tensile strength steels as are mentioned above and to provide particularly a steel which is high in both strength and low temperature toughness as rolled and tempered).
(as not quenched When C is contained in a range of 0.05 to 0.08 percent and Mn is contained in an amount of more than 2.3 percent with a coexistence of a small amount of Nb solid-dissolved by heating prior to hot-rolling, the transformation of forming proeutectoid ferrite and pearlite is remarkably retarded and an upper bainite is easily formed. That is, a steel made only of an upper bainite structure containing neither proeutectoid ferrite nor pearlite can be obtained in a cooling process after the hot-rolling with a considerably wide range of cooling rate. Further, Nb once solid-dissolved in austenite has the effect of remarkably suppressing the recrystallization of austenite during or after the hotrolling in the case of the steel composition having such a large amount of Mn as mentioned above. Thus, in the steel of the present invention, no recrystallization of austenite extended by rolling is caused during or after hot-rolling, but a bainite ferrite is formed from crystal grain boundaries of unrecrystallized austenite. Consequently, the distance (range) in which crystal grain can grow becomes very short, whereby a very fine structure can be obtained.
7 As a result of the above-mentioned mechanism, the steel of the present invention is characterized by having high inner stress, and therefore much greater strength,
TABLE 1 Mechanical properties Tensile tests lmpact tests Chemical compositions (weight in percent) Yield Tensile Elongapoint strength tion vEo v'lIrs Mn Cu Ni Cr Mo Nb Al B Treatment (kg/mm) (kg/mm (percent) (kgmlcm' (C l obtifashdtilld 483' 69.5 28.8 3.? .002 ..d 50.7 72.1 27.6 2.6 52.0 82.3 25.5 3.3 23 51.8 83.0 24.5 2.2 10 53.1 75.2 27.0 0.9
.002 Hardeningtem 0.3
Other objects of the present invention will be clear from the following description and the accompanying drawings, in which:
FIG. 1 shows the relation between tensile strength and impact value at 0 C. of steels of the present invention and conventional steels as rolled; and
FIG. 2 shows the relation between tensile strength and facture transition temperature (vTrs) in 2 mm V- notch impact tests of steels of the present invention and conventional steels as rolled.
The present invention relates to a steel consisting of 0.05 to 0.08% C (percent being by weight herein), 0.1 to 1.0% Si, 2.3 to 4.0% Mn, 0.03 to 0.15% Nb and 0.01 to 0.10% Al, the rest being iron and impurities. Further, the steel of the present invention is formed by adding to such steel for the purpose of securing a further improvement of the strength or the toughness at a low temperature one or more of 0. l 0 to 0.60% Cu, 0.10 to 1.00% Ni, 0.10 to 1.00% Cr, 0.10 to 0.50% Mo, 0.02 to 0.15% V, 0.01 to 0.10% Ti, 0.01 to 0.10% Zr and 0.0005 to 0.0080 B. The steel of the present invention is particularly characterized in composition by the composite addition of Mn and Nb to a low-carbon steel with a carbon content ranging from 0.05 to 0.08 percent and in the structure thus formed being a fine and uniformly-sized upper bainite.
highly improved toughness, because of the bainite ferrite becoming very fine on account of the above mentioned mechanism.
The reasons for limiting the respective component elements in the steel of the present invention as described above are as follows:
C is contained in order to impart a strehgth to a steel. If C is less than 0.05 percent, it is difficult to obtain a tensile strength of more than 60 kg/mm, preferably more than kg/mm. But if more than 0.08% C is present, a time and uniformly sized upper bainite cannot be obtained, whereby the impact transition temperature becomes suddenly high, the impact value (vEo) is reduced, and the weldability is also reduced. Therefore, in the steel of the present invention, the carbon content is limited to a range of 0.05 to 0.08 percent.
0.10% Si is the lower limit required for making the steel. However, if Si is more than 1.00 percent, its effeet on strength is not high and low temperature toughness is deteriorated. Therefore, it is desirable that the steel contain -no more than 1.00% Si.
Mn is one of the most important additive elements in the steel of the present invention. lf Mn is less than 2.3 percent, a polygonal proeutectoid ferrite is produced in the locality of the steel, and no fine and uniformly sized upper bainite structure as characteristic of the steel of the present invention can be obtained. However, if Mn exceeds 4 percent, the weldability is deteriorated. Therefore, the upper limit is made 4.0 percent. But, Mn is added, preferably in a range of from 2.55 to 4.0 percent.
Nb, as well as Mn, is one of the most important additive elements for the steel of the present invention. The composite effect of the coexistence of Nb and Mn in a very low-carbon steel is the greatest feature of the present invention. But, if Nb is less than 0.02 percent, it has no effect. On the other hand, if more than 0.16% Nb is added, no more improvement in strength can be expected, but the toughness is rather reduced. Therefore, it is desirable to add Nb in an amount of less than 0.15%. As to the composite addition effect of Mn and Nb, a further explanation must be added. If the addition of Mn is increased up to an amount as is claimed for the steel of the present invention without a sufficient addition of Nb, the strength of the steel tends to increase, but the rate of the increaseis gradually diminished with an increase in the added amount of Mn. This is to be explained by means of the solid solution hardening phenomenon. Further, the toughness of the steel increases to some extent of the added amount of Mn, for instance, up to 1.5% Mn, but shows rather a deterioration if the addition of Mn is further increased. However, if Nb is added within the range specified in the present invention, a remarkable improvement in strength occurs by the addition of Mn in amounts above 2.3 percent. At the same time, the toughness of the steel is also improved with the increase of the amount of Mn. These phenomenon can be said to be caused by the synergetic effect of the composite addition of Mn and Nb in the very low carbon steel.
Al is added as a deoxidizing agent, and its proper amount necessary and sufficient for making a steel is 0.01 to 0.10 percent.
Cu, Ni, Cr, Mo, V, Zr, Ti and B contribute also to the improvement and stabilization of the strength or the toughness of a steel by forming fine precipitations and their intermetallic compounds, which effect can be obtained by the addition of one or more of V, Zr or Ti, in the ranges of 0.02 to 0.15% V, 0.01 to 0.10% Zr and 0.01 to 0.10% Ti. Below the said lower limits, no effect is obtained. Above the upper limits, no remarkable effect can be observed. Particularly, it is to be noted that the addition of Ti is not generally very effective to the toughness of ferrite and pearlite steels, but when Ti is added to the steel of the present invention, a further improvement of the low temperature toughness can be obtained.
As regards Cu, Ni, Cr and Mo, they are properly added for the above mentioned purpose in respective ranges, as follows: Cu in a range of 0.10 to 0.60 percent, Ni in a range of 0.10 to 1.00 percent, Cr in a range of 0. 10 to 1.00 percent and M in a range of 0. 1 0 to 0.50 percent. Further, B has a hardening effect in making a bainite structure. Particularly, it shows a striking effect by the composite addition with Al and Ti. Therefore, it may be added in a range of 0.0005 to 0.0080 percent.
As mentioned above, the composite addition of Mn and Nb is the most important condition for making the steel of the present invention. However, in order to complete the understanding of the meaning of such composite addition, the following explanation must be further added. When part of the Mn is replaced with an equivalent amount of Cr, M0 or Cr Mo on the basis of the known calculating formula multiplying factor of hardenability, there cannot be obtained a steel having such a fine, uniform upper bainite structure as is seen 5 in the steel of the present invention, and also the favorable combination of the strength and toughness cannot be obtained. Also in regard to Nb, the situation is almost the same as in the case of Mn. Even when V, which is an element comparatively similar to Nb, is used instead of Nb, no such structure and mechanical properties as in the steel of the present invention can be obtained. That is to say, in the present invention, the composite addition of Mn and Nb to a steel having a carbon range as specified as a base makes an essential l5 condition for making the steel of the present invention, whereby there can be achieved a special effect which cannot be obtained with similar elements such as Cr, Mo and V in place of Mn and Nb. Of course, the addition of these similar elements does not impair the composite effect of Mn and Nb.
1n thefollowing, the present invention shall be explained with reference to examples in order to further clarify the constituents of the present invention as above-mentioned, and essential features of the steel of the present invention.
EXAMPLE 1 Table 2 shows the strength and toughness of the steels of the present invention as compared with those of some reference steels, said steels of both kinds being so-called non-tempered high-tensile strength steels in the state as hot-rolled after being ingottcd and bloomed. Steels marked with as H, l, M, N, O and the like, are all the steels of the present invention, and the others are reference steels.
The steelsK and L are examples having no addition of Nb. When no Nb is present, such strength and toughness as of the steel of the present invention cannot be obtained, even if nearly 3% Mn is added.
I For such reasons, the steel of the present invention having Mn-Nb as basic components can be said to be a new type low-alloy high-tensile strength steel. Further, it is also evidently seen from FIGS. 1 and 2 showing the relations between the strength and the toughness of these steels as rolled (in the graphs the marks epresent steels of the present invention, the marks represent steels partly deviated from the ranges claimed for the steels of the present invention, and the marks represent conventional steels), that those other than the steels of the present invention reside in the range shown by the hatching, but that the steels of the present invention are remarkably excellent in the combination of strength and toughness. Further, M to T in the graphs are those steels containing proper amounts of Cu, Ni, Mo, Ti, V, Zr and the like added to the basic composition of the present invention, respectively, and are characterized by a further improvement of strength or toughness.
- 5 EX MPLE 2 This example shows that when the steel of the present invention is tempered, there can be obtained more favorable mechanical properties and a stabilized material.
T515163 showsmechanical properties when the steel.
1 shown in Table 2 was tempered at 550, 625 and 675 C, whereby the tensile strength was reduced, but the yield point (0.2 percent proof stress in this case) was elevated and the impact value at C was increased.
'Further, the transition temperature was reduced and in general a stabilized material could be obtained.
tures. Also, although-the above-mentioned shows only some examples of the present invention, the present invention can be properly modified within the above de- I "WEAE is claimed is:
scribed ranges. v
' Mechanical properties Chemical compositions Lwt.%)
Tensile tests Impact tests is explainedin rhea save; thepres enfi nvenwon provides a low-alloy high-tensile strength steel distinguished from any conventional high-tensile strength st- Sam- Yield Tensile ElonvEo vTrs ple C Si Mn Nb Al Others point strength gation (kgmlcm (C) g/ m) (kg/mm) G 0.04 0.64 1.98 0.10 0.02 46.4 60.8 34.2 12.8 H" 0.05 0.64 2.70 0.10 0.02 60.5 80.1 25.1. 10.5, -88 1* 0.05 0.69 2.44 0.05 0.02 43.6 77.5 28.7 13.0 -54 .l 0.10 0.63 2.40 0.05 0.02 62.3 87.5 v 24.1 1.2 1 +11 K 0.05 0.66- 2.33 0.02 33.4 59.4 34.0 2.6 L 0.05 0.34 2.96: 0% 38.5 61.4 l2 10g A Q M V 0.05 0.60 2.40 0.05 0.02 Cu 0.31 57.2 83.1 26.4 9.5 u
N 0.05 0.65 2.36 0.05 0.03 Ni 0.50 56.0 82.6" 28.1 12.0 -95 -93..- 0.0. 9. 3. 2 5. 9124. 9-9 M91124. 1 .87.; 24. -0 2 P* 0.05 0.71 2.35 0.04 0.04 Ti 0.03 48.6 72.8 s 30.0 11.1 l20 0* 0.07 0.36 2.46 0.03 0.02 Cr 0.50 64.2 88.5 24.0 5.4 -15 R 0.05 0.50 2.70 0.09 0.02 V 0.04 60.1 80.5 27.1 9.5 S* 0.06 0.40 2.53 0.06 0.02 Zr 0.06 61.3 85.0 26.1 5.6 -18 T* 0.05 0.62 2.42 v 0.05 0.02 Cr 0.42 56.2 80.6 27.6 8.2 -38 Table'3 Y Sam- Treatment Yield Tensile Elonvlio v'lrs ple point strength gation (kgm/cm) ((1) g/ s/ m) W as hot- 43.6 77.5 28.7 13.0 -54 rolled 550C 51.8 68.3 32.8 15.1 -68 tempering 1 625C 52.3 64.0 32.2 16.5 -65 tempering 675C 53.0 p 64.1. 30.8 19.2 -62 tempering claim 1, further comprising from 0.0005 to 0.0080% B. 3.7K low-fifiigh tiisfie stragmsieer'raaaear a fine and uniformly-sized upper bainite structure as rolled, consisting essentially of 0.05 to 0.08 C, 0.10 to 1.00% Si, 2.3 to 4.0% Mn, 0.03 to 0.15 Nb and 0.01 to 0.10 Al, and moreover, containing at least one element selected from the group consisting of 0.10 to 0.60 Cu, 0.10 to 1.00 Ni, 0.10 to 1.00 Cr, 0.10 to 0.50 M0, 002 to 0.15 V, 0.01 to 0.10 Ti and 0.01 to 0.10 Zr, the rest being Fe and impurities. i
- 4. The low'alloy high-tensile strength steel claimed in claim 3, further comprising from 0.0005 to 0.0080% B.

Claims (3)

  1. 2. The low-alloy high-tensile strength steel claimed in claim 1, further comprising from 0.0005 to 0.0080% B.
  2. 3. A low-alloy high-tensile strength steel made of a fine and uniformly-sized upper bainite structure as rolled, consisting essentially of 0.05 to 0.08 % C, 0.10 to 1.00% Si, 2.3 to 4.0% Mn, 0.03 to 0.15 % Nb and 0.01 to 0.10 % Al, and moreover, containing at least one element selected from the group consisting of 0.10 to 0.60 % Cu, 0.10 to 1.00 % Ni, 0.10 to 1.00 % Cr, 0.10 to 0.50 % Mo, 0.02 to 0.15 % V, 0.01 to 0.10 % Ti and 0.01 to 0.10 % Zr, the rest being Fe and impurities.
  3. 4. The low-alloy high-tensile strength steel claimed in claim 3, further comprising from 0.0005 to 0.0080% B.
US00236742A 1968-09-11 1972-03-21 Low-alloy high-tensile strength steel Expired - Lifetime US3807990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00236742A US3807990A (en) 1968-09-11 1972-03-21 Low-alloy high-tensile strength steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6532068A JPS5020006B1 (en) 1968-09-11 1968-09-11
US85634269A 1969-09-09 1969-09-09
US00236742A US3807990A (en) 1968-09-11 1972-03-21 Low-alloy high-tensile strength steel

Publications (1)

Publication Number Publication Date
US3807990A true US3807990A (en) 1974-04-30

Family

ID=27298743

Family Applications (1)

Application Number Title Priority Date Filing Date
US00236742A Expired - Lifetime US3807990A (en) 1968-09-11 1972-03-21 Low-alloy high-tensile strength steel

Country Status (1)

Country Link
US (1) US3807990A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008078A (en) * 1974-04-03 1977-02-15 Fried. Krupp Huttenwerke Low-carbon rail steel
US4042273A (en) * 1975-05-20 1977-08-16 Fried. Krupp Huttenwerke Ag Rail wheel
US4210445A (en) * 1977-10-18 1980-07-01 Kobe Steel, Ltd. Niobium-containing weldable structural steel having good weldability
US4824492A (en) * 1987-12-23 1989-04-25 Chaparral Steel Company Method for producing a precipitation hardenable martensitic low alloy steel forging
US5213634A (en) * 1991-04-08 1993-05-25 Deardo Anthony J Multiphase microalloyed steel and method thereof
WO2000060616A1 (en) * 1999-04-06 2000-10-12 Crs Holdings, Inc. Workable, semi-hard magnetic alloy with small magnetostriction and article made therefrom
US20100221573A1 (en) * 2007-07-19 2010-09-02 Arcelormittal France Process for manufacturing steel sheet having high tensile strength and ductility characteristics, and sheet thus produced
CN104532114A (en) * 2014-12-30 2015-04-22 浙江振兴石化机械有限公司 Low-nickel low-temperature-resistant cast iron material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140237A (en) * 1936-03-27 1938-12-13 Leitner Franz Welding wire for carbon electrode arc welding
US3178279A (en) * 1961-05-16 1965-04-13 Ishikawajima Harima Heavy Ind Nitride bearing low-manganese ductile steel
US3562028A (en) * 1968-08-28 1971-02-09 Inland Steel Co Tough,high strength steel article
US3681057A (en) * 1969-06-12 1972-08-01 Nippon Kokan Kk Aluminum killed-steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2140237A (en) * 1936-03-27 1938-12-13 Leitner Franz Welding wire for carbon electrode arc welding
US3178279A (en) * 1961-05-16 1965-04-13 Ishikawajima Harima Heavy Ind Nitride bearing low-manganese ductile steel
US3562028A (en) * 1968-08-28 1971-02-09 Inland Steel Co Tough,high strength steel article
US3681057A (en) * 1969-06-12 1972-08-01 Nippon Kokan Kk Aluminum killed-steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4008078A (en) * 1974-04-03 1977-02-15 Fried. Krupp Huttenwerke Low-carbon rail steel
US4042273A (en) * 1975-05-20 1977-08-16 Fried. Krupp Huttenwerke Ag Rail wheel
US4210445A (en) * 1977-10-18 1980-07-01 Kobe Steel, Ltd. Niobium-containing weldable structural steel having good weldability
US4824492A (en) * 1987-12-23 1989-04-25 Chaparral Steel Company Method for producing a precipitation hardenable martensitic low alloy steel forging
US5213634A (en) * 1991-04-08 1993-05-25 Deardo Anthony J Multiphase microalloyed steel and method thereof
WO2000060616A1 (en) * 1999-04-06 2000-10-12 Crs Holdings, Inc. Workable, semi-hard magnetic alloy with small magnetostriction and article made therefrom
US20100221573A1 (en) * 2007-07-19 2010-09-02 Arcelormittal France Process for manufacturing steel sheet having high tensile strength and ductility characteristics, and sheet thus produced
US10214792B2 (en) 2007-07-19 2019-02-26 Arcelormittal France Process for manufacturing steel sheet
US10428400B2 (en) 2007-07-19 2019-10-01 Arcelormittal France Steel sheet having high tensile strength and ductility
CN104532114A (en) * 2014-12-30 2015-04-22 浙江振兴石化机械有限公司 Low-nickel low-temperature-resistant cast iron material and preparation method thereof

Similar Documents

Publication Publication Date Title
US4062705A (en) Method for heat treatment of high-toughness weld metals
US5288347A (en) Method of manufacturing high strength and high toughness stainless steel
US3251682A (en) Low-alloy tough steel
KR870002074B1 (en) Cobalt free maraging steel
US3807990A (en) Low-alloy high-tensile strength steel
US3348981A (en) High tension low temperature tough steel
US3132025A (en) Alloy steel
US4047979A (en) Heat treatment for improving the toughness of high manganese steels
US3330705A (en) Method to improve impact properties of steels
US3832244A (en) Stainless steel
KR20180073007A (en) Steel having high strength and low-temperature impact toughness and method for manufacturing the same
US3336168A (en) Weldable tough steel essentially composed of chromium and manganese and method of manufacturing the same
JPS61279656A (en) Non-heattreated steel for hot forging
US3795507A (en) Semi-austenitic cr-ni-al-cu stainless steel
JPH0571657B2 (en)
JPS625986B2 (en)
JPS59129724A (en) Production of thick walled ultra high tension steel
JPH08176737A (en) Low decarburizing spring steel
US3316084A (en) Forging steel for elevated temperature service
US3383203A (en) Non-magnetic steels
JPS6362568B2 (en)
JPH04371547A (en) Production of high strength and high toughness steel
JPH0143008B2 (en)
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPS59153868A (en) Shaft for golf club