JP4254663B2 - High strength thin steel sheet and method for producing the same - Google Patents

High strength thin steel sheet and method for producing the same Download PDF

Info

Publication number
JP4254663B2
JP4254663B2 JP2004255927A JP2004255927A JP4254663B2 JP 4254663 B2 JP4254663 B2 JP 4254663B2 JP 2004255927 A JP2004255927 A JP 2004255927A JP 2004255927 A JP2004255927 A JP 2004255927A JP 4254663 B2 JP4254663 B2 JP 4254663B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength thin
workability
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004255927A
Other languages
Japanese (ja)
Other versions
JP2006070328A (en
Inventor
宏太郎 林
啓達 小嶋
敏伸 西畑
和夫 匹田
匡浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004255927A priority Critical patent/JP4254663B2/en
Publication of JP2006070328A publication Critical patent/JP2006070328A/en
Application granted granted Critical
Publication of JP4254663B2 publication Critical patent/JP4254663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、曲げ加工性および耐型かじり性に優れる引張強度が780MPa以上の高強度薄鋼板およびその製造方法に関する。   The present invention relates to a high-strength thin steel sheet having a tensile strength of 780 MPa or more, which is excellent in bending workability and mold galling resistance, and a method for producing the same.

近年、自動車の燃費向上あるいは衝突時の乗員の安全性向上を図るため、引張強度が780MPa以上の高強度薄鋼板を、補強部材を中心に自動車部品への適用することが積極的に検討されている。そのため、高強度薄鋼板の加工性に対する要求は次第に厳しくなってきている。しかしながら、通常の高強度薄鋼板は、部品成形時の加工性に劣るので、その改善が求められている。   In recent years, in order to improve the fuel efficiency of automobiles or the safety of passengers in the event of a collision, it has been actively studied to apply high-strength steel sheets with a tensile strength of 780 MPa or more to automobile parts, mainly reinforcing members. Yes. For this reason, demands for workability of high-strength thin steel sheets are becoming increasingly severe. However, a normal high-strength thin steel sheet is inferior in workability at the time of forming a part, so that improvement is required.

加工性に優れた高強度薄鋼板として、フェライトを主相とし、マルテンサイトやベイナイト等の低温変態相を第二相とする複合組織鋼板が提案されている。例えば、特許文献1には、フェライトを主相とする複合組織を有し、引張強度が80kgf/mm2以上で降伏比が60%以下を有する溶融めっき鋼板が開示されている。この鋼板は、引張強度−伸びバランス(TS×El)が17000〜25000MPa・%と優れた加工性を示している。しかしながら、このように、硬質な低温変態相を利用した高強度薄鋼板は、硬質相と軟質相の界面で亀裂が形成しやすくなるので、曲げ性が十分でない問題がある。 As a high-strength thin steel sheet excellent in workability, a composite structure steel sheet having ferrite as a main phase and a low-temperature transformation phase such as martensite or bainite as a second phase has been proposed. For example, Patent Document 1 discloses a hot-dip galvanized steel sheet having a composite structure containing ferrite as a main phase, having a tensile strength of 80 kgf / mm 2 or more and a yield ratio of 60% or less. This steel sheet has excellent workability with a tensile strength-elongation balance (TS × El) of 17000 to 25000 MPa ·%. However, in this way, the high-strength thin steel sheet using a hard low-temperature transformation phase tends to form cracks at the interface between the hard phase and the soft phase, so that there is a problem that the bendability is not sufficient.

曲げ性に優れた高強度薄鋼板として、ベイナイトやマルテンサイト等の低温変態相を主体とし、組織の均一性が高い鋼板が提案されている。例えば、特許文献2には、ベイナイトの組織分率が90%以上の組織を有し、引張強度が1200N/mm2以上を有する超高強度冷延鋼板が提示されている。この鋼板は、曲げ角度90°、曲げ内側半径が0.5mmのV曲げ加工が可能であり、優れた曲げ性を示している。しかしながら、ベイナイトやマルテンサイト主体の組織は加工硬化せず、不均一に変形するので、シート部品の加工で施される曲げ角度90°、曲げ半径が0mm程度の厳しい加工が出来ないという問題がある。 As a high-strength thin steel sheet excellent in bendability, a steel sheet having a high structure uniformity mainly composed of low-temperature transformation phases such as bainite and martensite has been proposed. For example, Patent Document 2 presents an ultra-high strength cold-rolled steel sheet having a bainite structure fraction of 90% or more and a tensile strength of 1200 N / mm 2 or more. This steel sheet can be bent at a bending angle of 90 ° and a bending inner radius of 0.5 mm, and exhibits excellent bendability. However, since the structure mainly composed of bainite and martensite is not hardened and deforms non-uniformly, there is a problem that severe processing with a bending angle of 90 ° and a bending radius of about 0 mm cannot be performed in the processing of sheet parts. .

曲げ性に優れた高強度薄鋼板として、表層部のみフェライトを主体とした組織とする鋼板が提案されている。例えば、特許文献3には、表層部にC:0.1wt.%以下の軟質層を片面で3〜15vol.%含む超高強度冷延鋼板が開示されている。この鋼板は、脱炭焼鈍によって、表層部が軟質化することにより、密着曲げが可能となり、優れた曲げ性を示している。また、特許文献4には、鋼板の表層にフェライトを主体とする層を有し、内層にマルテンサイト・ベイナイトを主体とする層を有する超高強度冷延鋼板が開示されている。この鋼板は、脱炭焼鈍によって、表層がフェライト主体となることにより、優れた加工性を示している。しかしながら、これらの鋼板のように、表面が軟質化すると耐型かじり性が劣化するので、加工性と耐型かじり性の両立は、従来技術において達成されていなかった。   As a high-strength thin steel sheet excellent in bendability, a steel sheet having a structure mainly composed of ferrite only in the surface layer portion has been proposed. For example, Patent Document 3 discloses an ultra-high-strength cold-rolled steel sheet that includes a soft layer of C: 0.1 wt. This steel sheet has an excellent bending property because the surface layer portion is softened by decarburization annealing, thereby allowing close bending. Patent Document 4 discloses an ultra-high-strength cold-rolled steel sheet having a layer mainly composed of ferrite as a surface layer of a steel sheet and a layer mainly composed of martensite bainite as an inner layer. This steel sheet exhibits excellent workability because the surface layer is mainly composed of ferrite by decarburization annealing. However, since the galling resistance deteriorates when the surface is softened like these steel sheets, the compatibility between workability and galling resistance has not been achieved in the prior art.

一方、加工性は、表面粗さに少なからず影響を受けることから、表面粗さを調整して加工性を向上させることが検討されている。例えば、特許文献5には、鋼板の表面粗さを適切に調整して、加工性を向上させる技術が開示されている。この技術は、連続焼鈍によって製造される薄鋼板に対し、スキンパス圧延の制御により付与される表面粗さを調整することで、良好な摺動性を確保し、加工性を向上させるものである。また、耐型かじり性も表面粗さに影響を受けることから、表面粗さを調整して耐型かじり性を改善させることが検討されている。例えば、特許文献6には、鋼板表面の幾何学形状を制御して、耐型かじり性を向上させる技術が開示されている。この技術は、プレス成形時に板に生ずる面圧の大小に関係なく、耐型かじり性を良好にするものである。しかしながら、補強部材として必要な引張強度が780MPa以上になると、鋼板の表面粗さや幾何学的形状を制御するのは困難であり、制御したとしても、強加工されるので、加工性が劣化するという問題があった。
特開平4−236741号公報 特開平5−105959号公報 特開平5−195149号公報 特開平10−1307825号公報 特開平6−99202号公報 特開平9−29304号公報
On the other hand, since workability is affected by the surface roughness, it has been studied to improve the workability by adjusting the surface roughness. For example, Patent Document 5 discloses a technique for improving workability by appropriately adjusting the surface roughness of a steel plate. This technique secures good slidability and improves workability by adjusting the surface roughness imparted by control of skin pass rolling to a thin steel plate produced by continuous annealing. In addition, since the mold galling resistance is also affected by the surface roughness, it has been studied to improve the mold galling resistance by adjusting the surface roughness. For example, Patent Document 6 discloses a technique for improving the mold galling resistance by controlling the geometric shape of the steel sheet surface. This technique improves the resistance to galling regardless of the surface pressure generated in the plate during press molding. However, if the tensile strength required as a reinforcing member is 780 MPa or more, it is difficult to control the surface roughness and geometric shape of the steel sheet, and even if controlled, it will be hard-worked, so the workability will deteriorate. There was a problem.
JP-A-4-236671 Japanese Patent Laid-Open No. 5-105959 JP-A-5-195149 Japanese Patent Laid-Open No. 10-1307825 JP-A-6-99202 JP-A-9-29304

本発明の課題は、引張強度が780MPa以上での加工性および耐型かじり性に優れた高強度薄鋼板とその製造方法を提供することである。なお、本発明にかかる鋼板では、加工性の目標値は、最小曲げ半径が0.2t以下とする。   An object of the present invention is to provide a high-strength thin steel sheet excellent in workability at a tensile strength of 780 MPa or more and excellent in galling resistance and a method for producing the same. In the steel sheet according to the present invention, the target value of workability is a minimum bending radius of 0.2 t or less.

本発明者らは、上記の特性を備えた鋼板を提供すべく、鋼組成、鋼表面性状、鋼組織、製造条件のそれぞれの観点から検討を重ねた。その結果、鋼組成と製造条件を適正範囲に調整することによって、鋼板の表裏面からの深さが0.05mmの表層部分のビッカース硬さが100〜250Hvの範囲で、かつ(表裏面からの深さが0.2mmの位置でのビッカース硬さ)×0.8以下、表裏面から深さ0.2mmより内層部分のビッカース硬さのばらつきが100Hv以下で、ベイナイトまたはマルテンサイト主体の組織であり、表面粗さがRaで0.4〜1.2μmの範囲の鋼板とすることにより、強度レベルを低下させることなく、曲げ性などの加工性と耐型かじり性に優れた高強度薄鋼板が得られることを見出し、本発明を完成した。   In order to provide a steel sheet having the above characteristics, the present inventors have repeatedly studied from the viewpoints of steel composition, steel surface properties, steel structure, and production conditions. As a result, by adjusting the steel composition and manufacturing conditions to an appropriate range, the Vickers hardness of the surface layer portion having a depth from the front and back surfaces of the steel sheet of 0.05 mm is in the range of 100 to 250 Hv, and (depth from the front and back surfaces). Vickers hardness at a position of 0.2 mm) x 0.8 or less, Vickers hardness variation of inner layer part from depth of 0.2 mm from the front and back surfaces is 100 Hv or less, a structure mainly composed of bainite or martensite, surface roughness Has found that a high strength thin steel sheet excellent in workability such as bendability and mold galling resistance can be obtained without lowering the strength level by making the steel sheet in the range of 0.4 to 1.2 μm in Ra. Completed the invention.

本発明によれば、従来の技術では両立できなかった、高強度化と加工性および耐型かじり性の改善を同時に達成することが可能となり、引張強度が780MPa以上、最小曲げ半径が0.2t以下の機械特性を有することを特徴とする加工性および耐型かじり性に優れた高強度薄鋼板を製造することが提供できるので、自動車の車体部品の軽量化や衝突安全性の向上に寄与する効果は顕著である。また、スキンパスのロールの消耗も低減するので、780MPa以上の高強度薄鋼板の生産性を向上させることが出来る。   According to the present invention, it is possible to simultaneously achieve high strength, workability, and improvement of mold galling resistance, which could not be achieved with the conventional technology, tensile strength is 780 MPa or more, and minimum bending radius is 0.2 t or less. It is possible to provide a high-strength thin steel sheet with excellent workability and anti-scoring property characterized by having the following mechanical properties, which contributes to reducing the weight of automobile body parts and improving collision safety Is remarkable. Also, since the wear of the skin pass roll is reduced, the productivity of high strength steel sheets of 780 MPa or more can be improved.

次に本発明で規定した諸条件について説明する。
まず、本発明の高強度薄鋼板の化学組成の限定理由について説明する。なお、以下において、特に断らないかぎり化学組成を示す%は質量%を表す。
Next, various conditions defined in the present invention will be described.
First, the reason for limiting the chemical composition of the high-strength thin steel sheet of the present invention will be described. In the following description, “%” indicating a chemical composition represents “% by mass” unless otherwise specified.

(C:0.06〜0.25%)
Cはオーステナイト安定化元素であり、硬質相を生成させ鋼を強化する変態組織強化に有効に作用する。引張強度780MPa以上を確保するためには、少なくとも0.06%以上含有させる。ただし、0.25%超含有させると加工性および溶接性が著しく劣化する。このため、C含有量を0.06〜0.25%の範囲に限定した。なお、好ましい下限は0.07%であり、好ましい上限は0.15%である。
(C: 0.06-0.25%)
C is an austenite stabilizing element and effectively acts to strengthen the transformation structure that forms the hard phase and strengthens the steel. In order to ensure a tensile strength of 780 MPa or more, at least 0.06% or more is contained. However, if it exceeds 0.25%, the workability and weldability deteriorate significantly. For this reason, C content was limited to 0.06 to 0.25% of range. A preferred lower limit is 0.07%, and a preferred upper limit is 0.15%.

(Si:0.005〜1.0%)
Siは強度向上に寄与する元素であり、本発明では0.005%以上含有させる。ただし、1.0%超含有させるとスポット溶接した際のナゲット部が硬化し靱性が劣化する。このため、Si含有量を0.005〜1.0%とした。なお、Siは脱炭反応を促進する元素であり、その効果は0.2%以上で認められるので、好ましくは0.2〜1.0%である。
(Si: 0.005-1.0%)
Si is an element that contributes to strength improvement. In the present invention, Si is contained in an amount of 0.005% or more. However, if the content exceeds 1.0%, the nugget portion at the time of spot welding is cured and the toughness deteriorates. For this reason, Si content was made into 0.005-1.0%. Si is an element that promotes the decarburization reaction, and its effect is observed at 0.2% or more, so it is preferably 0.2 to 1.0%.

(Mn:1.0〜2.7%)
Mnはオーステナイト安定化元素であり、硬質相を生成させ鋼を強化する変態組織強化に有効に作用する。引張強度780MPa以上を確保するためには、少なくとも1.0%以上含有させる。ただし、2.7%超含有させると不均一な組織となり曲げ性が劣化する。このため、Mn含有量を1.0〜2.7%とした。なお、好ましい下限は1.2%であり好ましい上限は2.6%である。
(Mn: 1.0-2.7%)
Mn is an austenite stabilizing element and effectively acts to strengthen the transformation structure that forms the hard phase and strengthens the steel. In order to ensure a tensile strength of 780 MPa or more, at least 1.0% or more is contained. However, if the content exceeds 2.7%, the structure becomes uneven and the bendability deteriorates. For this reason, Mn content was made into 1.0 to 2.7%. The preferred lower limit is 1.2% and the preferred upper limit is 2.6%.

(P:0.02%以下)
Pは不可避的不純物であり、過多に含有させると不均一な組織となるために加工性が劣化するのでできるだけ低減させるのが望ましい。このため、P含有量を0.02%以下とした。好ましくは0.015%以下である。なお、P含有量の低減に要する製鋼コストと効果との観点から下限を0.005%とすることが好ましい。
(P: 0.02% or less)
P is an unavoidable impurity, and if contained excessively, a non-uniform structure is formed, so that workability deteriorates, so it is desirable to reduce it as much as possible. Therefore, the P content is set to 0.02% or less. Preferably it is 0.015% or less. In addition, it is preferable to make a minimum into 0.005% from a viewpoint of the steel manufacturing cost and effect which are required for reduction of P content.

(S:0.01%以下)
Sは不可避的不純物であり、鋼中で硫化物として存在し、応力集中源となるために加工性が劣化する。このため、S含有量をできるだけ低減させるのが望ましいが、0.01%以下であれば、本発明で目的とするような高強度材でも曲げ性に悪影響を及ぼさない。なお、好ましくは0.005%以下である。
(S: 0.01% or less)
S is an unavoidable impurity and exists as a sulfide in the steel and becomes a stress concentration source, so that workability deteriorates. For this reason, it is desirable to reduce the S content as much as possible. However, if it is 0.01% or less, even a high-strength material as intended in the present invention does not adversely affect bendability. In addition, Preferably it is 0.005% or less.

(sol.Al:0.01〜0.08%)
Alは鋼を脱酸させるために添加される元素であり、鋼の清浄度を向上させるのに有効に作用する。シリケート介在物を除去し、加工性を向上させるためには、sol.Alで0.01%以上含有させる。ただし、0.08%超含有させると酸化物系介在物が増加するために表面性状や加工性が劣化する。このため、sol.Al含有量を0.08%以下とした。なお、好ましい下限は0.02であり、好ましい上限は0.06%である。
(Sol.Al: 0.01-0.08%)
Al is an element added to deoxidize steel and effectively acts to improve the cleanliness of the steel. In order to remove silicate inclusions and improve processability, the content of sol.Al is 0.01% or more. However, if the content exceeds 0.08%, the oxide inclusions increase, so the surface properties and workability deteriorate. Therefore, the sol.Al content is set to 0.08% or less. The preferred lower limit is 0.02, and the preferred upper limit is 0.06%.

(N:0.0003〜0.01%)
Nは不可避的不純物であり、過多に含有させると粗大な窒化物が析出するため加工性が劣化する。このため、N含有量をできるだけ低減させるのが望ましいが、0.01%以下であれば、本発明で目的とするような高強度材でも加工性に悪影響を及ぼさない。このため、N含有量を0.01%以下とした。なお、好ましくは0.005%以下、さらに好ましくは0.003%以下である。
(N: 0.0003-0.01%)
N is an unavoidable impurity, and if it is excessively contained, coarse nitrides are precipitated, so that workability is deteriorated. For this reason, it is desirable to reduce the N content as much as possible. However, if it is 0.01% or less, even a high-strength material as intended in the present invention does not adversely affect workability. For this reason, N content was made into 0.01% or less. In addition, Preferably it is 0.005% or less, More preferably, it is 0.003% or less.

(Cr:0.1〜0.5%、Mo:0.1〜0.5%、B:0.0005〜0.003%)
本発明では、必要に応じて上記元素を1種または2種以上を含有させることができる。
Crは焼入性を高め、硬質相を生成させ鋼を強化する変態組織強化に有効に作用する元素であり、その効果は0.1%以上の含有で認められる。ただし、0.5%超含有させると効果が飽和するようになり、またコスト高を招来する。このため、Cr含有量を0.1〜0.5%とした。
(Cr: 0.1-0.5%, Mo: 0.1-0.5%, B: 0.0005-0.003%)
In this invention, the said element can be contained 1 type or 2 types or more as needed.
Cr is an element that effectively acts to strengthen the transformation structure that enhances hardenability, produces a hard phase and strengthens the steel, and its effect is recognized with a content of 0.1% or more. However, if the content exceeds 0.5%, the effect becomes saturated and the cost increases. For this reason, Cr content was made into 0.1 to 0.5%.

Moは焼入性を高め、硬質相を生成させ鋼を強化する変態組織強化に有効に作用する元素であり、その効果は0.1%以上の含有で認められる。ただし、0.5%超含有させると効果が飽和するようになり、またコスト高を招来する。このため、Mo含有量を0.1〜0.5%とした。   Mo is an element that effectively acts to strengthen the transformation structure that enhances hardenability, produces a hard phase and strengthens the steel, and the effect is recognized with a content of 0.1% or more. However, if the content exceeds 0.5%, the effect becomes saturated and the cost increases. For this reason, Mo content was made into 0.1 to 0.5%.

Bは焼入性を高め、硬質相を生成させ鋼を強化する変態組織強化に有効に作用する元素であり、その効果は0.0005%以上の含有で認められる。ただし、0.003%超含有させると効果が飽和するだけでなく、熱間圧延の変形抵抗が大きくなり、製造困難となる。このため、B含有量を0.0005〜0.003%とした。なお、好ましい下限は0.0007%であり、好ましい上限は0.002%である。   B is an element that effectively acts on strengthening the transformation structure that enhances hardenability, produces a hard phase and strengthens the steel, and the effect is recognized with a content of 0.0005% or more. However, if the content exceeds 0.003%, not only the effect is saturated, but also the deformation resistance of hot rolling becomes large, which makes it difficult to produce. For this reason, B content was made into 0.0005 to 0.003%. A preferred lower limit is 0.0007%, and a preferred upper limit is 0.002%.

(Nb:0.01〜0.1%、V:0.01〜0.1%、Ti:0.01〜0.1%の1種または2種以上)
本発明では、必要に応じて上記元素を1種または2種以上を含有させることができる。これらの元素は結晶粒を微細化し、曲げ性向上に有効に作用する元素であり、その効果は各元素とも0.01%以上の含有で認められる。ただし、0.1%超含有させると、鋼中の析出物が粗大化するため加工性が劣化する。このため、Nb含有量を0.01〜0.1%、V含有量をV:0.01〜0.1%、Ti含有量をTi:0.01〜0.1%とした。
(Nb: 0.01 to 0.1%, V: 0.01 to 0.1%, Ti: 0.01 to 0.1%, one or more)
In the present invention, one or more of the above elements can be contained as required. These elements are elements that effectively work to improve the bendability by refining the crystal grains, and the effect is recognized when each element contains 0.01% or more. However, if the content exceeds 0.1%, the precipitates in the steel become coarse and the workability deteriorates. For this reason, Nb content was 0.01 to 0.1%, V content was V: 0.01 to 0.1%, and Ti content was Ti: 0.01 to 0.1%.

なお、上記した成分以外の残部はFeおよび不純物である。不純物としては、O、Cu、Niを例示することができ、それぞれO:0.006%以下、Cu:0.05%以下、Ni:0.05%以下の含有が許容できる。   The balance other than the above components is Fe and impurities. Examples of impurities include O, Cu, and Ni, and the contents of O: 0.006% or less, Cu: 0.05% or less, and Ni: 0.05% or less are acceptable.

次に、本発明の高強度薄鋼板の表層部組織の限定理由について述べる。
上記した組成を有する本発明の高強度薄鋼板の表裏面からの深さが0.05mmの位置でのビッカース硬さは100〜250Hv、かつ(表裏面からの深さが0.2mmの位置でのビッカース硬さ)×0.8以下とする。前記位置のビッカース硬さが100Hv未満であると、耐型かじり性が劣化する。前記位置のビッカース硬さが250Hv超または(表裏面から深さが0.2mmの位置でのビッカース硬さ)×0.8超であると、表面の延性が低下し、曲げ性が劣化する。
Next, the reason for limiting the surface layer structure of the high strength thin steel sheet of the present invention will be described.
The Vickers hardness at a position where the depth from the front and back surfaces of the high-strength thin steel sheet of the present invention having the above composition is 0.05 mm is 100 to 250 Hv, and (Vickers at a position where the depth from the front and back surfaces is 0.2 mm) Hardness) x 0.8 or less. When the Vickers hardness at the position is less than 100 Hv, the mold galling resistance deteriorates. When the Vickers hardness at the position is more than 250 Hv or (Vickers hardness at a depth of 0.2 mm from the front and back surfaces) × 0.8, the surface ductility is lowered and the bendability is deteriorated.

ここで、表層部分は、C(gds)((GDSにより測定したC成分値):0.5×C(gds-bulk)(GDSにより測定した鋼板の表裏面からの深さが0.1mm〜0.15mmにおけるC成分値の平均値)以下のC欠乏層を0.002〜0.05mm含むことが好ましい。なお、より厳しい成形が必要なときはMn(gds)(GDSにより測定したMn成分値):0.8×Mn(GDSにより測定した鋼板の表裏面からの深さが0.1mm〜0.15mmにおけるMn成分値の平均値)以下のMn欠乏層を含むことがさらに好ましい。このようなC欠乏層およびMn欠乏層を含むことにより、前記位置のビッカース硬さが100〜250Hvの範囲に制御しやすくなるだけでなく、著しい加工性の改善が認められる。   Here, the surface layer portion is C (gds) ((C component value measured by GDS): 0.5 × C (gds-bulk) (the depth from the front and back surfaces of the steel sheet measured by GDS is 0.1 mm to 0.15 mm) It is preferable to include 0.002 to 0.05 mm of a C-deficient layer equal to or less than the average value of C component values.Mn (gds) (Mn component value measured by GDS): 0.8 × Mn ( It is more preferable to include an Mn-deficient layer having a depth from the front and back surfaces of the steel sheet measured by GDS of 0.1 mm to 0.15 mm (average value of Mn component values) or less. Thus, not only the Vickers hardness at the position is easily controlled within the range of 100 to 250 Hv, but also a remarkable improvement in workability is recognized.

次に、本発明の高強度薄鋼板の内層部の組織の限定理由について述べる。
上記した成分および表面性状を有する本発明の高強度薄鋼板は、表裏面からの深さが0.2mmの位置から板厚中心側の内層部におけるビッカース硬さのばらつきが100Hv以下で、ベイナイトおよびマルテンサイトを合計面積率で80%以上含有する組織である。
Next, the reason for limiting the structure of the inner layer portion of the high strength thin steel sheet of the present invention will be described.
The high-strength thin steel sheet of the present invention having the components and surface properties described above has a Vickers hardness variation of 100 Hv or less in the inner layer portion on the sheet thickness center side from the position where the depth from the front and back surfaces is 0.2 mm, and bainite and martensite. It is a structure containing 80% or more of the total area ratio.

ビッカース硬さのばらつきが100Hv超になると、軟質領域に変形が集中しやすくなり、曲げ性が劣化するだけでなく、曲げ、曲げ戻し加工が施される加工性も著しく劣化する。このため、前記内層部のビッカース硬さのばらつきを100Hv以下とした。   When the variation in Vickers hardness exceeds 100 Hv, deformation tends to concentrate in the soft region and not only the bendability deteriorates, but also the workability subjected to bending and bending back processing deteriorates remarkably. For this reason, the variation in the Vickers hardness of the inner layer portion was set to 100 Hv or less.

また、ベイナイトおよびマルテンサイト以外に、例えば、フェライトおよび残留オーステナイトを合計面積率で20%以上含有する場合には、相界面で微小亀裂が発生しやすくなり、曲げ性が著しく低下する。このため、ベイナイトおよびマルテンサイトを合計面積率で80%以上含有するものとした。ここで、ベイナイトやマルテンサイトは一方の面積率が0%であっても構わない。   In addition to bainite and martensite, for example, when ferrite and residual austenite are contained in a total area ratio of 20% or more, microcracks are likely to occur at the phase interface, and the bendability is significantly reduced. For this reason, bainite and martensite are contained in a total area ratio of 80% or more. Here, bainite and martensite may have an area ratio of 0%.

ここに、本発明によれば「加工性」と「耐かじり性」とが両立する理由は、表面を軟質な組織にすることによって、曲げ性を向上させるだけでなく、鋼板表面の粗さの調整を容易にして、耐かじり特性をも向上させることができるからである。なお、引張強度が780Mpa以上の高強度薄鋼板は、硬質であるがゆえに鋼板の表面粗さの制御が困難であり、このため鋼板の表面粗さの制御については従来検討されていなかったのである。   Here, according to the present invention, the reason that “workability” and “galling resistance” are compatible is that not only the bendability is improved by making the surface a soft structure, but also the roughness of the steel sheet surface. This is because adjustment can be facilitated and anti-galling characteristics can be improved. In addition, the high strength thin steel sheet having a tensile strength of 780 Mpa or more is difficult to control the surface roughness of the steel sheet because it is hard, and therefore, the control of the surface roughness of the steel sheet has not been studied in the past. .

次に、本発明の高強度薄鋼板の表面粗さの限定理由について述べる。
本発明にかかる高強度薄鋼板の表面粗さは、Raで0.4〜1.2μmの範囲とする。Raを0.4μm以上にすることにより、摺動性が向上し、加工性が向上するだけでなく、耐型かじり性が改善される。ただし、Raが1.2μm超になると、鋼板表面の凹部に応力集中しやすくなり加工性が劣化する。このため、表面粗さをRaで0.4μm以上1.2μm以下の範囲とした。鋼板の表面粗さは焼鈍前の冷間圧延工程と焼鈍後のスキンパス圧延工程で調整出来る。
Next, the reason for limiting the surface roughness of the high-strength thin steel sheet of the present invention will be described.
The surface roughness of the high-strength thin steel sheet according to the present invention is in the range of 0.4 to 1.2 μm in Ra. By making Ra 0.4 μm or more, not only the slidability is improved and the workability is improved, but also the mold galling resistance is improved. However, when Ra exceeds 1.2 μm, stress tends to concentrate on the recesses on the surface of the steel sheet and workability deteriorates. For this reason, the surface roughness was set to a range of 0.4 μm or more and 1.2 μm or less in terms of Ra. The surface roughness of the steel sheet can be adjusted by a cold rolling process before annealing and a skin pass rolling process after annealing.

次に、本発明の高強度薄鋼板の製造条件の限定理由について述べる。
本発明の高強度薄鋼板は、上述した鋼組成を備える鋼片または鋼塊から熱間圧延を経て得られた冷間圧延鋼板に後述する連続焼鈍を施すことにより製造することができるが、その他の製造条件については常法で構わない。例えば、上述した鋼組成を備える鋼塊または鋼片に、熱間圧延、脱スケール、冷間圧延および連続焼鈍を施す場合には以下のようにするのがよい。
Next, the reasons for limiting the production conditions of the high strength thin steel sheet of the present invention will be described.
The high-strength thin steel sheet of the present invention can be produced by subjecting a cold-rolled steel sheet obtained by hot rolling from a steel slab or steel ingot having the above-described steel composition to continuous annealing described later. As for the production conditions, conventional methods may be used. For example, when hot rolling, descaling, cold rolling and continuous annealing are performed on a steel ingot or steel slab having the above-described steel composition, it is preferable to do the following.

上記した鋼組成の溶鋼を転炉、電気炉等の通常公知の溶製方法で溶製し、連続鋳造や鋳造―分塊圧延によりスラブ等の鋼素材とする。生産性の観点からは連続鋳造が望ましい。
次に、前記鋼素材を熱間圧延に供するが、前記鋼素材を連続鋳造法により製造する場合には、連続鋳造後、直接熱間圧延に供してもよいし、連続鋳造や鋳造―分塊圧延により製造する場合には、一度適当な温度まで冷却した後に加熱炉で加熱して熱間圧延に供してもよい。加熱炉にて加熱する場合の加熱温度は1000〜1300℃とするのが好ましい。1000℃以上で加熱すると熱間圧延が容易であるだけでなく、表面にMn欠乏層が形成され、連続焼鈍後の鋼板の表裏面からの深さが0.05mmの位置でのビッカース硬さを100〜250Hvに制御することが容易になる。一方、加熱温度を1300℃超とするとスケールロスが増加する。
The molten steel having the above steel composition is melted by a generally known melting method such as a converter or an electric furnace, and is made into a steel material such as a slab by continuous casting or casting-slab rolling. Continuous casting is desirable from the viewpoint of productivity.
Next, the steel material is subjected to hot rolling. When the steel material is produced by a continuous casting method, it may be directly subjected to hot rolling after continuous casting, or continuous casting or casting-splitting. When manufacturing by rolling, after cooling to a suitable temperature once, you may use for a hot rolling by heating with a heating furnace. When heating in a heating furnace, the heating temperature is preferably 1000 to 1300 ° C. When heated above 1000 ° C, not only hot rolling is easy, but also a Mn-deficient layer is formed on the surface, and the Vickers hardness at a position where the depth from the front and back surfaces of the steel sheet after continuous annealing is 0.05 mm is 100 It becomes easy to control to ~ 250Hv. On the other hand, when the heating temperature exceeds 1300 ° C., the scale loss increases.

熱間圧延における仕上温度は800〜950℃の範囲とすることが好ましい。仕上温度が800℃未満では、圧延時の変形抵抗が大きく、組織が不均一なバンド組織となり、冷却焼鈍後の加工性が劣化する場合がある。一方、950℃を超えると、その後の冷却で粒成長が生じ、均一微細の組織が得られない場合がある。熱間圧延後の巻取温度は500〜700℃の範囲とすることが好ましい。巻取温度が500℃未満では、硬質なベイナイトやマルテンサイトが生成し、その後の冷間圧延が困難となる場合がある。また、巻取温度が700℃を超えると、組織が不均一なバンド組織となり、連続焼鈍後の加工性が劣化する場合がある。   The finishing temperature in hot rolling is preferably in the range of 800 to 950 ° C. When the finishing temperature is less than 800 ° C., the deformation resistance during rolling is large, the structure becomes a non-uniform band structure, and the workability after cooling annealing may deteriorate. On the other hand, when the temperature exceeds 950 ° C., grain growth occurs in subsequent cooling, and a uniform fine structure may not be obtained. The coiling temperature after hot rolling is preferably in the range of 500 to 700 ° C. When the coiling temperature is less than 500 ° C., hard bainite and martensite are generated, and subsequent cold rolling may be difficult. When the coiling temperature exceeds 700 ° C., the structure becomes a non-uniform band structure, and the workability after continuous annealing may deteriorate.

熱延鋼板は通常の方法で酸洗を施された後に冷間圧延を施され、冷延鋼板とされる。冷延焼鈍板の組織を微細化し、加工性を向上させるためには、冷間圧延の圧下率は40%以上とするのが好ましい。なお、連続焼鈍前の冷間圧延で、鋼板表面の粗さを調整してもよい。その場合、最終パスの圧延をロールの表面粗さRaを2.0μm以上、圧下量を8μm以上として圧延するのが好ましい。   The hot-rolled steel sheet is pickled by a normal method and then cold-rolled to obtain a cold-rolled steel sheet. In order to refine the structure of the cold-rolled annealed plate and improve workability, it is preferable that the rolling reduction of cold rolling is 40% or more. In addition, you may adjust the roughness of the steel plate surface by the cold rolling before continuous annealing. In that case, it is preferable to roll the final pass at a roll surface roughness Ra of 2.0 μm or more and a reduction amount of 8 μm or more.

(冷延鋼板の均熱条件:700℃〜(Ac3変態点−20℃)の温度範囲を20秒以上かけて加熱し、(Ac3変態点−20℃)〜(Ac3変態点+20℃)の範囲に10秒以上保持する)
冷延鋼板の焼鈍は連続焼鈍とし、まず、700℃〜(Ac3変態点−20℃)の温度範囲を20秒以上かけて加熱し、(Ac3変態点−20℃)〜(Ac3変態点+20℃)の範囲に10秒以上保持する。
(Soaking conditions for cold-rolled steel sheet: 700 ° C to (Ac 3 transformation point – 20 ° C) over 20 seconds, heated (Ac 3 transformation point – 20 ° C) to (Ac 3 transformation point + 20 ° C) ) Within 10 seconds)
The annealing of the cold-rolled steel sheet is continuous annealing. First, the temperature range from 700 ° C. to (Ac 3 transformation point −20 ° C.) is heated for 20 seconds or more, and (Ac 3 transformation point −20 ° C.) to (Ac 3 transformation). Hold for 10 seconds or longer in the range of (+ 20 ℃).

700℃〜(Ac3変態点−20℃)の温度範囲を20秒以上かけて加熱することにより、鋼板表面が脱炭によって軟質化し、鋼板表面に所望の表面粗さを具備せしめることが容易になるだけでなく、鋼板の加工性が向上する。一旦、冷延鋼板を(Ac3変態点−20℃)〜(Ac3変態点+20℃)の範囲に加熱し、オーステナイト単相あるいはオーステナイト単相に近い組織にすることにより、ベイナイトおよびマルテンサイトを合計面積率で80%以上含有した均一組織を有する加工性に優れた冷延焼鈍鋼板となる。保持温度が(Ac3変態点−20℃)未満では、冷延組織の影響が残りバンド組織となり加工性が著しく劣化する。一方、保持温度が(Ac3変態点+20℃)超では、組織が粗大化し、均一組織を有する冷延焼鈍板が得られなくなるだけでなく、復炭するので、表層部分のC含有量が高まり、表層部分を所望の硬さにすることが困難になる。このため、冷延鋼板の保持温度を(Ac3変態点−20℃)以上(Ac3変態点+20℃)以下とした。また、保持温度がAc3変態点を越えると、さらに組織が均一になり、加工性が向上するので、保持温度をAc3 変態点〜(Ac3 変態点+20℃)とするのが好ましい。 By heating the temperature range from 700 ° C to (Ac 3 transformation point-20 ° C) over 20 seconds, the steel plate surface is softened by decarburization, and it is easy to provide the desired surface roughness on the steel plate surface. In addition, the workability of the steel sheet is improved. Once the cold-rolled steel sheet is heated to the range of (Ac 3 transformation point −20 ° C.) to (Ac 3 transformation point + 20 ° C.) to form austenite single phase or a structure close to austenite single phase, bainite and martensite are formed. A cold-rolled annealed steel sheet having a uniform structure containing 80% or more in total area ratio and excellent workability is obtained. If the holding temperature is lower than (Ac 3 transformation point−20 ° C.), the influence of the cold-rolled structure remains and a band structure is formed, and the workability is significantly deteriorated. On the other hand, if the holding temperature exceeds (Ac 3 transformation point + 20 ° C.), the structure becomes coarse and not only a cold-rolled annealed sheet having a uniform structure can be obtained, but also re-coalizing, so the C content in the surface layer portion increases. It becomes difficult to make the surface layer portion have a desired hardness. For this reason, the holding temperature of the cold rolled steel sheet was set to (Ac 3 transformation point−20 ° C.) or more and (Ac 3 transformation point + 20 ° C.) or less. Further, when the holding temperature exceeds the Ac 3 transformation point, the structure becomes more uniform and the workability is improved. Therefore, the holding temperature is preferably set to Ac 3 transformation point to (Ac 3 transformation point + 20 ° C.).

なお、Ac3変態点温度の確認は、熱膨張曲線の解析により行う。
また、(Ac3変態点−20℃)〜(Ac3変態点+20℃)の範囲で10秒以上保持することにより、置換型元素であるMn等の偏析が低減し、冷延焼鈍板の組織が均一となり加工性が向上する。このため、冷延鋼板の焼鈍条件を(Ac3変態点−20℃)〜(Ac3変態点+20℃)で10秒以上保持するとした。ただし、長時間の保持は粒径の粗大化を起こすので、(Ac3変態点−20℃)〜(Ac3変態点+20℃)の範囲で10秒以上300秒以下保持するのが好ましい。
The Ac 3 transformation point temperature is confirmed by analyzing the thermal expansion curve.
In addition, segregation of substitutional elements such as Mn is reduced by holding for 10 seconds or more in the range of (Ac 3 transformation point −20 ° C.) to (Ac 3 transformation point + 20 ° C.), and the structure of the cold-rolled annealed plate Becomes uniform and processability is improved. For this reason, the annealing conditions of the cold-rolled steel sheet are held at (Ac 3 transformation point −20 ° C.) to (Ac 3 transformation point + 20 ° C.) for 10 seconds or more. However, since holding for a long time causes coarsening of the particle size, it is preferable to hold for 10 seconds to 300 seconds in the range of (Ac 3 transformation point−20 ° C.) to (Ac 3 transformation point + 20 ° C.).

なお、焼鈍雰囲気は特に規定するものではないが、例えば、酸素含有雰囲気や高露点雰囲気中で焼鈍すれば、脱炭焼鈍可能となり表層部分のC量が低下するので好ましい。
(冷延鋼板の冷却条件)
冷延鋼板はついで、650℃から450℃までの平均冷却速度を20〜200℃/秒で、200〜450℃の冷却停止温度域まで冷却する。冷却速度が20℃/秒未満になると、780MPa以上の引張強度を確保するのが困難となるだけでなく、冷却速度が遅い場合には、フェライトだけでなくパーライトが生成し易く、不均一な組織となり加工性が劣化する。ただし、冷却速度が200℃/秒超になると、表層部分が硬質化するので、冷延鋼板の650℃から450℃までの平均冷却速度を20〜200℃/秒とした。
The annealing atmosphere is not particularly defined, but for example, annealing in an oxygen-containing atmosphere or a high dew point atmosphere is preferable because it can be decarburized and annealed, and the C content in the surface layer portion is reduced.
(Cooling conditions for cold-rolled steel sheet)
The cold-rolled steel sheet is then cooled at an average cooling rate from 650 ° C. to 450 ° C. at 20 to 200 ° C./second to a cooling stop temperature range of 200 to 450 ° C. When the cooling rate is less than 20 ° C / sec, it becomes difficult to secure a tensile strength of 780 MPa or more, and when the cooling rate is slow, not only ferrite but also pearlite is likely to be generated, resulting in a non-uniform structure. As a result, workability deteriorates. However, when the cooling rate exceeds 200 ° C./second, the surface layer portion becomes hard, so the average cooling rate from 650 ° C. to 450 ° C. of the cold-rolled steel sheet is set to 20 to 200 ° C./second.

本発明では、冷延鋼板を200〜450℃の冷却停止温度域まで冷却する。冷却停止温度が450℃超になると、780MPa以上の引張強度を確保するのが困難となる。一方、200℃未満になると、熱収縮ならびに変態膨張により鋼板の平坦性が劣化するだけでなく、表面の硬化によって加工性も劣化するので、冷却停止温度を200℃〜450℃とした。   In the present invention, the cold-rolled steel sheet is cooled to a cooling stop temperature range of 200 to 450 ° C. When the cooling stop temperature exceeds 450 ° C., it becomes difficult to secure a tensile strength of 780 MPa or more. On the other hand, when the temperature is lower than 200 ° C., not only the flatness of the steel sheet deteriorates due to heat shrinkage and transformation expansion, but also the workability deteriorates due to the hardening of the surface, so the cooling stop temperature is set to 200 ° C. to 450 ° C.

冷却停止温度まで連続冷却した後、200〜450℃の温度範囲に30秒から10分保持し、その後に室温まで冷却する。オーステナイト相が分解し、組織を均一にするためには保持時間が30秒以上必要である。ただし、10分超保持することはエネルギーの無駄や生産性の低下につながる。   After continuous cooling to the cooling stop temperature, hold in the temperature range of 200 to 450 ° C. for 30 seconds to 10 minutes, and then cool to room temperature. In order to decompose the austenite phase and make the structure uniform, a holding time of 30 seconds or more is required. However, holding for more than 10 minutes leads to waste of energy and reduced productivity.

さらに、鋼板表面の粗さを調整するために、連続焼鈍後スキンパス圧延を行う。その場合、ロールの表面粗さRaを1.0μm〜4.0μmとし、鋼板の伸び率を0.1〜1%にする。
ロールの表面粗さRaが1.0μm未満では、所望の鋼板表面の粗さにすることが困難となるので、耐型かじり性が劣化する。一方、ロールの表面粗さRaが4.0μm超では、ロールと鋼板の焼き付きが生じる恐れがあり、所望の鋼板表面の粗さにすることが困難となり、さらに加工性が劣化する。したがって、ロールの表面粗さRaを1.0μm〜4.0μmとする。
Furthermore, in order to adjust the roughness of the steel sheet surface, skin pass rolling is performed after continuous annealing. In that case, the surface roughness Ra of the roll is set to 1.0 μm to 4.0 μm, and the elongation of the steel sheet is set to 0.1 to 1%.
If the surface roughness Ra of the roll is less than 1.0 μm, it becomes difficult to obtain a desired surface roughness of the steel sheet, so that the mold galling resistance deteriorates. On the other hand, if the surface roughness Ra of the roll exceeds 4.0 μm, the roll and the steel plate may be seized, making it difficult to obtain a desired surface roughness of the steel plate, and further deteriorate the workability. Therefore, the surface roughness Ra of the roll is set to 1.0 μm to 4.0 μm.

スキンパス圧延の伸び率が0.1%未満になると、ロールの表面粗さが鋼板に十分に転写されず、所望の鋼板表面の粗さが得られず、耐型かじり性が劣化する。一方、スキンパス圧延の伸び率が1.0%超になると、加工性が劣化する。したがって、スキンパス圧延の伸び率を0.1〜1.0%の範囲とする。   When the elongation rate of skin pass rolling is less than 0.1%, the surface roughness of the roll is not sufficiently transferred to the steel sheet, the desired surface roughness of the steel sheet cannot be obtained, and the mold galling resistance deteriorates. On the other hand, when the elongation rate of skin pass rolling exceeds 1.0%, workability deteriorates. Therefore, the elongation rate of skin pass rolling is set to a range of 0.1 to 1.0%.

このように、鋼素材成分の調整、熱間圧延、冷間圧延後焼鈍、スキンパス圧延条件の適正化により、鋼板の表裏面からの深さが0.05mmの位置でのビッカース硬さが100〜250Hvかつ(表裏面からの深さが0.2mmの位置でのビッカース硬さ)×0.8以下、表裏面からの深さが0.2mmの位置から板厚中心側の内層部におけるビッカース硬さのばらつきが100Hv以下であり、内層部がベイナイトおよびマルテンサイトを合計面積率で80%以上含有し、鋼板の表面粗さがRaで0.4〜1.2μmであり、鋼板の引張強度が780MPa以上である高強度薄鋼板となる。   In this way, by adjusting the steel material components, hot rolling, annealing after cold rolling, and optimization of skin pass rolling conditions, the Vickers hardness at a position where the depth from the front and back surfaces of the steel sheet is 0.05 mm is 100 to 250 Hv And (Vickers hardness at a depth of 0.2 mm from the front and back surfaces) × 0.8 or less, variation in Vickers hardness at the inner layer part on the thickness side from the position of 0.2 mm depth from the front and back surfaces is 100 Hv A high-strength thin steel sheet in which the inner layer contains bainite and martensite in a total area ratio of 80% or more, the surface roughness of the steel sheet is 0.4 to 1.2 μm in Ra, and the tensile strength of the steel sheet is 780 MPa or more. It becomes.

本発明の実施例を以下に示す。   Examples of the present invention are shown below.

表1に示す化学組成を有する鋼片を1250℃に加熱し、表2に示す条件で熱間圧延を行った後、巻き取り、その後冷却を行って熱延鋼板(板厚3.5mm)とした。ついで、熱延鋼板に酸洗を行い、厚さ1mmにまで冷間圧延を施し冷延鋼板とした。   A steel slab having the chemical composition shown in Table 1 was heated to 1250 ° C., subjected to hot rolling under the conditions shown in Table 2, wound up, and then cooled to obtain a hot-rolled steel sheet (3.5 mm thick). . Next, the hot-rolled steel sheet was pickled and cold-rolled to a thickness of 1 mm to obtain a cold-rolled steel sheet.

その後、冷延鋼板に表2に示す温度まで加熱し、焼鈍後、表2の条件で冷却後、スキンパス圧延を行った。表1に示す成分を有する冷延鋼板のAc3変態点温度を測定するとともに、得られた冷延焼鈍板について、Ac3変態点測定、表面粗さ測定、硬さ測定、組織観察、引張試験、曲げ試験を実施した。試験方法を下記に示す。 Thereafter, the cold-rolled steel sheet was heated to the temperature shown in Table 2, and after annealing, after cooling under the conditions shown in Table 2, skin pass rolling was performed. While measuring the Ac 3 transformation point temperature of the cold-rolled steel sheet having the components shown in Table 1, the obtained cold-rolled annealed plate was measured for Ac 3 transformation point, surface roughness measurement, hardness measurement, structure observation, tensile test. A bending test was conducted. The test method is shown below.

(実験方法)
(1)Ac3変態点温度の測定
各種冷延鋼板から試験片を採取し、室温から1000℃まで10℃/sで加熱した際の膨張率変化を解析することによって、Ac3変態点温度を測定した。
(experimental method)
(1) Measurement of Ac 3 transformation point temperature By collecting specimens from various cold-rolled steel sheets and analyzing the change in expansion coefficient when heated from room temperature to 1000 ° C at 10 ° C / s, the Ac 3 transformation point temperature was determined. It was measured.

(2)表面粗さ測定
JIS-B0601に規定されている方法に基づきRaを測定した。
(3)硬さ測定
各種冷延焼鈍板の圧延方向断面、圧延方向と直角方向断面のビッカース硬さを測定した。鋼板表面からの深さが0.05mmの位置の平均硬さを表層部分の硬さとした。圧痕の荷重を9.8×10-2Nとし、200μm間隔でに10点硬さを測定し、平均硬さを算出した。圧痕の荷重が9.8×10-2 N以上になると、圧痕が大きくなり、表層部分の硬さが測定できない。
(2) Surface roughness measurement
Ra was measured based on the method specified in JIS-B0601.
(3) Hardness measurement Vickers hardness of various cold-rolled annealed plates in the rolling direction and in the direction perpendicular to the rolling direction was measured. The average hardness at a position where the depth from the steel sheet surface was 0.05 mm was defined as the hardness of the surface layer portion. The indentation load was 9.8 × 10 −2 N, 10-point hardness was measured at intervals of 200 μm, and the average hardness was calculated. When the indentation load is 9.8 × 10 −2 N or more, the indentation becomes large and the hardness of the surface layer portion cannot be measured.

また、鋼板表面からの深さが0.2mmの位置の平均硬さを内部の硬さとした。表層部分の硬さと比較するため、圧痕の荷重を9.8×10-2 Nとし、200μm間隔で10点硬さを測定し、平均硬さを算出した。 The average hardness at a position where the depth from the steel sheet surface is 0.2 mm was defined as the internal hardness. In order to compare with the hardness of the surface layer portion, the indentation load was 9.8 × 10 −2 N, 10 point hardness was measured at intervals of 200 μm, and the average hardness was calculated.

さらに、深さが0.2mmの位置の硬さばらつきを内層部分の硬さばらつきとした。圧痕の荷重を0.49Nとし、200μm間隔でに10点硬さを測定し、最大値と最小値の硬さの差を硬さばらつきとした。   Further, the hardness variation at the position where the depth is 0.2 mm was regarded as the hardness variation of the inner layer portion. The indentation load was 0.49 N, 10-point hardness was measured at intervals of 200 μm, and the difference in hardness between the maximum value and the minimum value was regarded as hardness variation.

(4)組織観察
各種冷延焼鈍板の圧延方向および圧延方向と直角方向から試験片を採取し、圧延方向断面、圧延方向と直角方向断面の組織を光学顕微鏡あるいは電子顕微鏡で撮影し、画像解析により各相の分率を測定した。
(4) Microstructure observation Specimens were sampled from the rolling direction of various cold-rolled annealed sheets and the direction perpendicular to the rolling direction, and the cross-sectional view in the rolling direction and the cross-sectional structure perpendicular to the rolling direction were photographed with an optical microscope or electron microscope for image analysis. Was used to measure the fraction of each phase.

(5)引張試験
各種冷延焼鈍板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張特性(引張強度TS、伸びEl)を調査した。
(5) Tensile test JIS No. 5 tensile test specimens were sampled from the direction perpendicular to the rolling direction of various cold-rolled annealed plates and examined for tensile properties (tensile strength TS, elongation El).

(6)曲げ試験
各種冷延焼鈍板から圧延方向に直角方向を長手方向とするJIS3号曲げ試験片を採取し、JIS Z 2248の規定に準拠したVブロック法により、曲げ性を調査した。その際、頂角90°の押し金具をバリが内側となるように押し込んだ。試験後の正否は目視にて調査し、試験後に割れが認められない押し金具の最小半径を板厚で割り、規格化することにより最小曲げ半径を算出した。なお、半径が2mm、1mm、0.5mm、0.2mm、0mmの押し金具を用いた。
(6) Bending test JIS No. 3 bending test specimens with the direction perpendicular to the rolling direction as the longitudinal direction were taken from various cold-rolled annealed plates, and the bendability was investigated by the V-block method in accordance with the provisions of JIS Z 2248. At that time, a pusher with an apex angle of 90 ° was pushed so that the burr was inside. The correctness after the test was visually checked, and the minimum radius of the metal fitting that was not cracked after the test was divided by the plate thickness and normalized to calculate the minimum bend radius. In addition, a press fitting having a radius of 2 mm, 1 mm, 0.5 mm, 0.2 mm, and 0 mm was used.

(7)耐かじり特性評価試験
耐型かじり性は、直径50mmの円筒ポンチを使用し、防錆油(パーカ興産株式会社製、NOX-RUST(登録商標) 550HN)を塗油量1g/m2で両面に塗布した鋼板について、絞り比1.8の円筒絞り成形を行い、20枚成形した時点の成形品を目視評価し、外観上問題のないものと不良のものと区別して評価した。ただし、鋼板強度TSが1180MPa以上のものは、円筒絞りが難しいので、図1に示すハット成形を行い、20枚成形した時点の成形品を目視評価し、外観上問題のないものと不良のものと区別して評価した。問題のないものを「○」で、不良のものを「×」で示す。
(7) Scoring resistance evaluation test For anti-scratching characteristics, a cylindrical punch with a diameter of 50 mm is used, and antirust oil (NOX-RUST (registered trademark) 550HN, manufactured by Parka Kosan Co., Ltd.) is applied 1 g / m 2 The steel sheets coated on both sides were subjected to cylindrical drawing with a drawing ratio of 1.8, and the molded products at the time of forming 20 sheets were visually evaluated to distinguish them from those having no problem in appearance and those having defects. However, when the steel sheet strength TS is 1180MPa or more, it is difficult to draw the cylinder, so the hat forming shown in Fig. 1 is performed and the molded product when 20 sheets are formed is visually evaluated. And was evaluated separately. Those with no problem are indicated with “◯”, and those with no problem are indicated with “X”.

(8)スポット溶接性評価試験
同一鋼種の鋼板を重ね、スポット溶接を行い、スポット溶接試験片を作製した。スポット溶接は、電極:ダブルR型、加圧力:3900N、通電:16サイクル(電流7.5kA)、保持:3サイクルの条件で実施した。スポット溶接性はスポット溶接試験片をたがねで剥離したときのナゲット(スポット溶接時に溶融し、その後凝固した部分)内の破断が無いときは○で、有るときは×で示す。
(8) Spot weldability evaluation test The steel plates of the same steel type were stacked and spot welded to produce spot weld specimens. Spot welding was performed under the conditions of electrode: double R type, applied pressure: 3900 N, energization: 16 cycles (current 7.5 kA), and holding: 3 cycles. The spot weldability is indicated by ◯ when there is no breakage in the nugget (the portion melted at the time of spot welding and then solidified) when the spot weld specimen is peeled with the chisel, and when there is, it is indicated by ×.

これらの結果を表3に示す。本発明例の鋼板は、表裏面からの深さが0.05mmの位置でのビッカース硬さが100〜250Hvかつ(表裏面からの深さが0.2mmの位置でのビッカース硬さ)×0.8以下、表裏面からの深さが0.2mmの位置から板厚中心側の内層部におけるビッカース硬さのばらつきが100Hv以下で、内層部がベイナイトおよびマルテンサイトを合計面積率で80%以上含有する組織であり、表面粗さがRaで0.4〜1.2μmの範囲で、該鋼板の引張強度が780MPa以上、最小曲げ半径が0.2t以下の機械特性を有する加工性に優れた高強度冷延鋼板となっている。   These results are shown in Table 3. The steel sheet of the present invention has a Vickers hardness of 100 to 250 Hv at a position where the depth from the front and back surfaces is 0.05 mm and (Vickers hardness at a position where the depth from the front and back surfaces is 0.2 mm) x 0.8 or less, The Vickers hardness variation in the inner layer part from the position where the depth from the front and back surfaces is 0.2mm to the center side of the plate thickness is 100Hv or less, and the inner layer part contains bainite and martensite in a total area ratio of 80% or more. In the range of 0.4 to 1.2 μm in surface roughness Ra, the steel sheet has a tensile strength of 780 MPa or more and a minimum bending radius of 0.2 t or less. .

これに対し、比較例の鋼板No.1とNo.2は、化学成分が本発明範囲から外れており、所定の強度が確保できない。鋼板No.16は、化学成分が本発明範囲から外れており、不均一な組織であるために曲げ性が悪い。鋼板No.27は、化学成分が本発明範囲から外れており、溶接した際にナゲット部が硬化するために靱性が劣化する。鋼板33は、化学成分が本発明範囲から外れており、曲げ性が悪いだけでなく、溶接した際にナゲット部が硬化するために靱性が劣化する。   On the other hand, steel plates No. 1 and No. 2 of the comparative examples have chemical components that are out of the scope of the present invention, and cannot ensure a predetermined strength. Steel plate No. 16 has a chemical component that is out of the scope of the present invention, and has a non-uniform structure, and therefore has poor bendability. Steel plate No. 27 has a chemical component outside the scope of the present invention, and the toughness deteriorates because the nugget portion hardens when welded. The steel plate 33 has a chemical component that is out of the scope of the present invention and is not only poor in bendability but also deteriorates toughness because the nugget portion is hardened when welded.

鋼板No.3は、製造条件が本発明範囲から外れており、所定の強度が確保できないだけでなく、不均一な組織であるため曲げ性が悪い。No.25は、製造条件が本発明範囲から外れており、所定の強度が確保できない。鋼板No.5とNo.7は、製造条件が本発明範囲から外れており、表面が硬質で、曲げ性が悪いだけでなく、鋼板の表面粗さが小さく、耐型かじり特性も悪い。鋼板No.8は、製造条件が本発明範囲から外れており、不均一な組織であるため曲げ性が悪い。鋼板No.9は、製造条件が本発明範囲から外れており、スキンパス圧延の圧延率が大きいので、表面の延性が劣化し、曲げ性が悪い。鋼板No.10は、製造条件が本発明範囲から外れており、曲げ性が悪い。鋼板No.17とNo.21は、製造条件が本発明範囲から外れており、不均一な組織であるために曲げ性が悪い。鋼板No.29は、製造条件が本発明範囲から外れており、表面が硬質であるために曲げ性が悪いだけでなく、鋼板の表面粗さが小さく、型かじり特性も悪い。鋼板No.30は、製造条件が本発明範囲から外れており、熱処理した際に表層部分の応力ならびにひずみが緩和されていないために曲げ性が悪い。鋼板No.13と14は、製造条件が本発明範囲から外れており、鋼板の表面粗さが小さく、型かじり特性が悪い。   Steel plate No. 3 has manufacturing conditions that are out of the scope of the present invention, and not only cannot ensure a predetermined strength, but also has poor bendability due to its non-uniform structure. In No. 25, the manufacturing conditions are out of the scope of the present invention, and the predetermined strength cannot be secured. Steel plates No. 5 and No. 7 have manufacturing conditions that are out of the scope of the present invention, and the surface is hard and the bendability is not only poor, but also the surface roughness of the steel plate is small and the anti-galling property is also poor. Steel plate No. 8 has a manufacturing condition deviating from the scope of the present invention, and has a non-uniform structure, and therefore has poor bendability. Steel plate No. 9 has manufacturing conditions that are out of the scope of the present invention, and the rolling rate of skin pass rolling is large, so the surface ductility deteriorates and the bendability is poor. Steel plate No. 10 has manufacturing conditions that are out of the scope of the present invention and has poor bendability. Steel plates No. 17 and No. 21 have poor bendability because the manufacturing conditions are out of the scope of the present invention and the structure is uneven. Steel plate No. 29 has manufacturing conditions that are out of the scope of the present invention, and since the surface is hard, not only the bendability is bad, but also the surface roughness of the steel plate is small and the die-squeeze characteristics are poor. Steel plate No. 30 has poor bendability because the manufacturing conditions deviate from the scope of the present invention, and the stress and strain of the surface layer portion are not relaxed when heat-treated. Steel plate Nos. 13 and 14 have manufacturing conditions that are out of the scope of the present invention, the surface roughness of the steel plate is small, and the galling property is poor.

Figure 0004254663
Figure 0004254663

Figure 0004254663
Figure 0004254663

Figure 0004254663
Figure 0004254663

型かじり試験条件を示す説明図である。It is explanatory drawing which shows a mold galling test condition.

Claims (4)

質量%で、C:0.06〜0.25%、Si:0.005〜1.0%、Mn:1.0〜2.7%、P:0.02%以下、S:0.01%以下、sol.Al:0.01〜0.08%およびN:0.0003〜0.01%を含有し、残部Feおよび不純物からなる化学組成を有する鋼板であって、前記鋼板の表裏面からの深さが0.05mmの位置でのビッカース硬さが100〜250Hv、かつ(表裏面からの深さが0.2mmの位置でのビッカース硬さ)×0.8以下、表裏面からの深さが0.2mmの位置から板厚中心側の内層部におけるビッカース硬さのばらつきが100Hv以下であり、前記内層部がベイナイトおよびマルテンサイトを合計面積率で80%以上含有し、前記鋼板の表面粗さがRaで0.4〜1.2μmであり、前記鋼板の引張強度が780MPa以上であることを特徴とする高強度薄鋼板。   In mass%, C: 0.06-0.25%, Si: 0.005-1.0%, Mn: 1.0-2.7%, P: 0.02% or less, S: 0.01% or less, sol.Al: 0.01-0.08% and N: 0.0003- A steel sheet containing 0.01% and having a chemical composition consisting of the remaining Fe and impurities, the Vickers hardness at a position where the depth from the front and back surfaces of the steel sheet is 0.05 mm is 100 to 250 Hv, and (from the front and back surfaces) Vickers hardness at a position where the depth is 0.2 mm) × 0.8 or less, variation in Vickers hardness in the inner layer portion on the thickness side from the position where the depth from the front and back surfaces is 0.2 mm is 100 Hv or less, The inner layer contains bainite and martensite in a total area ratio of 80% or more, the surface roughness of the steel sheet is 0.4 to 1.2 μm in Ra, and the tensile strength of the steel sheet is 780 MPa or more. Strength thin steel sheet. 前記化学組成が、さらに、質量%で、Cr:0.1〜0.5%、Mo:0.1〜0.5%、およびB:0.0005〜0.003%の1種または2種以上を含有することを特徴とする請求項1に記載の高強度薄鋼板。   The chemical composition further contains one or more of Cr: 0.1 to 0.5%, Mo: 0.1 to 0.5%, and B: 0.0005 to 0.003% by mass%. The high-strength thin steel sheet described in 1. 前記化学組成が、さらに、質量%で、Nb:0.01〜0.1%、V:0.01〜0.1%、およびTi:0.01〜0.1%の1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度薄鋼板。   The chemical composition further contains one or more of Nb: 0.01 to 0.1%, V: 0.01 to 0.1%, and Ti: 0.01 to 0.1% by mass%. Or the high-strength thin steel sheet according to 2; 請求項1〜3のいずれかに記載の化学組成を備える鋼に、熱間圧延、脱スケール処理、冷間圧延を施した後、得られた鋼板に、連続焼鈍設備により、700℃〜(Ac3変態点−20℃)の温度範囲を20秒以上かけて加熱し、(Ac3変態点−20℃)〜(Ac3変態点+20℃)の範囲に10秒以上保持した後、650℃から450℃までの平均冷却速度を20〜200℃/秒として、200〜450℃まで冷却し、200℃〜450℃の温度範囲に30秒〜10分保持し、その後に室温まで冷却し、連続焼鈍後に表面粗さRaが1.0〜4.0μmのワークロールで伸び率0.1〜1%のスキンパス圧延を行うことを特徴とする高強度薄鋼板の製造方法。 Steel having the chemical composition according to any one of claims 1 to 3 is subjected to hot rolling, descaling, and cold rolling, and then the obtained steel sheet is subjected to 700 ° C to (Ac (3 transformation point-20 ° C) is heated for 20 seconds or more and held in the range of (Ac 3 transformation point-20 ° C) to (Ac 3 transformation point + 20 ° C) for 10 seconds or more. Set the average cooling rate to 450 ° C to 20 to 200 ° C / sec, cool to 200 to 450 ° C, hold in the temperature range of 200 ° C to 450 ° C for 30 seconds to 10 minutes, then cool to room temperature, continuous annealing A method for producing a high-strength thin steel sheet, characterized by performing skin pass rolling with a work roll having a surface roughness Ra of 1.0 to 4.0 μm and an elongation of 0.1 to 1%.
JP2004255927A 2004-09-02 2004-09-02 High strength thin steel sheet and method for producing the same Expired - Lifetime JP4254663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004255927A JP4254663B2 (en) 2004-09-02 2004-09-02 High strength thin steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004255927A JP4254663B2 (en) 2004-09-02 2004-09-02 High strength thin steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006070328A JP2006070328A (en) 2006-03-16
JP4254663B2 true JP4254663B2 (en) 2009-04-15

Family

ID=36151259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004255927A Expired - Lifetime JP4254663B2 (en) 2004-09-02 2004-09-02 High strength thin steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4254663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728058C2 (en) * 2018-02-26 2020-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) Prestressed composite wooden beam

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082432B2 (en) * 2006-12-26 2012-11-28 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
EP1990431A1 (en) 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
JP5088002B2 (en) * 2007-06-08 2012-12-05 Jfeスチール株式会社 Steel strip rolling method and high-tensile cold-rolled steel strip manufacturing method
EP2180075B1 (en) 2007-08-01 2017-05-03 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheet excellent in bendability and fatigue strength
JP5151354B2 (en) * 2007-09-26 2013-02-27 Jfeスチール株式会社 High tensile cold-rolled steel sheet and method for producing high-tensile cold-rolled steel sheet
JP5326362B2 (en) * 2008-05-30 2013-10-30 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP2010126808A (en) * 2008-12-01 2010-06-10 Sumitomo Metal Ind Ltd Cold rolled steel sheet and method for producing the same
JP2010229514A (en) * 2009-03-27 2010-10-14 Sumitomo Metal Ind Ltd Cold rolled steel sheet and method for producing the same
JP5441473B2 (en) * 2009-03-30 2014-03-12 日新製鋼株式会社 Steel plate with excellent bending workability and punching workability
JP5487916B2 (en) * 2009-11-30 2014-05-14 新日鐵住金株式会社 High-strength galvanized steel sheet having a tensile maximum strength of 900 MPa or more excellent in impact absorption energy and a method for producing the same
DE102009044861B3 (en) * 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product
JP4977879B2 (en) * 2010-02-26 2012-07-18 Jfeスチール株式会社 Super high strength cold-rolled steel sheet with excellent bendability
JP5671391B2 (en) * 2010-03-31 2015-02-18 株式会社神戸製鋼所 Super high strength steel plate with excellent workability and delayed fracture resistance
JP5549618B2 (en) * 2011-02-15 2014-07-16 新日鐵住金株式会社 High strength steel plate for spot welding with a tensile strength of 980 MPa or more
BR112014001994A2 (en) * 2011-07-29 2017-02-21 Nippon Steel & Sumitomo Metal Corp high strength galvanized steel sheet excellent in flexibility and manufacturing method
JP5780171B2 (en) * 2012-02-09 2015-09-16 新日鐵住金株式会社 High-strength cold-rolled steel sheet with excellent bendability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and manufacturing method thereof
JP5994748B2 (en) * 2013-08-05 2016-09-21 Jfeスチール株式会社 High-strength press parts and manufacturing method thereof
JP6152782B2 (en) * 2013-11-19 2017-06-28 新日鐵住金株式会社 Hot rolled steel sheet
KR101568511B1 (en) 2013-12-23 2015-11-11 주식회사 포스코 Quenched steel sheet having excellent strength and ductility and method for manufacturing the steel sheet using the same
PL3287539T3 (en) 2015-04-22 2020-06-01 Nippon Steel Corporation Plated steel sheet
JP6524810B2 (en) * 2015-06-15 2019-06-05 日本製鉄株式会社 Steel plate excellent in spot weld resistance and its manufacturing method
KR101967959B1 (en) 2016-12-19 2019-04-10 주식회사 포스코 Ultra-high strength steel sheet having excellent bendability and mathod for manufacturing same
KR101917472B1 (en) * 2016-12-23 2018-11-09 주식회사 포스코 Tempered martensitic steel having low yield ratio and excellent uniform elongation property, and method for manufacturing the same
CN112080703B (en) * 2020-09-23 2021-08-17 辽宁衡业高科新材股份有限公司 960 MPa-grade micro-residual stress high-strength steel plate and heat treatment method thereof
EP4394070A4 (en) 2021-08-27 2024-09-11 Nippon Steel Corp Steel plate and press-molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2728058C2 (en) * 2018-02-26 2020-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный архитектурно-строительный университет" (КазГАСУ) Prestressed composite wooden beam

Also Published As

Publication number Publication date
JP2006070328A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP4254663B2 (en) High strength thin steel sheet and method for producing the same
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP5387720B2 (en) Hot-pressed steel plate member, hot-pressed steel plate member, and method for producing them
US10329638B2 (en) High strength galvanized steel sheet and production method therefor
EP2823904A1 (en) Warm press forming method and automobile frame component
JP5803836B2 (en) Hot pressed steel plate member, its manufacturing method and hot pressed steel plate
JP5070947B2 (en) Hardened steel plate member, hardened steel plate and manufacturing method thereof
JP2023093564A (en) Hot-forming member
JP2021181625A (en) High strength member, manufacturing method of high strength member, and manufacturing method of steel sheet for high strength member
EP2615191A1 (en) High-strength cold-rolled steel sheet having excellent stretch flange properties, and process for production thereof
WO2015097891A1 (en) Hot-pressed steel sheet member, production method for same, and hot-press steel sheet
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
JP2023553672A (en) Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof
JP4196810B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
JP2021181624A (en) Steel sheet, member subject and manufacturing method of them
JP4867338B2 (en) Ultra-high strength steel sheet and method for manufacturing the same
JP7028379B1 (en) Steel sheets, members and their manufacturing methods
JP3846156B2 (en) Steel sheet for high-strength press-formed part of automobile and method for producing the same
JP4782057B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JP5034296B2 (en) Hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4432725B2 (en) Cr-containing high-strength cold-rolled steel sheet excellent in stretch flangeability and manufacturing method thereof
JP6589928B2 (en) Hot-pressed member and manufacturing method thereof
WO2023199776A1 (en) Hot stamp molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350