EP1725689A2 - Forged or stamped average or small size mechanical part - Google Patents

Forged or stamped average or small size mechanical part

Info

Publication number
EP1725689A2
EP1725689A2 EP05739467A EP05739467A EP1725689A2 EP 1725689 A2 EP1725689 A2 EP 1725689A2 EP 05739467 A EP05739467 A EP 05739467A EP 05739467 A EP05739467 A EP 05739467A EP 1725689 A2 EP1725689 A2 EP 1725689A2
Authority
EP
European Patent Office
Prior art keywords
steel
mechanical
acicular ferrite
ppm
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05739467A
Other languages
German (de)
French (fr)
Inventor
Marie-Thérèse PERROT-SIMONETTA
Mario Confente
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Gandrange SA
Original Assignee
Mittal Steel Gandrange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mittal Steel Gandrange SA filed Critical Mittal Steel Gandrange SA
Publication of EP1725689A2 publication Critical patent/EP1725689A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Definitions

  • the invention relates to mechanical parts of medium or small size made of micro-alloyed medium carbon steel, such as wheel hubs, connecting rods or ball joints for cars, or other similar mechanical parts obtained by hot or cold plastic deformation of a long steel semi-finished product and for which we are looking above all for fatigue resistance and toughness properties.
  • medium or small size we mean here pieces whose diameter does not exceed approximately 80 mm.
  • specially alloyed steels to obtain a metallographic structure of the bainitic or essentially bainitic type.
  • the pieces of steel are previously reheated to a temperature of about 1000 to 1200 ° C., then hot formed in the forge.
  • the parts obtained are then cooled and heat treated by quenching and tempering.
  • the pieces are cold formed in the press, possibly after having undergone a globulation annealing.
  • the parts obtained are then heat treated by quenching and tempering. It is recalled that in service, these parts are usually subjected to variable mechanical stresses, even cyclic, which generate significant fatigue work. The fatigue of the steel results in the appearance of microcracks which propagate until rupture, even if the stress is lower than the tensile strength or the elastic limit of the metal which composes the part.
  • the object of the invention is to provide another solution to improving the fatigue life and toughness of forged or struck mechanical parts which retains their high mechanical characteristics, of resistance, ductility and resilience for example.
  • the subject of the invention is a mechanical steel part obtained from hot forging or cold striking, of medium or small size, coming from the plastic transformation of a long steel semi-finished product, characterized in that the steel of which it is made has a composition which, in addition to iron and the inevitable residual impurities resulting from the production of steel, meets at least the following analysis, given in weight percentages: 0.2 ⁇ C ⁇ 0.5 0.5 ⁇ Mn ⁇ 2.0 0.05 ⁇ N ⁇ 0.5 0.6 ⁇ Si ⁇ 1.5 0.05 ⁇ Cr ⁇ 1.0 0.01 ⁇ Mo ⁇ 0.5 0.02 ⁇ S ⁇ 0.10 and possibly up to 50 ppm of boron and in that said part is obtained from a long semi-product obtained from continuous casting and hot rolled in the austenitic domain, then put shaped by plastic deformation and heat treated to obtain a metallographic structure containing essentially acicular ferrite, at least in the stressed areas mechanical toughness and fatigue.
  • the invention also relates to a steel for the manufacture of a mechanical part by plastic deformation, characterized in that, in addition to the inevitable residual impurities from the production of steel, its chemical composition includes at least, expressed in weight content: 0.2 ⁇ C ⁇ 0.5 0.5 ⁇ Mn ⁇ 2.0 0.05 ⁇ N ⁇ 0, 5 0.6 ⁇ If ⁇ 1.5 0.05 ⁇ Cr ⁇ 1.0 0.01 ⁇ Mo ⁇ 0.5 0.02 ⁇ S ⁇ 0.10 and possibly up to 50 ppm of B.
  • the metallographic microstructure which it will present, once said part is implemented is essentially composed of acicular ferrite at least in the zones of the part subjected to mechanical stresses in toughness and in fatigue.
  • the steel in order to facilitate obtaining acicular ferrite, preferably also comprises from 5 to 30 ppm of Ca, and or from 0, 01 to 0.02% Ti, with possibly up to 0.2% Al.
  • the subject of the invention is also a method of manufacturing such a mechanical steel part, characterized in that, in order to obtain acicular ferrite at least locally on said part, it comprises the following steps: - supplies a continuous casting billet of steel of composition in accordance with the analysis given above, which is hot rolled at a temperature above 1000 ° C in bar or wire before being cooled to ambient after rolling; - The wire being subjected to a controlled cooling before its crowning in order to obtain a metallographic structure composed essentially of acicular ferrite, wire which is then cut into pieces and which is cold struck into a ready finished part.
  • controlled cooling is natural cooling to the ambient. In practice, in fact, it happens that the forgings are immediately stored in bulk in buckets on top of each other. The pieces on top of the pile will cool faster than the pieces below. It is therefore not sought at this stage a controlled cooling of each part, since these will moreover more often then be heat treated.
  • the parts can certainly cool naturally (that is to say without air blowing), but this cooling must nevertheless be controlled in order to ensure the formation of needle-like ferrite.
  • This cooling control can be done for example by depositing the pieces one by one, distant from each other, directly after the forging operation on a conveyor belt, which routes them to the reception area of the workshop in view of their storage before shipment.
  • the controlled cooling is forced cooling, for example with blown air, ensuring a surface cooling rate of 0.5 to 15 ° C / s approximately.
  • the invention finally relates to a long, medium carbon steel semi-finished product, intended to be transformed by forging or cold striking into a mechanical part with high characteristics, of small size or of medium size, characterized in that the steel which the compound corresponds at least to the following analysis, given in weight percentages: 0.2 ⁇ C ⁇ 0.5 0.5 ⁇ Mn ⁇ 2.0 0, O5 ⁇ N ⁇ 0.5 0.6 ⁇ Si ⁇ 1 , 5 0, O5 ⁇ Cr ⁇ 1,0 0, Ol ⁇ Mo ⁇ 0,5 0, O2 ⁇ S ⁇ 0,10 and possibly up to 50 ppm of boron and in that the metallographic microstructure which it will present after transformation will be essentially composed of acicular ferrite at least in the areas of the part subjected to mechanical stresses in toughness and fatigue.
  • the invention in fact consists in proposing the manufacture of a tenacious and resilient mechanical part endowed with a micro structure essentially composed of needle-like ferrite at least in the zones of the part mechanically stressed in fatigue. , this from a medium carbon steel associated, in the ranges of analyzes given in these elements, with manganese (also gamma) for resistance to rupture, and micro-alloyed with vanadium assisted by sulfur in order to promote the development of acicular ferrite and associated, on the one hand, with molybdenum to improve resilience and harden ferrite even more than vanadium alone, on the other hand, with chromium to facilitate the efficiency of controlled cooling during the transformation operation, and, for a third part, to silicon, alphagene him, to increase the resilience, but also to favor the precipitation at the grain boundaries of a ferrite which will prevent the bainite from invading everything and thus allow the acicular ferrite to be born to take the place which is due to it.
  • acicular ferrite is a metallographic constituent known in the steel industry. It is already used for example, as shown in EP-N n ° 0288054, to facilitate the manufacturing process of fine grain sheets for low temperature use (of shore, etc.) by eliminating the reheating step intermediate between casting and hot rolling. Similarly, as USP No. 6,669,789 shows, it is known to use, alongside the usual polygonal-perlite ferrite, an acicular ferrite structure (which germinates on carbides) for the manufacture of sheet metal. made of high strength titanium steel and high elongation to limit the size of the austenitic grain from thin hot-rolled slabs.
  • Vanadium favors the development of acicular ferrite, as already said, by making it possible to increase the size of the bainitic domains and by shifting them towards high temperatures. It also decreases the range of appearance of perlite ferrite. From 0.02 to 0.10% sulfur. Sulfur not only improves the machinability of parts, but fulfills a role mainly sought here in the nucleation mechanism of acicular ferrite.
  • the chromium makes it possible to adjust the hardenability of the shade and thus to accompany the increase in size of the parts to be produced. It also acts with silicon in order to increase the range of existence of acicular ferrite. From 0.01 to 0.5% molybdenum. The molybdenum contributes to obtaining the final structure by adjusting the hardenability of the shade. In fact, if the content of quenching elements is too low, a ferrito-pearlitic structure will be obtained, and conversely, a shade that is too quenching can lead to obtaining martensite or residual austenite.
  • titanium in order to protect the elements from nitrogen, and in particular to keep sufficient free vanadium which would otherwise easily form precipitated nitrides.
  • calcium in order to improve the flowability of the steel and its implementation. It facilitates the obtaining of inclusions of oxides which can enter into the nucleation mechanism of acicular ferrite.
  • boron which will act in synergy with molybdenum to widen the bainitic domain in which acicular ferrite is formed.
  • This optimized composition allows the steel to present, following controlled cooling, a structure essentially composed of acicular ferrite.
  • acicular ferrite By essentially, it will be understood an acicular ferrite content of more than 50% and preferably more than 60%, and advantageously about 80% or even more.
  • a metallographic structure allows the steel to present good mechanical characteristics of resistance, hardness and ductility, but also a resistance to shocks and to work in increased fatigue.
  • the acicular ferrite is obtained before or after the shaping of the part, but in any case by means of controlled cooling of the steel.
  • the deformation takes place cold on a steel which already has a structure essentially composed of acicular ferrite.
  • a long semi-product is supplied, consisting of an analysis steel conforming to the invention which is hot rolled, if necessary after reheating above 1100 ° C., according to the usual practice of hot rolling, until a laminated wire 10 mm in diameter, for example, is obtained.
  • the wire removal temperature is of the order of 900 to 950 ° C.
  • the laminated wire obtained is cooled with blown air in the "hot” rolling itself in the usual way ("Steelmor” process for example). If its diameter allows, the wire can also be naturally cooled to ambient air.
  • the laminated wire is delivered in the form of a crown to the transformer who will cut it into pieces of the desired length and subject them to cold stamping to obtain the desired parts.
  • the final mechanical characteristics are naturally obtained by the work hardening resulting from the shaping.
  • the plastic shaping is done "hot” and the metallographic structure is obtained directly on the forge blanks.
  • a long semi-finished product consisting of an analytical steel is supplied, giving the invention that it is hot rolled to give it a diameter of 35 mm for example.
  • the bane is cut to length by cutting and delivered to the blacksmith.
  • the bars are then cut into pieces. Each piece is brought to a temperature of at least 1100 ° C by means of an induction furnace.
  • This heating can also be done more conventionally but the heating conditions (time, speed of heating, etc.) must then be optimized in order to obtain a homogeneous austenitic structure having a grain size favorable to the formation of acicular ferrite.
  • the austenitic grain size is then estimated at 80 ⁇ m.
  • the pieces are subjected to a hot plastic deformation operation.
  • the forging ends at a temperature above 1100 ° C.
  • the blanks of parts thus obtained are then subjected to forced cooling down to ambient temperature at a cooling rate of between approximately 0.5 and 15 ° C./s, depending on the diameter of the part and the optimization of the composition. steel.
  • the part can also be cooled in a natural but controlled way, by placing the blanks at the forge outlet one by one on a conveyor belt for example. The part is then machined to respect the final target dimensions.
  • the blank can be subjected to a second plastic knockout. This additional operation can be carried out cold without risking cracking the part due to the ductile nature given by the microstructure to the steel. It is not necessary to carry out a thermal quenching and tempering treatment to obtain the targeted mechanical characteristics.
  • the steel grade gives the invention a pennet to obtain a part of metallographic structure essentially composed of acicular ferrite. It has the mechanical characteristics of breaking strength and hardness required by its use properties, and meets the machinability requirements.
  • this piece Before forging, this piece was heated to 1200 ° C by induction. The end of forging temperature is 1100 ° C. After forging the blank is cooled at a speed of 2 ° C / s directly in the hot. No other thermal treatment is applied.
  • the structure obtained on this test hub is 80% of the acicular ferrite, it also has the following mechanical characteristics:
  • Rm represents the breaking strength corresponding to the maximum force before breaking referred to the initial section of the wire.
  • Rpn_ represents the conventional elastic limit corresponding to the force related to the initial section of the wire causing a plastic elongation of 0.2%.
  • A represents the elongation at break.
  • Z represents the necking corresponding to the reduction in cross-section of the wire after breaking.

Abstract

The inventive average or small size mechanical steel part is produced by hot forging or cold stamping i.e. by plastic processing of a long ferrous semi-product which is obtainable by continuous casting and hot rolling in the austenitic phase and, afterwards is shaped by plastic deformation and heat treated in order to obtain a metallographic structure substentially containing an acicular ferrite at least in mechanical toughness and fatigue stress areas. The composition of said steel, apart from iron and inevitable residual impurities resulting from steel production, corresponds at least to the following analysis: 0.2-0.5 % C, 0.5-2.0 % Mn, 0.05-0,5 % V, 0.6 1.5 % Si, 0.05 1.0 % Cr, 0.01-0.5 % Mo, 0.02-0.10 S, preferably from 0.01 to 0.02 % Ti and/or up to 0.20 % Al, and from 5 to 30 ppm of Ca.

Description

Pièce mécanique de taille moyenne ou petite issue de la forge ou de la frappe. Medium or small size mechanical part from forging or striking.
L'invention concerne les pièces mécaniques de taille moyenne ou petite en acier moyen carbone micro-allié, telles que des moyeux de roue, des bielles ou rotules pour automobile, ou autres pièces mécaniques analogues obtenues par déformation plastique à chaud ou à froid d'un demi-produit sidérurgique long et pour lesquelles on recherche avant tout des propriétés de tenue à la fatigue et de ténacité. Par taille moyenne ou petite, on entend ici des pièces dont le diamètre n'excède pas 80 mm environ. Pour réaliser de telles pièces, il est connu de faire appel à des aciers spécialement alliés pour obtenir une structure métallographique de type bainitique ou essentiellement bainitique. Par "essentiellement", il faut comprendre classiquement 80% et plus en volume de la structure bainitique à l'endroit de la pièce où cette structure est recherchée. Leur fabrication requiert en effet de pouvoir supporter sans rupture ou fissuration des modifications de forme importantes tout en présentant au final une bonne tenue à la rupture fragile (ténacité) et en fatigue eu égard aux cycles de contraintes répétitifs auxquels les pièces sont soumises en usage, ainsi qu'aux chocs (résilience élevée). Par ailleurs, ces aciers doivent présenter de bonnes caractéristiques d'usinabilité afin de permettre une mise aux côtes finales précises par usinage de la pièce prête à l'usage exigée dans nombre d'applications. Classiquement, le processus de fabrication peut coiriprendre une opération de déformation plastique à froid (frappe ou forge), ou à chaud (forge), le choix de la voie chaude ou froide se faisant souvent en fonction de la taille finale des pièces. Dans tous les cas, cette opération se fera sur des lopins d'acier découpés dans des barres issues de demi-produits sidérurgiques longs coulés en continu et laminés à chaud. Lorsque la déformation plastique se fait "à chaud", les lopins d'acier sont préalablement réchauffés jusqu'à une température de 1000 à 1200 °C environ, puis mis en forme à chaud à la forge. Les pièces obtenues sont ensuite refroidies et traitées thermiquement par trempe et revenu. Lorsque la déformation plastique se fait "à froid", les lopins sont mis en forme à froid à la presse, éventuellement après avoir subi un recuit de globulisation. Les pièces obtenues sont ensuite traitées thermiquement par trempe et revenu. On rappelle qu'en service, ces pièces sont habituellement soumises à des sollicitations mécaniques variables, voire cycliques, qui génèrent un important travail en fatigue. La fatigue de l'acier se traduit par l'apparition de microfissures qui se propagent jusqu'à rupture, quand bien même la contrainte est plus faible que la résistance à la traction ou à la limite d'élasticité du métal qui compose la pièce. On estime aujourd'hui que la fatigue est responsable de près de 90 % des ruptures en service de pièces mécaniques. De même, les chocs que peut subir une pièce mécanique en service provoquent l'apparition de microfissures qui peuvent amener la pièce à se rompre prématurément si un soin particulier n'est pas apporté aux propriétés de résilience du métal qui la constitue. Or, la structure bainitique de l'acier se présente ordinairement sous forme de lattes parallèles qui offrent par conséquent peu d'obstacles à la propagation des microfissures. Cette structure, bien que recherchée pour ses propriétés de résistance mécanique et de ductilité, ne présente donc pas nécessairement une ténacité, ni une tenue à la fatigue satisfaisantes. Il est par exemple connu, par le document EP 0 787 812, d'améliorer la tenue en fatigue de pièces forgées grâce à la présence d'austénite résiduelle au sein de la bainite, obtenue au moyen d'un refroidissement contrôlé adéquat associé au choix d'une nuance d'acier dont la composition a été spécialement enrichie en silicium. Le but de l'invention est d'apporter une autre solution à l'amélioration de la tenue en fatigue et de la ténacité des pièces mécaniques forgées ou frappées qui conserve leurs caractéristiques mécaniques élevées, de résistance, ductilité et résilience par exemple. A cet effet, l'invention a pour objet une pièce mécanique en acier issue de la forge à chaud ou de la frappe à froid, de taille moyenne ou petite, venant de la transformation plastique d'un demi-produit sidérurgique long, caractérisée en ce que l'acier dont elle est constituée présente une composition qui, outre le fer et les inévitables impuretés résiduelles résultant de l'élaboration de l'acier, répond au moins à l'analyse suivante, donnée en pourcentages pondéraux: 0,2 < C < 0,5 0,5 < Mn < 2,0 0,05 < N < 0,5 0,6 ≤ Si < 1,5 0,05 ≤ Cr < 1,0 0,01 < Mo < 0,5 0,02 < S < 0,10 et éventuellement jusqu'à 50 ppm de bore et en ce que ladite pièce est obtenue à partir d'un demi produit long issu de la coulée continue et laminé à chaud dans le domaine austénitique, puis mis en forme par déformation plastique et traité thermiquement pour obtenir une structure métallographique contenant essentiellement de la ferrite aciculaire, ce au moins dans les zones de sollicitations mécaniques en ténacité et en fatigue. Par "essentiellement", on entend ici au moins 50 % et de préférence 60 %, voire même avantageusement 80 % et plus de ferrite aciculaire en volume. L'invention a encore pour objet un acier pour la fabrication d'une pièce mécanique par déformation plastique caractérisé en ce que, outre les inévitables impuretés résiduelles venant de l'élaboration de l'acier, sa composition chimique comprend au moins, exprimés en teneur pondérale: 0,2 < C < 0,5 0,5 < Mn < 2,0 0,05 < N < 0,5 0,6 ≤ Si < 1,5 0,05 ≤ Cr < 1,0 0,01 < Mo < 0,5 0,02 < S < 0,10 et éventuellement jusqu'à 50 ppm de B. et en ce que la microstructure métallographique qu'il présentera, une fois ladite pièce mise en œuvre, est essentiellement composée de ferrite aciculaire au moins dans les zones de la pièce soumises à des sollicitations mécaniques en ténacité et en fatigue. Tant pour ce qui concerne la pièce mécanique que la nuance d'acier définies ci-avant, afin de faciliter l'obtention de ferrite aciculaire, l'acier comprend en outre de préférence de 5 à 30 ppm de Ca, et ou de 0,01 à 0,02 % de Ti, avec éventuellement jusqu'à 0.2% d'Al. L'invention a encore pour objet un procédé de fabrication d'une telle pièce mécanique en acier caractérisé en ce que, dans le but d'obtenir de la ferrite aciculaire au moins localement sur ladite pièce, il comprend les étapes suivantes : - on approvisionne une billette de coulée continue en acier de composition conforme à l'analyse donnée ci-avant, que l'on lamine à chaud à une température supérieure à 1 000 °C en barre ou en fil avant d'être refroidie jusqu'à l'ambiante après laminage ; - le fil étant soumis à un refroidissement contrôlé avant sa mise en couronne pour l'obtention d'une structure métallographique composée essentiellement de ferrite aciculaire, fil que l'on découpe alors en lopins et que l'on frappe à froid en pièce finie prête à l'usage; - la barre étant, elle, refroidie naturellement dans la chaude de laminage avant sa découpe en lopins que l'on forge ensuite à chaud -en une ébauche de pièce que l'on refroidit par refroidissement contrôlé pour l'obtention d'une structure essentiellement composée de ferrite aciculaire au moins dans les zones sollicitées de la pièce, ébauche que l'on usine alors le cas échéant aux côtes souhaitées pour en faire une pièce finie prête à l'usage. En variante, le refroidissement contrôlé est un refroidissement naturel jusqu'à l'ambiante. En pratique, en effet, il se trouve que les pièces forgées sont immédiatement entreposées en vrac dans des bennes les unes sur les autres. Les pièces situées sur le dessus du tas vont refroidir plus vite que celles situées en dessous. Il n'est donc pas recherché à ce stade un refroidissement contrôlé de chaque pièce, puisque celles-ci vont d'ailleurs le plus souvent être ensuite traitées thermiquement. Dans le procédé selon l'invention en revanche, les pièces peuvent certes refroidir de manière naturelle (c'est à dire sans soufflage d'air), mais ce refroidissement doit néanmoins être contrôlé afin d'assurer la formation de ferrite aciculaire. Ce contrôle du refroidissement peut se faire par exemple en déposant les pièces une à une, distantes les unes des autres, directement après l'opération de forge sur un tapis roulant, qui les achemine vers l'aire de réception de l'atelier en vue de leur stockage avant expédition. Toutefois, selon une variante préférée de l'invention, le refroidissement contrôlé est un refroidissement forcé, par exemple à l'air soufflé, assurant une vitesse de refroidissement en surface de 0,5 à 15 °C/s environ. On rappelle que les habitudes de vocabulaire dans la profession sidérurgique font que l'on appelle "fil" les produits laminés sous des diamètres allant jusqu'à 30 mm de diamètre environ (que l'on conditionne souvent-sous forme de couronnes), et "barres" ceux laminés à partir de 18 mm de diamètre et qui sont livrés rectilignes après découpe à longueur à la sortie du train. L'invention a enfin pour objet un demi-produit sidérurgique long moyen carbone, destiné à être transformé par forge ou frappe à froid en une pièce mécanique à hautes caractéristiques, de petite taille ou de taille moyenne, caractérisé en ce que l'acier qui le compose répond au moins à l'analyse suivante, donnée en pourcentages pondéraux : 0,2 < C < 0,5 0,5 < Mn < 2,0 0,O5 ≤ N < 0,5 0,6 ≤ Si < 1, 5 0,O5 ≤ Cr < 1,0 0,Ol < Mo < 0,5 0,O2 < S < 0,10 et éventuellement jusqu'à 50 ppm de bore et en ce que la microstructure métallographique qu'il présentera après transformation sera essentiellement composée de ferrite aciculaire au moins dans les zones de la pièce soumises à des sollicitations mécaniques en ténacité et en fatigue. Comme on l'aura sans doute compris, l'invention consiste en fait à proposer la fabrication d'une pièce mécanique tenace et résiliente dotée d'une micro structure essentiellement composée de ferrite aciculaire au moins dans les zones de la pièce sollicités mécaniquement en fatigue, ce à partir d'un acier moyen carbone associé, dans les fourchettes d'analyses données en ces éléments, à du manganèse (gammagène lui aussi) pour la résistance à la rupture, et micro-allié au vanadium assisté par le soufre afin de promouvoir le développement de ferrite aciculaire et associé, d'une part, au molybdène pour améliorer la résilience et durcir encore d'avantage la ferrite que le vanadium seul, d'autre part, au chrome pour faciliter l'efficacité du refroidissement contrôlé lors de l'opération de transformation, et, pour une troisième part, à du silicium, alphagène lui, pour augmenter la résilience, mais aussi pour favoriser la précipitation aux joints de grains d'une ferrite qui empêchera la bainite de tout envahir et permettra ainsi à la ferrite aciculaire de naître pour prendre la place qui lui est due. Il doit être rappelé ici que la ferrite aciculaire est un constituant métallographique connu en sidérurgie. On l'utilise déjà par exemple, comme le montre l'EP-N n° 0288054, pour faciliter le processus de fabrication de tôles à grains fins pour usage basse température (of shore, etc..) en supprimant l'étape de réchauffage intermédiaire entre coulée et laminage à chaud. De même, comme le montre l'USP n° 6.669.789, il est connu de faire appel, à coté de la ferrite polygonale-perlite habituelle, à une structure de ferrite aciculaire (qui germe sur les carbures) pour la fabrication de tôle en acier au titane à haute résistance et fort allongement pour limiter la taille du grain austénitique à partir de brames minces laminées à chaud. L'invention sera bien comprise et d'autres aspects et avantages apparaîtront plus clairement au vu de la description détaillée qui suit, donnée à titre d'exemple de réalisation. On produit à l'aciérie, par coulée continue, des demi-produits longs (billettes ou blooms) issus d'un acier ayant, outre le fer, la composition suivante en teneur pondérale par rapport au fer : De 0,2 à 0,5% de carbone. A ces teneurs, le carbone permet d'obtenir de bonnes caractéristiques de résistance mécanique. En particulier, la résilience requise est assurée par les 0.2 % mini. Par contre, sa teneur ne doit pas être trop importante (0.5 % maxi environ) pour ne pas favoriser la formation de bainite au lieu de la ferrite aciculaire recherchée. De 0,5 à 2,0 % de manganèse. Le manganèse est classiquement utilisé ici pour augmenter la trempabilité de l'acier sous les teneurs de carbone prémentionnées. Toutefois, sa teneur est préférentiellement inférieure à 2,0 % afin d'éviter sa ségrégation qui nuirait à l'homogénéité de la structure. - De 0,05 à 0,5 % de vanadium. Le vanadium favorise, le développement de la ferrite aciculaire, comme déjà dit, en permettant d'augmenter la taille des domaines bainitiques et en les décalant vers les hautes températures. Il diminue également le domaine d'apparition de la ferrite perlite. De 0.02 à 0.10 % de soufre. Le soufre, non seulement améliore l'usinabilité des pièces, mais remplit un rôle principalement recherché ici dans le mécanisme de nucléation de la ferrite aciculaire. Il a été découvert en effet que ce sont les sulfures, et non les carbures comme dans le cas du document USP 6.669.789 précité, qui constituent en fait des points d'ancrage essentiels sur lesquels vont genner les grains de ferrite aciculaire dont le développement va être promu par le vanadium, allié au silicium. De 0,6 à 1,5 % de silicium. Le silicium sert classiquement à désoxyder l'acier. Sa teneur doit toutefois rester inférieure ici à 1,5 % afin de ne pas fragiliser l'acier. Il joue ici un rôle essentiel dans l'accroissement contrôlé du domaine bainitique dans lequel se fonne la ferrite aciculaire en précipitant comme déjà indiqué de la ferrite primaire aux joints de grains et en permettant ainsi au vanadium de promouvoir le développement de ferrite aciculaire. De 0,05 à 1,0 % de chrome. Le chrome permet d'ajuster la trempabilité de la nuance et ainsi d'accompagner l'augmentation de taille des pièces à produire. Il agit également avec le silicium afin d'augmenter la plage d'existence de la ferrite aciculaire. De 0, 01 à 0,5 % de molybdène. Le molybdène contribue à l'obtention de la structure finale par un ajustement de la trempabilité de la nuance. En effet, si la teneur en éléments trempants est trop faible, on obtiendra une structure ferrito-perlitique, et à l'inverse, une nuance trop trempante peut conduire à l'obtention de martensite ou d'austénite résiduelle. Optionnellement, mais très conseillé en pratique, de 0,01 à 0, 02 % de titane afin de protéger les éléments de l'azote, et garder notamment du vanadium libre en quantité suffisante qui sinon formerait trop facilement des nitrures précipités. De même optionnellement mais classiquement très utilisé en pratique, de 5 à 30 ppm de calcium afin d'améliorer la coulabilité de l'acier et sa mise en œuvre. Il facilité l'obtention d'inclusions d'oxydes qui peuvent entrer dans le mécanisme de nucléation de la ferrite aciculaire. Eventuellement jusqu'à 50 ppm de bore qui agira en synergie avec le molybdène pour élargir le domaine bainitique dans lequel se forme la ferrite aciculaire. Eventuellement jusqu'à 0,2 % d'aluminium pour le contrôle de la taille du grain austénitique, mais il jouera également un rôle dans la préservation du vanadium. Cette composition optimisée pennet à l'acier de présenter, suite à un refroidissement contrôlé, une structure essentiellement composée de ferrite aciculaire. Par essentiellement, on comprendra une teneur en ferrite aciculaire de plus de 50 % et de préférence de plus de 60 %, et avantageusement environ 80 % voire plus. Une telle structure métallographique pennet à l'acier de présenter de bonnes caractéristiques mécaniques de résistance, dureté et ductilité, mais également une tenue aux chocs et au travail en fatigue accrue. Comme on va le voir, la ferrite aciculaire est obtenue avant ou après la mise en forme de la pièce, mais en tout cas au moyen d'un refroidissement contrôlé de l'acier. Dans le premier cas, la défonnation se fait à froid sur un acier présentant déjà une structure essentiellement composée de ferrite aciculaire. On approvisionne un demi- produit long constitué d'un acier d'analyse confoπne à l'invention que l'on lamine à chaud, au besoin après un réchauffage au-dessus de 1100 °C, selon la pratique habituelle du laminage à chaud, jusqu'à l'obtention d'un fil laminé de 10 mm de diamètre par exemple. La température de dépose du fil est de l'ordre de 900 à 950 °C. Le fil laminé obtenu est refroidi à l'air soufflé dans la "chaude" de laminage elle-même de la manière habituelle (procédé "Steelmor" par exemple). Si son diamètre le permet, le fil peut également être refroidi de manière naturelle jusqu'à l'air ambiant. Le fil laminé est livré sous fonne de couronne au transfonnateur qui va le découper en lopins de longueur voulue et les soumettre à une frappe à froid pour l'obtention des pièces désirées. Les caractéristiques mécaniques finales sont naturellement obtenues par l'écrouissage résultant de la mise en fonne. Dans le second cas, la défonnation plastique se fait "à chaud" et la structure métallographique est obtenue directement sur les ébauches de forge. On approvisionne un demi-produit long constitué d'un acier d'analyse confonne à l'invention qu'on lamine à chaud jusqu'à lui donner un diamètre de 35 mm par exemple. Après refroidissement éventuel, qui n'a pas besoin à ce niveau d'être contrôlé, la bane est mise à longueur par découpe et livrée au forgeron. Les barres sont alors débitées en lopins. Chaque lopin est porté à une température d'au moins 1100°C au moyen d'un four à induction. Ce chauffage peut également se faire plus classiquement mais les conditions de chauffage (temps, vitesse de chauffe, etc ..) doivent alors être optimisées pour obtenir une structure austénitique homogène présentant une taille de grain favorable à la fonnation de la ferrite aciculaire. La taille des grains austénitique est alors estimée à 80 μm. Les lopins sont soumis à une opération de déformation plastique à chaud. Le forgeage se tennine à une température supérieure à 1100°C. Les ébauches de pièces ainsi obtenues subissent ensuite un refroidissement forcé jusqu'à la température ambiante à une vitesse de refroidissement comprise entre 0,5 et 15 °C/s environ, en fonction du diamètre de la pièce et de l'optimisation de la composition de l'acier. La pièce peut également être refroidie de manière naturelle mais contrôlée, en plaçant les ébauches en sortie de forge une à une sur un tapis roulant par exemple. La pièce est alors usinée pour respecter les cotes finales visées. Eventuellement, au lieu de l'usinage, l'ébauche peut être soumise à une deuxième défonnation plastique. Cette opération complémentaire peut être menée à froid sans risquer de fissurer la pièce du fait du caractère ductile donné par la micro- structure à l'acier. Il n'est pas nécessaire de mettre en œuvre un traitement thennique de trempe et revenu pour obtenir les caractéristiques mécaniques visées. La nuance d'acier confonne à l'invention pennet d'obtenir une pièce de structure métallographique essentiellement composée de ferrite aciculaire. Elle présente les caractéristiques mécaniques de résistance à la rupture et de dureté requises par ses propriétés d'emploi, et répond aux exigences d'usinabilité. En outre elle présente une ténacité accrue de par sa structure même dont l'enchevêtrement des lattes sert d'obstacle à l'apparition et à la propagation des fissures. Cette ténacité accrue lui pennet en fait de présenter du coup également une meilleure résistance aux chocs et une meilleure tenue à la fatigue. De plus, elle autorise également une seconde mise en fonne à froid par frappe par exemple. L'obtention de fenite aciculaire pennet également d'accroître la résistance mécanique de la nuance par la forte densité de dislocation de ses lattes. Des essais ont été effectués dans les laboratoires du producteur de demi- produits pour forge venant de la coulée continue. Un moyeu de roue y a été forgé à partir d'un acier selon l'invention dont la composition chimique, outre le fer et les impuretés résultant de l'élaboration, répond à l'analyse suivante :The invention relates to mechanical parts of medium or small size made of micro-alloyed medium carbon steel, such as wheel hubs, connecting rods or ball joints for cars, or other similar mechanical parts obtained by hot or cold plastic deformation of a long steel semi-finished product and for which we are looking above all for fatigue resistance and toughness properties. By medium or small size, we mean here pieces whose diameter does not exceed approximately 80 mm. To produce such parts, it is known to use specially alloyed steels to obtain a metallographic structure of the bainitic or essentially bainitic type. By “essentially”, it is conventionally necessary to understand 80% and more by volume of the bainitic structure at the location of the room where this structure is sought. Their manufacture indeed requires being able to withstand without breaking or cracking significant shape changes while ultimately having good brittle breaking strength (toughness) and fatigue in view of the repetitive stress cycles to which the parts are subjected in use, as well as shocks (high resilience). Furthermore, these steels must have good machinability characteristics in order to allow precise final ribs by machining the part ready for use required in many applications. Conventionally, the manufacturing process can take a plastic deformation operation when cold (striking or forging), or hot (forging), the choice of hot or cold way often being made according to the final size of the parts. In all cases, this operation will be carried out on pieces of steel cut from bars produced from long steel semi-finished products, continuously cast and hot-rolled. When the plastic deformation is "hot", the pieces of steel are previously reheated to a temperature of about 1000 to 1200 ° C., then hot formed in the forge. The parts obtained are then cooled and heat treated by quenching and tempering. When the plastic deformation is "cold", the pieces are cold formed in the press, possibly after having undergone a globulation annealing. The parts obtained are then heat treated by quenching and tempering. It is recalled that in service, these parts are usually subjected to variable mechanical stresses, even cyclic, which generate significant fatigue work. The fatigue of the steel results in the appearance of microcracks which propagate until rupture, even if the stress is lower than the tensile strength or the elastic limit of the metal which composes the part. Today, it is estimated that fatigue is responsible for almost 90% of breaks in the service of mechanical parts. Likewise, the shocks that a mechanical part can undergo in service cause the appearance of microcracks which can cause the part to rupture prematurely if special care is not taken with the resilience properties of the metal which constitutes it. However, the bainitic structure of steel is usually in the form of parallel slats which consequently offer few obstacles to the propagation of microcracks. This structure, although sought for its mechanical strength and ductility properties, therefore does not necessarily have a toughness or a satisfactory fatigue life. It is for example known, from document EP 0 787 812, to improve the fatigue life of forgings thanks to the presence of residual austenite within the bainite, obtained by means of adequate controlled cooling associated with the choice a steel grade whose composition has been specially enriched in silicon. The object of the invention is to provide another solution to improving the fatigue life and toughness of forged or struck mechanical parts which retains their high mechanical characteristics, of resistance, ductility and resilience for example. To this end, the subject of the invention is a mechanical steel part obtained from hot forging or cold striking, of medium or small size, coming from the plastic transformation of a long steel semi-finished product, characterized in that the steel of which it is made has a composition which, in addition to iron and the inevitable residual impurities resulting from the production of steel, meets at least the following analysis, given in weight percentages: 0.2 < C <0.5 0.5 <Mn <2.0 0.05 <N <0.5 0.6 ≤ Si <1.5 0.05 ≤ Cr <1.0 0.01 <Mo <0.5 0.02 <S <0.10 and possibly up to 50 ppm of boron and in that said part is obtained from a long semi-product obtained from continuous casting and hot rolled in the austenitic domain, then put shaped by plastic deformation and heat treated to obtain a metallographic structure containing essentially acicular ferrite, at least in the stressed areas mechanical toughness and fatigue. By "essentially" here is meant at least 50% and preferably 60%, or even advantageously even 80% and more of acicular ferrite by volume. The invention also relates to a steel for the manufacture of a mechanical part by plastic deformation, characterized in that, in addition to the inevitable residual impurities from the production of steel, its chemical composition includes at least, expressed in weight content: 0.2 <C <0.5 0.5 <Mn <2.0 0.05 <N <0, 5 0.6 ≤ If <1.5 0.05 ≤ Cr <1.0 0.01 <Mo <0.5 0.02 <S <0.10 and possibly up to 50 ppm of B. and in this that the metallographic microstructure which it will present, once said part is implemented, is essentially composed of acicular ferrite at least in the zones of the part subjected to mechanical stresses in toughness and in fatigue. As regards both the mechanical part and the steel grade defined above, in order to facilitate obtaining acicular ferrite, the steel preferably also comprises from 5 to 30 ppm of Ca, and or from 0, 01 to 0.02% Ti, with possibly up to 0.2% Al. The subject of the invention is also a method of manufacturing such a mechanical steel part, characterized in that, in order to obtain acicular ferrite at least locally on said part, it comprises the following steps: - supplies a continuous casting billet of steel of composition in accordance with the analysis given above, which is hot rolled at a temperature above 1000 ° C in bar or wire before being cooled to ambient after rolling; - The wire being subjected to a controlled cooling before its crowning in order to obtain a metallographic structure composed essentially of acicular ferrite, wire which is then cut into pieces and which is cold struck into a ready finished part. in use; - the bar being, it, naturally cooled in the hot rolling before its cutting into pieces which are then hot forged -in a blank part which is cooled by controlled cooling to obtain a structure essentially composed of acicular ferrite at least in the stressed areas of the part, blank which is then machined if necessary to the desired ribs to make a finished part ready for use. As a variant, controlled cooling is natural cooling to the ambient. In practice, in fact, it happens that the forgings are immediately stored in bulk in buckets on top of each other. The pieces on top of the pile will cool faster than the pieces below. It is therefore not sought at this stage a controlled cooling of each part, since these will moreover more often then be heat treated. In the process according to the invention on the other hand, the parts can certainly cool naturally (that is to say without air blowing), but this cooling must nevertheless be controlled in order to ensure the formation of needle-like ferrite. This cooling control can be done for example by depositing the pieces one by one, distant from each other, directly after the forging operation on a conveyor belt, which routes them to the reception area of the workshop in view of their storage before shipment. However, according to a preferred variant of the invention, the controlled cooling is forced cooling, for example with blown air, ensuring a surface cooling rate of 0.5 to 15 ° C / s approximately. It is recalled that the vocabulary habits in the steel industry mean that products rolled in diameters up to approximately 30 mm in diameter are called "wire" (which is often packaged in the form of crowns), and "bars" those rolled from 18 mm in diameter and which are delivered rectilinear after cutting to length at the exit of the train. The invention finally relates to a long, medium carbon steel semi-finished product, intended to be transformed by forging or cold striking into a mechanical part with high characteristics, of small size or of medium size, characterized in that the steel which the compound corresponds at least to the following analysis, given in weight percentages: 0.2 <C <0.5 0.5 <Mn <2.0 0, O5 ≤ N <0.5 0.6 ≤ Si <1 , 5 0, O5 ≤ Cr <1,0 0, Ol <Mo <0,5 0, O2 <S <0,10 and possibly up to 50 ppm of boron and in that the metallographic microstructure which it will present after transformation will be essentially composed of acicular ferrite at least in the areas of the part subjected to mechanical stresses in toughness and fatigue. As will no doubt have been understood, the invention in fact consists in proposing the manufacture of a tenacious and resilient mechanical part endowed with a micro structure essentially composed of needle-like ferrite at least in the zones of the part mechanically stressed in fatigue. , this from a medium carbon steel associated, in the ranges of analyzes given in these elements, with manganese (also gamma) for resistance to rupture, and micro-alloyed with vanadium assisted by sulfur in order to promote the development of acicular ferrite and associated, on the one hand, with molybdenum to improve resilience and harden ferrite even more than vanadium alone, on the other hand, with chromium to facilitate the efficiency of controlled cooling during the transformation operation, and, for a third part, to silicon, alphagene him, to increase the resilience, but also to favor the precipitation at the grain boundaries of a ferrite which will prevent the bainite from invading everything and thus allow the acicular ferrite to be born to take the place which is due to it. It should be recalled here that acicular ferrite is a metallographic constituent known in the steel industry. It is already used for example, as shown in EP-N n ° 0288054, to facilitate the manufacturing process of fine grain sheets for low temperature use (of shore, etc.) by eliminating the reheating step intermediate between casting and hot rolling. Similarly, as USP No. 6,669,789 shows, it is known to use, alongside the usual polygonal-perlite ferrite, an acicular ferrite structure (which germinates on carbides) for the manufacture of sheet metal. made of high strength titanium steel and high elongation to limit the size of the austenitic grain from thin hot-rolled slabs. The invention will be well understood and other aspects and advantages will appear more clearly in the light of the detailed description which follows, given by way of exemplary embodiment. Long semi-finished products (billets or blooms) produced from steel having, in addition to iron, the following composition in weight content relative to iron are produced at the steelworks by continuous casting: From 0.2 to 0, 5% carbon. At these contents, carbon makes it possible to obtain good mechanical strength characteristics. In particular, the required resilience is ensured by the 0.2% minimum. On the other hand, its content must not be too great (0.5% max approximately) so as not to favor the formation of bainite instead of the acicular ferrite sought. From 0.5 to 2.0% manganese. Manganese is conventionally used here to increase the hardenability of steel under the above-mentioned carbon contents. However, its content is preferably less than 2.0% in order to avoid its segregation which would harm the homogeneity of the structure. - From 0.05 to 0.5% vanadium. Vanadium favors the development of acicular ferrite, as already said, by making it possible to increase the size of the bainitic domains and by shifting them towards high temperatures. It also decreases the range of appearance of perlite ferrite. From 0.02 to 0.10% sulfur. Sulfur not only improves the machinability of parts, but fulfills a role mainly sought here in the nucleation mechanism of acicular ferrite. It has in fact been discovered that it is the sulphides, and not the carbides as in the case of the document USP 6,669,789 cited above, which in fact constitute essential anchoring points on which the acicular ferrite grains will develop, the development of which is going to be promoted by vanadium, combined with silicon. From 0.6 to 1.5% silicon. Silicon is conventionally used to deoxidize steel. Its content must however remain below 1.5% here in order not to weaken the steel. It plays an essential role here in the controlled increase of the bainitic domain in which the acicular ferrite is formed by precipitating as already indicated primary ferrite at the grain boundaries and thus allowing vanadium to promote the development of acicular ferrite. From 0.05 to 1.0% chromium. The chromium makes it possible to adjust the hardenability of the shade and thus to accompany the increase in size of the parts to be produced. It also acts with silicon in order to increase the range of existence of acicular ferrite. From 0.01 to 0.5% molybdenum. The molybdenum contributes to obtaining the final structure by adjusting the hardenability of the shade. In fact, if the content of quenching elements is too low, a ferrito-pearlitic structure will be obtained, and conversely, a shade that is too quenching can lead to obtaining martensite or residual austenite. Optionally, but highly recommended in practice, from 0.01 to 0.02% of titanium in order to protect the elements from nitrogen, and in particular to keep sufficient free vanadium which would otherwise easily form precipitated nitrides. Similarly, optionally but conventionally widely used in practice, from 5 to 30 ppm of calcium in order to improve the flowability of the steel and its implementation. It facilitates the obtaining of inclusions of oxides which can enter into the nucleation mechanism of acicular ferrite. Optionally up to 50 ppm of boron which will act in synergy with molybdenum to widen the bainitic domain in which acicular ferrite is formed. Possibly up to 0.2% aluminum to control the size of the austenitic grain, but it will also play a role in the preservation of vanadium. This optimized composition allows the steel to present, following controlled cooling, a structure essentially composed of acicular ferrite. By essentially, it will be understood an acicular ferrite content of more than 50% and preferably more than 60%, and advantageously about 80% or even more. Such a metallographic structure allows the steel to present good mechanical characteristics of resistance, hardness and ductility, but also a resistance to shocks and to work in increased fatigue. As will be seen, the acicular ferrite is obtained before or after the shaping of the part, but in any case by means of controlled cooling of the steel. In the first case, the deformation takes place cold on a steel which already has a structure essentially composed of acicular ferrite. A long semi-product is supplied, consisting of an analysis steel conforming to the invention which is hot rolled, if necessary after reheating above 1100 ° C., according to the usual practice of hot rolling, until a laminated wire 10 mm in diameter, for example, is obtained. The wire removal temperature is of the order of 900 to 950 ° C. The laminated wire obtained is cooled with blown air in the "hot" rolling itself in the usual way ("Steelmor" process for example). If its diameter allows, the wire can also be naturally cooled to ambient air. The laminated wire is delivered in the form of a crown to the transformer who will cut it into pieces of the desired length and subject them to cold stamping to obtain the desired parts. The final mechanical characteristics are naturally obtained by the work hardening resulting from the shaping. In the second case, the plastic shaping is done "hot" and the metallographic structure is obtained directly on the forge blanks. A long semi-finished product consisting of an analytical steel is supplied, giving the invention that it is hot rolled to give it a diameter of 35 mm for example. After possible cooling, which does not need to be checked at this level, the bane is cut to length by cutting and delivered to the blacksmith. The bars are then cut into pieces. Each piece is brought to a temperature of at least 1100 ° C by means of an induction furnace. This heating can also be done more conventionally but the heating conditions (time, speed of heating, etc.) must then be optimized in order to obtain a homogeneous austenitic structure having a grain size favorable to the formation of acicular ferrite. The austenitic grain size is then estimated at 80 μm. The pieces are subjected to a hot plastic deformation operation. The forging ends at a temperature above 1100 ° C. The blanks of parts thus obtained are then subjected to forced cooling down to ambient temperature at a cooling rate of between approximately 0.5 and 15 ° C./s, depending on the diameter of the part and the optimization of the composition. steel. The part can also be cooled in a natural but controlled way, by placing the blanks at the forge outlet one by one on a conveyor belt for example. The part is then machined to respect the final target dimensions. Optionally, instead of machining, the blank can be subjected to a second plastic knockout. This additional operation can be carried out cold without risking cracking the part due to the ductile nature given by the microstructure to the steel. It is not necessary to carry out a thermal quenching and tempering treatment to obtain the targeted mechanical characteristics. The steel grade gives the invention a pennet to obtain a part of metallographic structure essentially composed of acicular ferrite. It has the mechanical characteristics of breaking strength and hardness required by its use properties, and meets the machinability requirements. In addition, it has increased toughness by its very structure, the intertwining of the slats serving as an obstacle to the appearance and propagation of cracks. This increased toughness allows it in fact to present suddenly also better impact resistance and better resistance to fatigue. In addition, it also allows a second cold forming by striking for example. Obtaining acicular fenite also increases the mechanical resistance of the shade by the high density of dislocation of its slats. Tests were carried out in the laboratories of the producer of semi-finished products for forge from continuous casting. A wheel hub was forged there from a steel according to the invention, the chemical composition of which, in addition to the iron and the impurities resulting from the production, corresponds to the following analysis:
Avant le forgeage, ce lopin a été chauffé à 1200°C par induction. La température de fin de forgeage est de 1100°C. Après forgeage l'ébauche est refroidie à une vitesse de 2°C/s directement dans la chaude. Aucun autre traitement thennique n'est appliqué. La structure obtenue sur ce moyeu d'essai est à 80 % de la ferrite aciculaire, il présente en outre les caractéristiques mécaniques suivantes :Before forging, this piece was heated to 1200 ° C by induction. The end of forging temperature is 1100 ° C. After forging the blank is cooled at a speed of 2 ° C / s directly in the hot. No other thermal treatment is applied. The structure obtained on this test hub is 80% of the acicular ferrite, it also has the following mechanical characteristics:
On rappelle que : Rm représente la résistance à la rupture correspondant à la force maximale avant rupture rapportée à la section initiale du fil. Rpn_ représente la limite d'élasticité conventionnelle conespondant à la force rapportée à la section initiale du fil provoquant un allongement plastique de 0,2 %. A représente l'allongement à la rupture. Z représente la striction conespondant à la réduction de section du fil après rupture.It is recalled that: Rm represents the breaking strength corresponding to the maximum force before breaking referred to the initial section of the wire. Rpn_ represents the conventional elastic limit corresponding to the force related to the initial section of the wire causing a plastic elongation of 0.2%. A represents the elongation at break. Z represents the necking corresponding to the reduction in cross-section of the wire after breaking.
Il va de soi que l'invention ne saurait se -limiter à l'exemple qui vient d'être décrit, moyeu de roue, mais qu'elle s'étend à de multiples variantes ou équivalents, en type de pièces et en taille et dimension, dans la mesure où est respectée sa définition donnée dans les revendications jointes. It goes without saying that the invention cannot be limited to the example which has just been described, wheel hub, but that it extends to multiple variants or equivalents, in type of parts and in size and dimension, as long as its definition given in the appended claims is respected.

Claims

REVENDICATIONS
1 - Pièce mécanique en acier issue de la forge à chaud ou de la frappe à froid, de taille moyenne ou petite, et venant de transformation plastique d'un demi-produit sidérurgique long, caractérisée en ce que l'acier dont elle est constituée présente une composition qui, outre le fer et les inévitables impuretés résiduelles résultant de l'élaboration de l'acier, répond au moins à l'analyse suivante, donnée en pourcentages pondéraux: 0,2 < C < 0,5 0,5 < Mn < 2,0 0,05 < V < 0,5 0,6 ≤ Si < 1,5 0,05 ≤ Cr < 1,0 0,01 < Mo < 0,5 0,02 < S < 0,10 et éventuellement jusqu'à 50 ppm de bore et en ce que ladite pièce est obtenue à partir d'un demi produit long issu de la coulée continue et laminé à chaud dans le domaine austénitique, puis mis en forme par défonnation plastique et traité thenniquement pour obtenir une structure métallographique contenant essentiellement de la ferrite aciculaire au moins dans les zones de sollicitations mécaniques en ténacité et en fatigue.1 - Mechanical steel part from hot forging or cold pressing, of medium or small size, and coming from plastic transformation of a long steel semi-finished product, characterized in that the steel of which it is made has a composition which, in addition to iron and the inevitable residual impurities resulting from the production of steel, meets at least the following analysis, given in weight percentages: 0.2 <C <0.5 0.5 < Mn <2.0 0.05 <V <0.5 0.6 ≤ Si <1.5 0.05 ≤ Cr <1.0 0.01 <Mo <0.5 0.02 <S <0.10 and optionally up to 50 ppm of boron and in that said part is obtained from a long semi-product resulting from continuous casting and hot rolled in the austenitic field, then shaped by plastic shaping and heat treated for obtain a metallographic structure essentially containing acicular ferrite at least in the areas of mechanical stresses in tenacity and in fa Tigue.
2- Pièce mécanique selon la revendication 1 caractérisée en ce que l'acier qui la compose contient en outre de 0,01 à 0,02 % de titane et/ou jusqu'à 0,20 % d'aluminium.2- Mechanical part according to claim 1 characterized in that the steel which composes it also contains from 0.01 to 0.02% of titanium and / or up to 0.20% of aluminum.
3- Pièce mécanique selon la revendication 1 ou 2 caractérisée en ce que l'acier qui la compose comprend en outre entre 5 et 30 ppm de calcium.3- Mechanical part according to claim 1 or 2 characterized in that the steel which composes it further comprises between 5 and 30 ppm of calcium.
4- Acier pour la fabrication d'une pièce mécanique par défonnation plastique, caractérisé en ce que, outre les inévitables impuretés résiduelles venant de l'élaboration de l'acier, sa composition chimique comprend au moins, exprimés en teneur pondérale: 0,2 < C < 0,5 0,5 < Mn < 2,0 0,05 < V < 0,5 0,6 ≤ Si < 1,5 0,05 < Cr < 1,0 0,01 < Mo < 0,5 0,02 < S < 0,10 et éventuellement jusqu'à 50 ppm de B. et en ce que la microstructure métallographique qu'il présentera, une fois ladite pièce mise en œuvre, est essentiellement composée de fenite aciculaire au moins dans les zones de la pièce soumises à des sollicitations mécaniques en ténacité et en fatigue.4- Steel for the manufacture of a mechanical part by plastic defonation, characterized in that, in addition to the inevitable residual impurities coming from the production of steel, its chemical composition comprises at least, expressed in weight content: 0.2 <C <0.5 0.5 <Mn <2.0 0.05 <V <0.5 0.6 ≤ If <1.5 0.05 <Cr <1.0 0.01 <Mo <0, 5 0.02 <S <0.10 and possibly up to 50 ppm of B. and in that the metallographic microstructure which it will present, once said part is implemented, is essentially composed of acicular fenite at least in the zones of the part subjected to mechanical stresses in tenacity and in fatigue.
5- Acier selon la revendication 5 ou 6 caractérisé en ce que, pour protéger le vanadium, il contient en outre de 0,01 à 0,02 % de titane et/ou jusqu'à 0,20 % d'aluminium.5- Steel according to claim 5 or 6 characterized in that, to protect the vanadium, it also contains from 0.01 to 0.02% of titanium and / or up to 0.20% of aluminum.
6- Acier selon la revendication 4 ou 5 caractérisé en ce qu'il comprend en outre entre 5 et 30 ppm de calcium.6- Steel according to claim 4 or 5 characterized in that it further comprises between 5 and 30 ppm of calcium.
7- Procédé de fabrication d'une pièce mécanique en acier caractérisé en ce que, dans le but d'obtenir de la ferrite aciculaire au moins localement sur ladite pièce, il comprend les étapes suivantes : - on approvisionne une billette de coulée continue en acier de composition confonne à l'analyse donnée ci-avant, que l'on lamine à chaud à une température supérieure à 1 000 °C en barre ou en fil avant d'être refroidie jusqu'à l'ambiante après laminage ; - le fil étant soumis à un refroidissement contrôlé avant sa mise en couronne pour l'obtention d'une structure métallographique composée essentiellement de ferrite aciculaire, fil que l'on découpe alors en lopins et que l'on frappe à froid en pièce finie prête à l'usage; - la bane étant, elle, refroidie naturellement dans la chaude de laminage avant sa découpe en lopins que l'on forge ensuite à chaud en une ébauche de pièce que l'on refroidit par refroidissement contrôlé pour l'obtention d'une structure essentiellement composée de ferrite aciculaire au moins dans les zones sollicitées de la pièce, ébauche que l'on usine alors le cas échéant aux côtes souhaitées pour en, faire une pièce finie prête à l'usage.7- A method of manufacturing a mechanical steel part characterized in that, in order to obtain acicular ferrite at least locally on said part, it comprises the following steps: - a continuous steel billet is supplied of composition gives the analysis given above, which is hot rolled at a temperature above 1000 ° C in bar or wire before being cooled to room temperature after rolling; - the wire being subjected to a controlled cooling before its setting in crown to obtain a metallographic structure composed essentially of acicular ferrite, wire which is then cut into pieces and which is cold struck in ready finished part in use; - the bane being, it, naturally cooled in the hot rolling before its cutting into pieces which are then hot forged into a blank part which is cooled by controlled cooling to obtain an essentially composed structure of acicular ferrite at least in the stressed areas of the part, blank which is then machined if necessary to the desired ribs to make a finished part ready for use.
8-Procédé selon la revendication 7 caractérisé en ce que le refroidissement contrôlé est un refroidissement naturel jusqu'à l'ambiante.8-A method according to claim 7 characterized in that the controlled cooling is natural cooling to the ambient.
9- Procédé selon la revendication 7 caractérisé en ce que le refroidissement contrôlé est un refroidissement forcé assurant une vitesse de refroidissement en surface de 0,5 à 15 °C/s environ.9- A method according to claim 7 characterized in that the controlled cooling is forced cooling ensuring a surface cooling rate of 0.5 to 15 ° C / s approximately.
10- Demi-produit sidérurgique long moyen carbone, destiné à être transfoπné par forge ou par frappe en une pièce mécanique à hautes caractéristiques, de petite taille ou de taille moyenne, caractérisé en ce que dans le but que ladite pièce présente une micro structure métallographique essentiellement composée de ferrite aciculaire au moins dans les zones de la pièce soumises à des sollicitations mécaniques en ténacité et en fatigue, l'acier qui le compose répond au moins à l'analyse suivante, donnée en pourcentages pondéraux : 0, 1 < C < 0,5 0,5 ≤ Mn < 2,0 0,05 < N < 0,5 0,6 < Si < 1,5 0,05 ≤ Cr < 1,0 0,01 < Mo < 0,5 0,02 < S < 0,10 et éventuellement jusqu'à 50 ppm de bore et en ce que la microstructure métallographique qu'il présentera après transformation sera essentiellement composée de fenite aciculaire au moins dans les zones de la pièce soumises à des sollicitations mécaniques en ténacité et en fatigue. 10- Long carbon steel semi-finished product, intended to be transformed by forging or by striking into a mechanical part with high characteristics, of small size or of medium size, characterized in that with the aim that said part has a metallographic micro structure essentially composed of acicular ferrite at least in the zones of the part subjected to mechanical stresses in tenacity and in fatigue, the steel which composes it meets at least the following analysis, given in weight percentages: 0, 1 <C <0.5 0.5 ≤ Mn <2.0 0.05 <N <0.5 0.6 <Si <1.5 0.05 ≤ Cr <1.0 0.01 <Mo <0.5 0.02 <S <0.10 and possibly up to 50 ppm of boron and in that the metallographic microstructure which it will present after transformation will be essentially composed of acicular fenite at least in the areas of the part subjected to mechanical stresses in toughness and fatigue.
EP05739467A 2004-03-18 2005-03-16 Forged or stamped average or small size mechanical part Withdrawn EP1725689A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0402804A FR2867785B3 (en) 2004-03-18 2004-03-18 MECHANICAL PIECE OF MEDIUM OR SMALL SIZE FROM FORGING OR STRIKING
PCT/FR2005/000646 WO2005100618A2 (en) 2004-03-18 2005-03-16 Forged or stamped average or small size mechanical part

Publications (1)

Publication Number Publication Date
EP1725689A2 true EP1725689A2 (en) 2006-11-29

Family

ID=34896620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05739467A Withdrawn EP1725689A2 (en) 2004-03-18 2005-03-16 Forged or stamped average or small size mechanical part

Country Status (3)

Country Link
EP (1) EP1725689A2 (en)
FR (1) FR2867785B3 (en)
WO (1) WO2005100618A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430459A (en) * 2021-06-17 2021-09-24 燕山大学 Vanadium microalloyed medium-carbon carbide-free bainite steel and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2199422A1 (en) 2008-12-15 2010-06-23 Swiss Steel AG Low-carbon precipitation-strengthened steel for cold heading applications
FR3123659A1 (en) 2021-06-02 2022-12-09 Ascometal France Holding Sas Hot-formed steel part and method of manufacture

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3539404A (en) * 1967-05-15 1970-11-10 Youngstown Sheet And Tube Co Method of making a low alloy steel
JPS579831A (en) * 1980-05-21 1982-01-19 British Steel Corp Steel production
JPS57177927A (en) * 1981-04-27 1982-11-01 Nisshin Steel Co Ltd Manufacture of high tensile steel plate with superior workability
US4534805A (en) * 1983-03-17 1985-08-13 Armco Inc. Low alloy steel plate and process for production thereof
DE3579376D1 (en) * 1984-06-19 1990-10-04 Nippon Steel Corp METHOD FOR PRODUCING HIGH-STRENGTH STEEL WITH WELDABILITY.
EP0288054B1 (en) * 1987-04-24 1993-08-11 Nippon Steel Corporation Method of producing steel plate with good low-temperature toughness
JPH05148539A (en) * 1991-11-22 1993-06-15 Kawasaki Steel Corp Production of steel for uoe steel pipe which is less embrittled by heating in (gamma+alpha) two-phase region
JP3474661B2 (en) * 1995-01-24 2003-12-08 新日本製鐵株式会社 Sour-resistant steel plate with excellent crack arrestability
ES2130065B1 (en) * 1997-03-17 2000-01-16 Gsb Grupo Siderurgico Vasco S MANUFACTURING PROCEDURE FOR MICROALLOYED STEELS WITH CONVENTIONALLY COOLED ACICULAR FERRITE STRUCTURES.
IT1291931B1 (en) * 1997-06-19 1999-01-21 Voest Alpine Ind Anlagen PROCEDURE FOR THE PRODUCTION OF RAW STEEL CASTING TAPES WITH LOW CARBON CONTENT AND THIS OBTAINABLE TAPES
US6056833A (en) * 1997-07-23 2000-05-02 Usx Corporation Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
JP3755301B2 (en) * 1997-10-24 2006-03-15 Jfeスチール株式会社 High-strength, high-workability hot-rolled steel sheet excellent in impact resistance, strength-elongation balance, fatigue resistance and hole expansibility, and method for producing the same
FR2774098B1 (en) * 1998-01-28 2001-08-03 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF SECABLE MECHANICAL PARTS
GB2341613A (en) * 1998-09-04 2000-03-22 British Steel Plc A steel composition for laser welding
US6669789B1 (en) * 2001-08-31 2003-12-30 Nucor Corporation Method for producing titanium-bearing microalloyed high-strength low-alloy steel
CA2378934C (en) * 2002-03-26 2005-11-15 Ipsco Inc. High-strength micro-alloy steel and process for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005100618A3 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430459A (en) * 2021-06-17 2021-09-24 燕山大学 Vanadium microalloyed medium-carbon carbide-free bainite steel and preparation method thereof

Also Published As

Publication number Publication date
FR2867785A3 (en) 2005-09-23
FR2867785B3 (en) 2006-02-17
WO2005100618A3 (en) 2006-01-12
WO2005100618A2 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
EP1844173B1 (en) Method for producing austenitic iron-carbon-manganese metal sheets, and sheets produced thereby
EP2245203B1 (en) Austenitic stainless steel sheet and method for obtaining this sheet
EP0851038B1 (en) Steel and process for forming a steel article by cold plastic working
CA2847809C (en) Rolled steel that hardens by means of precipitation after hot-forming and/or quenching with a tool having very high strength and ductility, and method for manufacturing same
EP0787812B1 (en) Process for manufacturing steel forging
EP0717116B1 (en) Process for producing a work piece of machine construction steel and work piece produced by this process
WO2003025240A1 (en) Method for making rolled and welded tubes comprising a final drawing or hydroforming step and resulting rolled tube
CA2452647C (en) Cooled and tempered bainite steel part and its manufacturing process
WO2005100618A2 (en) Forged or stamped average or small size mechanical part
EP2134882B1 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
EP3274483B1 (en) Parts with a bainitic structure having high strength properties and manufacturing process
FR3064282A1 (en) STEEL, PROCESS FOR THE MANUFACTURE OF MECHANICAL PARTS IN THIS STEEL, AND PARTS SO MANUFACTURED
EP1565587B1 (en) Ready-use low-carbon steel mechanical component for plastic deformation and method for making same
EP0550294B1 (en) Elongated product for cold forming manufacturing process, more particularly for cold coining of shaped products such as bolts, and process for manufacturing this cold formed product
EP1553197A1 (en) Steel material for mechanical structure excellent in suitability for rolling, quenching crack resistance, and torsional property and drive shaft
WO1985004906A1 (en) Method for producing steel bars or rod wire and corresponding products
EP4347903A1 (en) Hot-formed steel part and manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060923

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101AFI20061117BHEP

Ipc: C22C 38/22 20060101ALI20061117BHEP

Ipc: C22C 38/24 20060101ALI20061117BHEP

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20110314