JPH05117813A - Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture - Google Patents

Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture

Info

Publication number
JPH05117813A
JPH05117813A JP11211991A JP11211991A JPH05117813A JP H05117813 A JPH05117813 A JP H05117813A JP 11211991 A JP11211991 A JP 11211991A JP 11211991 A JP11211991 A JP 11211991A JP H05117813 A JPH05117813 A JP H05117813A
Authority
JP
Japan
Prior art keywords
less
rolling
annealing
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11211991A
Other languages
Japanese (ja)
Inventor
Sadao Hirotsu
貞雄 廣津
Yoshihiro Uematsu
美博 植松
Toshihiko Takemoto
敏彦 武本
Shigeto Hayashi
茂人 林
Tomoyuki Sugino
智幸 杉野
Shinji Shibata
新次 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Nisshin Steel Co Ltd filed Critical Toyota Motor Corp
Priority to JP11211991A priority Critical patent/JPH05117813A/en
Publication of JPH05117813A publication Critical patent/JPH05117813A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a stainless steel material for metal gasket having fatigue characteristic and high strength. CONSTITUTION:This stainless steel is composed of by wt.% <=0.03% C, >1.0-3.0% Si, <=4.0% Mn, 4.0-10.0% Ni, 13.0-20.0% Cr, <=0.30% N, <=0.01% <=0.007% O and adjusted so as to become 30-100M value according to M=330-(480XC%)-(2XSi%)-(10XMn%)-(14XNi%)-(5.7XCr%)-(5XMo%)-(14XCu%)-(3 20XN%) and the balance Fe with the inevitable impurities. At the time of manufacturing the steel sheet by temper-rolling after annealing through hot-rolling process and cold-rolling process to this steel material, this sheet is made to fine grain structure composed of substantially austenitic phase having <=10mum crystal grain diameter with this annealing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,成形加工性および疲労
特性に優れたメタルガスケット用ステンレス鋼およびそ
の製造方法に係り,詳しくは,高強度と成形加工性を必
要としかつ加工部での疲労特性が要求される例えば自動
車やオートバイ等のエンジンを構成するメタルガスケッ
ト,さらに従来耐熱性を必要とするためアスベストが使
用されてきた箇所でのガスケット,更にはオートフアス
ナー等の加工部に繰返し変動応力が加わるばね部品等に
好適なステンレス鋼およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel for metal gaskets having excellent formability and fatigue properties and a method for producing the same, and more specifically, it requires high strength and formability, and fatigue in the processed part. For example, metal gaskets that make up engines such as automobiles and motorcycles that require characteristics, gaskets where asbestos has been used because heat resistance is required in the past, and repetitive fluctuating stress on the processed parts such as auto fasteners. TECHNICAL FIELD The present invention relates to a stainless steel suitable for a spring component to which a load is applied and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来,エンジンなど温度の上昇する部分
でのガスケット材としてはアスベスト等が使用されてき
たが,エンジンの高性能化やノンアスベストの法規制化
の動きに対応してメタルガスケットが使用されつつあ
る。このガスケットは接合面の気密を維持するに必要な
諸特性を具備しなければならない。。例えば自動車やオ
ートバイ等のエンジンを構成する部材でのメタルガスケ
ットではエンジン特有の高温,高圧および高振動下でし
かも温度変化と圧力変化が繰り返されるために,これに
対応できる特性を有している必要がある。また,漏れを
防止するという観点から見れば類似の用途と言えるアス
ベストを包み込んだOリングでもノンアスベストの法規
制化の動きに対応してメタル化が進んでおり,帯状のコ
イルを円筒状に巻き,さらにドーナツ型のOリング(メ
タルパッキン)に成形することが行われている。これら
のメタルガスケットやメタルパッキン等の材料として
は,冷間加工によって簡単に高強度が得られる加工硬化
型の準安定オーステナイト系ステンレス鋼であるSUS301
系鋼が主に用いられている。使用法としては,ガスケッ
トでは板厚0.1〜0.4mm程度の薄板を素材とし,例えばエ
ンジンヘッドガスケットの場合では,燃焼室の周囲, お
よび水孔, 油孔の周囲に沿ったビードを形成したガスケ
ットに成形し,このビードを締め付けたときに発生する
高面圧にてガス,水, 油をシールするのが一般である。
また, メタルパッキンでは帯状のコイルを円筒状に巻き
さらにドーナツ型にしOリングとして接合面の気密を維
持するのに用いられている。
2. Description of the Related Art Conventionally, asbestos has been used as a gasket material in parts where the temperature rises such as an engine, but metal gaskets have been used in response to the trend toward higher engine performance and non-asbestos legal regulations. It is being used. The gasket must have the properties required to maintain the airtightness of the mating surfaces. . For example, metal gaskets used in components of engines such as automobiles and motorcycles are required to have characteristics that can cope with temperature and pressure changes that are repeated under high temperature, high pressure, and high vibration peculiar to engines. There is. Also, from the viewpoint of preventing leakage, even O-rings that enclose asbestos, which can be said to have a similar purpose, are being metallized in response to the movement of non-asbestos legislation, and a strip-shaped coil is wound into a cylindrical shape. Further, it is being formed into a donut type O-ring (metal packing). The material for these metal gaskets and metal packings is SUS301, which is a work-hardening metastable austenitic stainless steel that can easily obtain high strength by cold working.
Steels are mainly used. The gasket is made of a thin plate with a thickness of 0.1 to 0.4 mm. For example, in the case of an engine head gasket, a gasket with beads formed around the combustion chamber and around water holes and oil holes is used. It is common to mold and seal gas, water and oil with the high surface pressure generated when the bead is tightened.
Further, in the metal packing, a strip-shaped coil is wound into a cylindrical shape and further formed into a donut shape, which is used as an O-ring to maintain the airtightness of the joint surface.

【0003】[0003]

【発明が解決しようとする課題】例えば, シリンダーヘ
ッドに使用されるメタルガスケットは特に圧縮時高圧が
かかるため,ガスシール性を高めるためには高面圧を必
要とする。このためビード成形高さを高くしたり, 材料
強度を高めたりすることで対応する必要がある。これに
対応できる鋼としてはSUS301系鋼が挙げられ,前述のよ
うにこれが使用されているが,SUS301系鋼では高強度を
得るためには強度な冷間加工を施す必要があり, そのた
め延性, 加工性が低下し,ビード成形加工時にビード外
側R部に割れが発生するという問題があった。このた
め,やむを得ず低い強度とする必要があった。材料強度
を低くした場合, シール性を高めるためより高いビード
成形加工を必要とするとともに,より面圧が高くなるよ
うなビード形状とすることが要求された。したがって,
材料強度を低くした場合にもビード肩R部の両面 (内側
R部, 外側R部) にミクロクラックや割れが発生し,使
用中にミクロクラックを起点に割れが発生し,耐シール
性が低下すると言うような問題が生じてくる。ガスケッ
トとしての特性を十分満足しないという問題があった。
また, メタルパッキンでも同様に円筒状に加工する際に
ミクロクラックが発生し,使用中に振動による応力変動
でミクロクラックを起点に割れが発生するという問題も
ある。本発明はこのような成形加工によって発生するミ
クロクラックからの割れ発生の問題の解決を意図し, メ
タルガスケットとして優れた特性を有する材料の開発を
目標としたものである。
For example, since a metal gasket used for a cylinder head is subjected to a high pressure especially during compression, a high surface pressure is required to improve the gas sealability. For this reason, it is necessary to increase the bead molding height and the material strength. The steel that can handle this is SUS301 series steel, which is used as described above. However, in order to obtain high strength, SUS301 series steel needs to be subjected to strong cold working, and therefore ductility, There was a problem that the workability was lowered and cracks were generated in the R portion outside the bead during the bead forming process. Therefore, it was unavoidable that the strength be low. When the material strength was lowered, a higher bead forming process was required to improve the sealing property, and a bead shape that increased the surface pressure was required. Therefore,
Even when the material strength is lowered, micro-cracks and cracks are generated on both sides of the bead shoulder R part (inner R part, outer R part), and cracks occur from the micro-crack starting point during use, resulting in poor seal resistance. Then, there arises such a problem. There is a problem that the characteristics as a gasket are not sufficiently satisfied.
Similarly, metal packing also has the problem that microcracks occur when it is processed into a cylindrical shape, and cracks start from the microcracks due to stress fluctuations caused by vibration during use. The present invention intends to solve the problem of cracking from microcracks generated by such a molding process, and aims to develop a material having excellent properties as a metal gasket.

【0004】[0004]

【課題を解決するための手段】本発明によれば,重量%
において,C:0.03%以下, Si:1.0%を越え〜3.0%,
Mn:4.0%以下, Ni:4.0%〜10.0%, Cr:13.0〜20.
0%, N:0.30%以下, S:0.01%以下, O:0.007%以
下を含み,かつ, M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(320×N%) の式に従うM値が30以上100以下となるようにC,Si,M
n,Ni,Cr,N量が調整されており,残部がFeおよび不
可避的に混入してくる不純物からなる成形加工性および
疲労特性に優れたメタルガスケット用ステンレス鋼,並
びに,この鋼にさらに, 3.0%以下のMoまたは0.5〜3.0
%のCuを1種または2種および/またはTi,Nb,Vを
0.1〜1.0%の範囲でそれぞれ1種または2種以上を含有
させ, M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上100以下となるようにC,Si,M
n,Ni,Cr,Mo,Cu,N量を調整した成形加工性および疲
労特性に優れたメタルガスケット用ステンレス鋼を提供
する。
According to the present invention, the weight percent is
, C: 0.03% or less, Si: more than 1.0% to 3.0%,
Mn: 4.0% or less, Ni: 4.0% to 10.0%, Cr: 13.0 to 20.
0%, N: 0.30% or less, S: 0.01% or less, O: 0.007% or less, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − According to the formula (14 × Ni%)-(5.7 × Cr%)-(320 × N%), C, Si, M
The amount of n, Ni, Cr, N is adjusted, the balance is Fe and impurities inevitably mixed in, and the stainless steel for metal gasket excellent in moldability and fatigue characteristics, and this steel, Mo less than 3.0% or 0.5-3.0
% Cu of 1 or 2 and / or Ti, Nb, V
In the range of 0.1 to 1.0%, one kind or two or more kinds are contained, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − C, Si, M according to the formula of (5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) − (320 × N%) so that the M value is 30 or more and 100 or less.
Provided is a stainless steel for a metal gasket, which has an adjusted amount of n, Ni, Cr, Mo, Cu, N and is excellent in formability and fatigue characteristics.

【0005】そして,該ステンレス鋼からなるメタルガ
スケット用鋼板素材を工業的規模で有利に製造する方法
として,前記の成分組成を有するステンレス鋼を通常の
熱間圧延工程および冷間圧延工程を経たうえ焼鈍後に調
質圧延して鋼板とするにさいし,該調質圧延前焼鈍に先
立ち圧延率50%以上の冷間圧延を施し, 該調質圧延前焼
鈍で結晶粒径が10μ以下の実質的にオーステナイト相か
らなる微細粒組織としてから該調質圧延を施すことを特
徴とする成形加工性および疲労特性に優れたメタルガス
ケット用ステンレス鋼の製造方法を提供する。そのさ
い,調質圧延は25〜45%未満の圧延率で行なうのが有利
であり,調質圧延前焼鈍は700℃以上1000℃以下の温度
領域で行う。また調質圧延された鋼板は,所望のガスケ
ット形状に成形加工後に300℃以上600℃以下の温度範囲
で10秒間以上の時効処理を施すことによって一層高強度
を発現する。
As a method for producing the steel sheet material for metal gaskets made of the stainless steel advantageously on an industrial scale, the stainless steel having the above-mentioned composition is subjected to the usual hot rolling step and cold rolling step. Prior to the tempering before temper rolling, cold rolling with a rolling reduction of 50% or more was performed before temper tempering to obtain a steel sheet after annealing. Provided is a method for producing a stainless steel for a metal gasket, which is excellent in formability and fatigue characteristics, characterized by performing the temper rolling after forming a fine grain structure composed of an austenite phase. At that time, it is advantageous to carry out temper rolling at a rolling ratio of 25 to less than 45%, and annealing before temper rolling is carried out in the temperature range of 700 ° C to 1000 ° C. The temper-rolled steel sheet exhibits even higher strength by subjecting it to a desired gasket shape and subjecting it to an aging treatment for 10 seconds or longer in the temperature range of 300 ° C to 600 ° C.

【0006】[発明の詳述]先ず, 本発明鋼における各成
分の含有量範囲についてその限定理由の概要を説明す
る。Cはオーステナイト生成元素で, 高温で生成するδ
フエライトの抑制, 冷間加工で誘発されたマルテンサイ
ト相の強化に極めて有効であるが,本発明鋼のごとく調
質圧延後より良い成形加工性を得るためには冷間加工に
よる強化があまり著しいと,成形加工性に劣るようにな
る。またあまりCを高くすると調質前焼鈍,あるいは時
効処理条件によっては炭化物の析出を伴うおそれがあ
る。このため,Cは0.03%以下とした。
[Detailed Description of the Invention] First, the outline of the reason for limiting the content range of each component in the steel of the present invention will be described. C is an austenite forming element, and is formed at high temperature δ
It is extremely effective in suppressing ferrite and strengthening the martensite phase induced by cold working, but in order to obtain better formability after temper rolling as in the steel of the present invention, strengthening by cold working is notable. Then, it becomes inferior in moldability. Further, if the C content is too high, carbide may be precipitated depending on the pre-annealing annealing or aging treatment conditions. Therefore, C is 0.03% or less.

【0007】Siは脱酸剤として有効であるが,脱酸効
果という面からは1.0%を越えて添加してもその効果は
変わらずむしろコスト上昇を招く。しかしSiは冷間加
工の際に生ずる加工誘起マルテンサイト相を緻密にし,
延性, 靭性を高めると共に冷間加工後の時効処理による
強度上昇を高める上で非常に有効に働く。すなわち冷間
加工後の強度レベルを低くかつ高延性に保った状態でも
時効処理後高強度でかつ高延性が得られる。この効果を
得るためには少なくても1.0%を越えるSiを必要とす
る。しかし,あまり高くすると多量のδフエライトを生
成すると共に強度上昇に及ぼす効果も飽和状態になる。
この点を考慮するとSiの上限は3.0%となる。
Si is effective as a deoxidizing agent, but from the viewpoint of deoxidizing effect, even if added in excess of 1.0%, the effect does not change and the cost rises. However, Si densifies the work-induced martensite phase that occurs during cold working,
It works very effectively to improve ductility and toughness and increase the strength increase by aging treatment after cold working. That is, even when the strength level after cold working is kept low and high ductility, high strength and high ductility can be obtained after aging treatment. To obtain this effect, Si of at least 1.0% is required. However, if it is too high, a large amount of δ-ferrite is produced and the effect on the strength increase is saturated.
Considering this point, the upper limit of Si is 3.0%.

【0008】Mnは脱酸剤としても有効に働くがオース
テナイト相の安定度を支配する元素で,その活用は他の
元素とのバランスのもとに考慮される。本発明鋼では4.
0%までのMn量での活用が図られる。ただ本発明鋼では
高強度でかつ成形加工性が重要視され, 特に成形加工性
が厳しいものではMn量は0.5%未満とし,MnS等の介
在物の生成を極力避けることが好ましい。
[0008] Mn is an element which works effectively as a deoxidizing agent but governs the stability of the austenite phase, and its utilization is considered in balance with other elements. For the steel of the present invention, 4.
It can be used with Mn amount up to 0%. However, in the steel of the present invention, high strength and forming workability are important. Especially, in the case where the forming workability is severe, the Mn content is less than 0.5%, and it is preferable to avoid the formation of inclusions such as MnS as much as possible.

【0009】Crは耐食性上必須の成分である。意図す
る耐食性および耐熱性を付与するためには少なくとも13
%以上必要とする。しかし,Crはフエライト生成元素
であるため, 高くしすぎると高温でδフエライトが多量
に生成してしまう。そこでδフエライト相抑制のために
オーステナイト生成元素 (C, N, Ni,Mnなど)をそ
れに見合った量で添加しなければならなくなるが,オー
ステナイト生成元素を多く添加すると室温でのオーステ
ナイト相が安定し,冷間加工あるいは時効処理後, 高強
度が得られなくなる。このようなことからCrの上限は2
0%とした。
Cr is an essential component for corrosion resistance. At least 13 to provide the intended corrosion and heat resistance
Need more than%. However, since Cr is a ferrite-forming element, if it is made too high, a large amount of δ-ferrite will be generated at high temperatures. Therefore, in order to suppress the δ-ferrite phase, it is necessary to add austenite-forming elements (C, N, Ni, Mn, etc.) in an amount commensurate with that. However, adding a large amount of austenite-forming elements stabilizes the austenite phase at room temperature. However, high strength cannot be obtained after cold working or aging treatment. Therefore, the upper limit of Cr is 2
It was set to 0%.

【0010】Niは高温および室温でオーステナイト相
を得るために必須の成分であるが,本発明の場合, 室温
で準安定オーステナイト相にしてより良好な成形性を得
るため, 低い冷間加工で適度なマルテンサイト相を誘発
させ, 高強度が得られるようにしなければならない。本
発明ではNiを4%より低くすると高温で多量のδフエ
ライト相が生成し,かつ室温でオーステナイト相以外に
マルテンサイト相が生成しやすくなる。また10%を超え
ると冷間加工でマルテンサイト相が誘発されにくくな
る。このためNi量は4.0〜10.0%とした。より好ましく
は5.0〜8.0%とする。さらに耐久性耐熱性の面からも4.
0%以上のNiの添加は有利である。しかし10%を超えて
添加してもその効果も飽和状態となる。この面からもN
iは4.0〜10.0%が好ましい。
Ni is an essential component for obtaining an austenite phase at high temperature and room temperature, but in the present invention, it is suitable for low cold working in order to obtain a better formability by forming a metastable austenite phase at room temperature. It is necessary to induce a strong martensite phase and obtain high strength. In the present invention, when Ni is lower than 4%, a large amount of δ-ferrite phase is generated at high temperature, and a martensite phase other than the austenite phase is easily generated at room temperature. If it exceeds 10%, the martensite phase is less likely to be induced by cold working. Therefore, the amount of Ni is set to 4.0 to 10.0%. It is more preferably 5.0 to 8.0%. Furthermore, from the viewpoint of durability and heat resistance 4.
It is advantageous to add 0% or more of Ni. However, even if added over 10%, the effect is saturated. N from this aspect
i is preferably 4.0 to 10.0%.

【0011】Moは鋼のベース硬さを上昇させるととも
に時効処理後の硬さを上昇させ高強度を得る上で有効に
作用する。しかしフエライトフォーマーであるために多
量に添加するとδフエライト相を晶出させ, かえって強
度低下の要因となるので上限を3.0%とした。
Mo increases the base hardness of the steel and also increases the hardness after aging treatment, and effectively acts to obtain high strength. However, since it is a ferrite former, if it is added in a large amount, the δ-ferrite phase is crystallized, which rather causes a decrease in strength, so the upper limit was made 3.0%.

【0012】Cuは時効処理の際, Siとの相互作用によ
り鋼を硬化させるものであるが,少ないとその効果は小
さく, 多すぎると熱間加工性を阻害し割れの要因とな
る。このため0.5〜3.0%とした。
[0012] Cu hardens the steel by interaction with Si during the aging treatment, but if it is too small, its effect is small, and if it is too large, it deteriorates hot workability and causes cracking. Therefore, it is set to 0.5 to 3.0%.

【0013】Ti,Nb,Vは時効処理後の硬さを上昇させ
る上で有効に作用する。この作用を発現させるためには
0.1%以上の添加を必要とする。しかし必要以上に添加
すると, 多量の非金属介在物を生成し疲労強度の低下,
表面清浄の悪化につながるのでそれぞれの上限を1.0%
とする。
Ti, Nb and V act effectively in increasing the hardness after aging treatment. In order to express this effect
Addition of 0.1% or more is required. However, if added more than necessary, a large amount of non-metallic inclusions will be formed and the fatigue strength will decrease.
The upper limit of each is 1.0% as it leads to deterioration of surface cleaning.
And

【0014】NはCと同様にオーステナイト生成元素で
あると共に, オーステナイト相およびマルテンサイト相
を硬化するのに有効な元素である。またCに比べ析出物
を形成しにくいため, 耐久性の面からも有効である。こ
のため適度な冷間加工硬化能を付与するためにCに代え
て添加する。しかし,多量に添加するとブローホールの
原因となるので0.30%以下とした。なおその添加量は時
効硬化に寄与するSiやCu量によっても異なるが, より
好ましくは0.06〜0.20%である。
Like C, N is an austenite-forming element and is an element effective for hardening the austenite phase and martensite phase. It is also effective in terms of durability because it is less likely to form precipitates than C. Therefore, in order to impart an appropriate cold work hardening ability, it is added in place of C. However, addition of a large amount causes blowholes, so the content was made 0.30% or less. The addition amount varies depending on the amounts of Si and Cu contributing to age hardening, but is more preferably 0.06 to 0.20%.

【0015】SはMnとの共存のもとにMnSを生成し,
延性および曲げなどの加工性の低下をもたらすので0.01
0%以下とする。なお薄板で成形加工の厳しい領域では
さらにMnおよびSは低い方が好ましく,Mn量は0.5%未
満,S量は0.004%以下が好ましい。
S produces MnS under the coexistence of Mn,
0.01 because it causes deterioration of workability such as ductility and bending
0% or less. Further, in a thin plate and in a region where the forming process is severe, it is preferable that Mn and S are further low, and the Mn amount is less than 0.5% and the S amount is preferably 0.004% or less.

【0016】Oは疲労破壊の起点となる非金属介在物を
形成しやすい元素でありAl,TiなどOとの親和力の大
きい元素を含むときは特に顕著となる。このためOは低
いほど好ましいが 0.007%以下であれば目標は達成でき
る。このためOは0.007%以下とした。
O is an element which easily forms a non-metallic inclusion which becomes a starting point of fatigue fracture, and is particularly remarkable when an element having a high affinity with O such as Al and Ti is contained. Therefore, the lower the O content, the more preferable, but the target can be achieved if the O content is 0.007% or less. Therefore, O is set to 0.007% or less.

【0017】M値:30以上100以下について。C, Si,
Mn,Ni,Cr,Mo,CuおよびNについて上記の範囲で含
有させるが,下記(1)式に従うM値が30以上100以下とな
るように各成分を調整する。 M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) ・・(1) (1)式の各成分の定数は, 本発明材料の開発中に実験室
的に確認されたものである。このM値はオーステナイト
安定度の指標となるもので, 30未満の値では冷間圧延あ
るいは時効処理後高強度を得るためには, 室温で70%以
上の強加工を施す必要があり延性が低下する。したがっ
て成形加工性の面から30以上とする。また100を超える
と低い冷間加工で著しくマルテンサイト相を生成するた
め成形加工性を維持することが困難となる。このため10
0以下とする。このようにして本発明は, 冷間加工後の
成形加工性をできるだけ高めるべく, 冷間加工によって
生ずるマルテンサイト相を低い冷間加工で適量生成する
ように成分バランスさせ,また時効処理後できるだけ高
強度が得られるように考慮し,また後述の低温あるいは
短時間の再結晶焼鈍中 (調質圧延前の微細結晶処理) に
Cr炭化物の析出を避けるためCを下げ, このC低下に
伴う強度低下 (加工硬化の低下分) をNの添加で補うと
共にN添加鋼による時効硬化と微細結晶処理による時効
硬化度の上昇を有効に活用するようにし, より高強度が
発現できるようにした点に特徴がある。そして微細結晶
化と適量のSiを添加することにより低い調質圧延率で
も微細かつ緻密に加工誘起マルテンサイト相 (α-相)
を分布させることができること,そしてNの添加は時効
による強度上昇が大きいことなどの知見事実から, 調質
圧延率を低く保つことを可能にし,これによって成形加
工性を改善したところに特徴がある。
M value: 30 or more and 100 or less. C, Si,
Mn, Ni, Cr, Mo, Cu and N are contained in the above ranges, but each component is adjusted so that the M value according to the following formula (1) is 30 or more and 100 or less. M = 330- (480xC%)-(2xSi%)-(10xMn%)-(14xNi%)-(5.7xCr%)-(5xMo%)-(14xCu %) − (320 × N%) ··· (1) The constants of each component of the equation (1) were confirmed in the laboratory during the development of the material of the present invention. This M value serves as an index of austenite stability. If the value is less than 30, it is necessary to carry out 70% or more strong working at room temperature to obtain high strength after cold rolling or aging treatment, and ductility decreases. To do. Therefore, it should be 30 or more in terms of moldability. On the other hand, when it exceeds 100, it becomes difficult to maintain the formability because a martensite phase is remarkably generated in low cold working. For this reason 10
Set to 0 or less. In this way, the present invention balances the components so as to form an appropriate amount of martensite phase generated by cold working in order to enhance the formability after cold working as much as possible. In order to avoid the precipitation of Cr carbide during the low temperature or short-time recrystallization annealing (fine crystal treatment before temper rolling) described later, the C is lowered, and the strength is lowered with the decrease of C. (Decrease in work hardening) is supplemented by the addition of N, and the age hardening by N-added steel and the increase in age hardening degree by fine crystal treatment are effectively utilized, and higher strength can be expressed. There is. And by fine crystallization and addition of an appropriate amount of Si, the work-induced martensite phase (α - phase) can be finely and densely formed even at a low temper rolling rate.
It is possible to keep the temper rolling rate low by the fact that it is possible to disperse the alloy and the fact that the addition of N causes a large increase in strength due to aging. ..

【0018】なお,これらの成分以外に本発明鋼には脱
酸剤として添加されるCaやREM(希土類元素),熱間加工
性改善に効果のあるB (0.01%以下) 等を必要に応じて
含有することができ,また不可避的に混入する不純物を
含有することができる。但しAlは高強度でかつ疲労強
度の高いものが要求される場合は使用しないか,あるい
は鋼中に非金属介在物を形成しない程度の量とすること
が望ましい。
In addition to these components, Ca, REM (rare earth elements) added as a deoxidizing agent, B (0.01% or less) which is effective in improving hot workability, etc. are added to the steel of the present invention as required. Can be included as well as impurities that are inevitably mixed in. However, Al is not used when high strength and high fatigue strength is required, or it is desirable to use an amount that does not form nonmetallic inclusions in the steel.

【0019】上述の範囲に調整された本発明鋼は,その
組織状態は溶体化処理状態で実質的にはオーステナイト
組織を呈する。この組織状態の鋼に50%を超える冷間圧
延を加え700〜1000℃の温度で調質前焼鈍を行うことに
より均一な微細結晶組織を得ることができる。そして,
この微細結晶組織の状態で調質圧延を施すことでメタル
ガスケット材としての特性を得ることができる。またガ
スケットへの成形加工の前または後に300℃以上600℃以
下の温度範囲に10秒以上保持する時効処理を施せば硬さ
ならびに強度は一層高くなり, メタルガスケット等でそ
の耐久性を一層向上させることができる。
The steel of the present invention adjusted to the above-mentioned range has substantially the austenite structure in the solution treatment state. A uniform fine crystal structure can be obtained by subjecting the steel in this structure state to cold rolling of more than 50% and pre-annealing at a temperature of 700 to 1000 ° C. And
By performing temper rolling in the state of this fine crystal structure, the characteristics as a metal gasket material can be obtained. In addition, the hardness and strength can be further enhanced by subjecting the gasket to an aging treatment in which it is kept in the temperature range of 300 ° C or more and 600 ° C or less for 10 seconds or more before or after the forming process, and the durability can be further improved with metal gaskets. be able to.

【0020】次に本発明に従う製造条件について説明す
る。従来の製造法により得られる鋼は一般的に結晶粒径
は25μ前後のものであり,調質圧延後の成形加工におい
て, 後述の実施例で示すように加工部で結晶粒界や加工
歪により発生したスリップバンド部分より, ミクロクラ
ックが発生しメタルガスケット等の加工部品での寿命を
短くしている。本発明の製造法によれば, まず調質前焼
鈍を行う前の冷間圧延において50%を越える減面率(冷
延率)を付与し,調質前焼鈍において, 後述の実施例で
示すように短時間で均一でかつ微細な結晶粒を得, 調質
前焼鈍状態での強度レベルを高めることで低い調質圧延
率でも十分な強度特性が得られる。このため成形加工性
に優れた鋼板となり,これを成形加工しても表面肌荒れ
やミクロクラックの発生のない加工部品が得られ,加工
部品の寿命を著しく長くすることができる。また, 調質
圧延後の時効処理による強度上昇もSiおよびN添加と
微細結晶処理により従来法に比べ大きく, 時効処理後同
一強度を得んとすれば,調質圧延後の強度レベルは低く
することが可能でさらに成形加工性に優れたものを提供
することができる。
Next, the manufacturing conditions according to the present invention will be described. The steel obtained by the conventional manufacturing method generally has a grain size of around 25μ, and during the forming process after temper rolling, as shown in the examples described later, due to the grain boundary and processing strain in the processed part. Micro-cracks are generated from the generated slip band, which shortens the service life of machined parts such as metal gaskets. According to the manufacturing method of the present invention, first, a reduction in area (cold rolling rate) of more than 50% is given in the cold rolling before the pre-annealing annealing, and in the pre-annealing annealing, it is shown in the examples described later. Thus, uniform and fine crystal grains can be obtained in a short time, and sufficient strength characteristics can be obtained even at a low temper rolling rate by increasing the strength level in the pre-annealing pre-annealed state. As a result, a steel sheet with excellent formability can be obtained, and even if this sheet is formed, a machined part that does not have surface roughness or microcracks can be obtained, and the life of the machined part can be significantly extended. In addition, the strength increase by aging treatment after temper rolling is larger than that by the conventional method by adding Si and N and fine crystal treatment. If the same strength is obtained after aging treatment, the strength level after temper rolling is lowered. It is possible to provide a material having excellent molding processability.

【0021】ここで特に調質圧延前焼鈍を700℃以上100
0℃以下としているが, これは700℃未満では微細結晶粒
を得るのに長時間を要し工業的でないこと,さらに1000
℃を超える温度では再結晶および粒成長が著しく10μ以
下の結晶粒を安定して得ることが難しいからである。こ
の焼鈍は工業的規模での連続焼鈍ラインで実施すること
ができる。
In particular, annealing before temper rolling is performed at 700 ° C. or higher and 100
Although the temperature is set to 0 ° C or less, it takes a long time to obtain fine crystal grains below 700 ° C, which is not industrial.
This is because recrystallization and grain growth remarkably occur at a temperature higher than ° C and it is difficult to stably obtain crystal grains having a grain size of 10 µ or less. This annealing can be carried out on a continuous annealing line on an industrial scale.

【0022】調質圧延率については調質前焼鈍後の強度
レベルやオーステナイト相の安定度などに支配され, こ
れに応じて種々変化させることができるが,本質的には
実施例に示されるごとく従来鋼よりも低い圧延率で目標
強度は達成され, 25%以上45%未満が適当と考えられ
る。
The temper rolling ratio is governed by the strength level after pre-annealing annealing, the stability of the austenite phase, etc., and can be variously changed according to this, but essentially as shown in the examples. The target strength is achieved at a rolling rate lower than that of conventional steel, and it is considered that 25% or more and less than 45% is appropriate.

【0023】時効処理については,メタルガスケットな
どの加工部品としての強度特性を得るためには300℃以
上600℃以下の温度範囲が好ましい。この下限300℃はこ
れ未満の温度では目標の強度レベルを得るのに長時間を
要し経済的でないこと,また上限温度を600℃とするの
は, これより高温では強度が上昇する以前に大幅な回復
の進行が起こり, メタルガスケットとして要求される強
度が得られないからである。時効処理時間を10秒以上と
するのは,これより短時間では十分な強度特性が得られ
ないためである。時効処理時間の上限は特に限定されな
いが,製造コスト面から考えると1時間前後が好まし
い。
As for the aging treatment, a temperature range of 300 ° C. or higher and 600 ° C. or lower is preferable in order to obtain strength characteristics as a processed part such as a metal gasket. The lower limit of 300 ° C is not economical because it takes a long time to obtain the target strength level at temperatures lower than this, and the upper limit of 600 ° C is significantly higher before the strength increases. This is because the progress of various recovery occurs and the strength required as a metal gasket cannot be obtained. The reason why the aging treatment time is 10 seconds or more is that sufficient strength characteristics cannot be obtained in a shorter time. The upper limit of the aging treatment time is not particularly limited, but about 1 hour is preferable from the viewpoint of manufacturing cost.

【0024】以上のように本発明によれば,前述の成分
組成を採用したうえ,その鋼帯の製造に際して調質前焼
鈍の前に50%を越える冷間加工を施し,700℃〜1000℃の
温度範囲で再結晶粒径が10μ以下, 実質的には1〜5μ
となるような処理条件で調質前焼鈍を連続焼鈍炉にて行
い,そして調質圧延を施すことによって従来材と同等ま
たはそれ以上の強度を得ながら,従来材では得られなか
った成形加工性に優れたメタルガスケット用材料が得ら
れる。すなわち前述の成分組成と微細結晶粒処理の採用
によって,高強度でかつ成形加工性を必要とするメタル
ガスケットの加工部のミクロクラックの発生を防止し,
且つメタルガスケットとしての使用寿命をも改善するこ
とができる。
As described above, according to the present invention, in addition to adopting the above-mentioned composition, the steel strip is subjected to cold working of more than 50% before pre-annealing, and 700 ° C to 1000 ° C. Recrystallized grain size is 10μ or less in the temperature range of 1 to 5μ
By performing pre-annealing in a continuous annealing furnace under the treatment conditions that give the following conditions, and then temper-rolling it, it is possible to obtain the same or higher strength as the conventional material, but with a formability that was not possible with the conventional material. Excellent metal gasket material can be obtained. That is, by adopting the above-described composition and fine grain treatment, it is possible to prevent the occurrence of microcracks in the processed part of the metal gasket, which requires high strength and moldability.
In addition, the service life of the metal gasket can be improved.

【0025】なお,本発明鋼は固溶状態で準安定オース
テナイト相を呈するので,調質前焼鈍より前の工程は従
来材と同要領で製造することができる。もっとも,安定
した微細結晶粒を得るためには調質前焼鈍を行う前に50
%を越える冷間圧延を施す必要があることは既述のとお
りである。以下に実施例を挙げて本発明の効果を具体的
に示す。
Since the steel of the present invention exhibits a metastable austenite phase in a solid solution state, the steps prior to pre-annealing can be manufactured in the same manner as conventional materials. However, in order to obtain stable fine crystal grains, 50
As described above, it is necessary to perform cold rolling in excess of%. The effects of the present invention will be specifically described below with reference to examples.

【0026】[0026]

【実施例】表1に示す成分(重量%)の本発明鋼 (N1
〜9),従来鋼(A)および比較鋼(a,b,c)を通
常の大気溶解炉で溶製し,熱間圧延を施した後,冷延,
焼鈍,酸洗を行い,最終調質圧延後の板厚を0.25mmとし
た。これを冷延ままのサンプルとして採取した。さらに
該鋼板に400℃で30分間の時効処理を施し,これを時効
処理後のサンプルとした。なお, 各鋼についての調質前
焼鈍の前の冷間圧延率, 調質前焼鈍条件, および調質圧
延率の詳細は表2に示した。
EXAMPLES Steels of the present invention (N1) having the components (% by weight) shown in Table 1
9), the conventional steel (A) and the comparative steels (a, b, c) are melted in a normal atmospheric melting furnace, hot-rolled, and then cold-rolled,
After annealing and pickling, the plate thickness after final temper rolling was 0.25 mm. This was taken as a sample as cold rolled. Further, the steel sheet was subjected to an aging treatment at 400 ° C for 30 minutes, and this was used as a sample after the aging treatment. The details of the cold rolling rate before pre-annealing, the pre-annealing conditions, and the temper rolling rate for each steel are shown in Table 2.

【0027】採取した各サンプルについて引張試験を行
なうと共に,時効処理前の冷延ままのサンプルについて
は形成加工性の試験を,また時効処理後のサンプルにつ
いてさらに疲労試験を行った。それらの結果を表2中に
併記した。なお表2中のΔTSは時効処理前後の引張強さ
(TS)の差である。また表2中には調質前焼鈍した状態で
の結晶粒径(μ)を併せて示した。なお,成形加工性試
験は図4に示す形状に試験片を成形加工したときの外側
R部と内側R部(R=0.2)を観察し, ミクロクラックな
し (○印), 微細なミクロクラック有り (△印), 割れ
あり (×)で評価した。また疲労試験は,図4のWビー
ド形状に成形加工した試験片に対し,図5に示したよう
に,荷重負荷無しの状態Aから荷重負荷状態Bに圧縮を
行なう圧縮繰り返し疲労試験を100万回繰り返した後
の,割れなし(○印)と割れあり(×印)で評価した。
A tensile test was carried out on each of the collected samples, a forming workability test was carried out on the as-cold rolled sample before the aging treatment, and a fatigue test was further carried out on the sample after the aging treatment. The results are also shown in Table 2. Note that ΔTS in Table 2 is the tensile strength before and after aging treatment.
(TS) difference. In addition, Table 2 also shows the crystal grain size (μ) in the state annealed before tempering. In the forming workability test, the outer R part and the inner R part (R = 0.2) when the test piece was formed into the shape shown in Fig. 4 were observed, and there were no microcracks (○ marks), and there were fine microcracks. The evaluation was made by (marked with △) and with cracks (×). As for the fatigue test, as shown in FIG. 5, the test piece formed into the W bead shape shown in FIG. 4 was subjected to a compression repeated fatigue test of compressing from state A without load to state B under load for 1 million times. After repeated times, evaluation was made with no cracks (marked with ○) and with cracks (marked with ×).

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】表2の結果から次のことが明らかである。
なお,なおメタルガスケット材としては高強度であるこ
とが望ましく,ここでは時効処理後の引張強さで少なく
とも175kg/mm2前後の強度を目標とする。
From the results of Table 2, the following is clear.
It should be noted that it is desirable that the metal gasket material has high strength. Here, the target tensile strength after aging treatment is at least about 175 kg / mm 2 .

【0031】本発明に従う実施例No.1〜10では, すなわ
ち成分組成と製造条件が本発明で規定する範囲の微細結
晶処理材では,いずれの鋼も成形加工時ミクロクラック
あるいは割れを発生することなく, しかも時効処理後十
分な引張強さを有している。本発明鋼 (N1)でも従来
法による製造では, 比較例No.11で示すように時効処理
後高強度を得るためには,時効処理前の調質圧延率を高
める (57.5%) 必要があり, 成形加工時内側(F)およ
び外側(R)R部ともにミクロクラックが発生する。ま
た, 比較例No.12のように成形加工性を高めるために調
質圧延率を下げれば (40%) , 外側 (R)R部には割れ
を発生することなく成形できるが, 内側R部 (F) には
ミクロクラックが発生する。したがっていずれもメタル
ガスケットとしての特性が劣るし,さらにいずれの場合
もΔTSが本発明例に比べ低いことが認められる。
In Examples Nos. 1 to 10 according to the present invention, that is, in the case of the fine crystallized material in which the composition of components and the manufacturing conditions are within the ranges specified in the present invention, any of the steels will generate microcracks or cracks during forming. Moreover, it has sufficient tensile strength after aging treatment. In the case of the present invention steel (N1) as well, in the conventional production, it is necessary to increase the temper rolling ratio before aging treatment (57.5%) to obtain high strength after aging treatment as shown in Comparative Example No. 11. Therefore, microcracks are generated in both the inner (F) and outer (R) R portions during the forming process. Also, as in Comparative Example No. 12, if the temper rolling rate is lowered to improve the forming workability (40%), the outer (R) R part can be formed without cracking, but the inner R part can be formed. Microcracks are generated in (F). Therefore, it is recognized that the characteristics as metal gaskets are inferior in each case, and ΔTS is lower than those of the examples of the present invention in any case.

【0032】比較例No.13は,本発明鋼 (N3)につい
て,調質前焼鈍の圧延率が本発明法で規定する範囲より
低いものについての例であるが, 本発明に従う微細結晶
処理を施しても混粒となり内側(F)R部には微細なミ
クロクラックが発生する。
Comparative Example No. 13 is an example of the steel (N3) of the present invention in which the rolling ratio of pre-annealing is lower than the range specified by the method of the present invention. Even if it is applied, it becomes mixed particles and fine microcracks are generated in the inner (F) R portion.

【0033】比較鋼No.16は本発明鋼よりもNが低く外
れている鋼(a)に対して本発明法で製造したものであ
るが,時効処理後高強度を得るためには, C, Nが低く
加工硬化が小さいために時効処理前の調質圧延率を高め
る必要がある。このため, 内側(F)R部にはミクロク
ラックは発生しないが,外側(R)R部で割れが発生す
る。
Comparative Steel No. 16 was produced by the method of the present invention for the steel (a) in which N was lower than the steel of the present invention and was deviated. However, in order to obtain high strength after aging treatment, C Since N is low and work hardening is small, it is necessary to increase the temper rolling ratio before aging treatment. Therefore, micro cracks do not occur in the inner (F) R portion, but cracks occur in the outer (R) R portion.

【0034】比較鋼No.17は,本発明鋼よりM値が低く
外れている鋼(b)に対して本発明法で製造したもので
あるが,M値が低いので加工硬化が小さく,時効処理後
高強度を得ようとすると比較鋼(a)と同様な結果をも
らたす。
Comparative Steel No. 17 was manufactured by the method of the present invention for the steel (b) having a lower M value than the steel of the present invention and deviated. However, since the M value is low, the work hardening is small and the aging is small. Attempts to obtain high strength after treatment give results similar to comparative steel (a).

【0035】比較鋼No.18は, 本発明鋼よりM値が高く
はずれている鋼 (C) に対して本発明法で製造したもの
であるが,M値が高いので,低い圧延率でも多量のマル
テンサイト量が生成するため曲げ加工性が劣り,本発明
の目的は達成されない。
Comparative Steel No. 18 was manufactured by the method of the present invention for steel (C) having a higher M value than the steel of the present invention, but the M value is high, so that even if the rolling ratio is low, a large amount is produced. Therefore, the bending workability is poor and the object of the present invention cannot be achieved.

【0036】また従来鋼No.14のように時効処理後180kg
/mm2前後の引張強さを得ようとすると,時効処理前の成
形加工後は内側 (F),外側 (R) のR部ともにミクロク
ラックや割れが発生する。従来鋼No.15のように時効処
理後の引張強さを165kg/mm2前後となるように調質圧延
率を低下させても結晶粒径が大きいため内側 (F) R部
にミクロクラックが発生する。
180kg after aging treatment like conventional steel No.14
Attempts to obtain a tensile strength of about / mm 2 result in microcracks and cracks in both the inner (F) and outer (R) R portions after forming before aging treatment. Even if the temper rolling rate is lowered so that the tensile strength after aging treatment is around 165 kg / mm 2 like the conventional steel No. 15, the crystal grain size is large, so micro cracks are generated in the inside (F) R part. Occur.

【0037】図1は,比較例No.11について前記の成形
加工後の内側(F)R部の表面状態を示した写真である
が,多くのミクロクラックの発生が認められる。図2は
本発明例No.1についての該成形加工後の内側(F)のR
部の同様の写真であるが,ミクロクラックの発生は認め
られない。
FIG. 1 is a photograph showing the surface condition of the inner (F) R portion after the above-mentioned molding process for Comparative Example No. 11, and many microcracks are observed. FIG. 2 shows R of the inner side (F) after the molding process for the invention sample No. 1.
It is a similar photograph of the part, but no microcracks are observed.

【0038】これらの成形加工時の表面状態が疲労特性
に及ぼす影響を調査するため,図4に示す形状のW型ビ
ード形状を付与した試験片を負荷変動フランジに挟ん
で,図5に示すようにA→Bの圧縮繰返し変動を100万
回与えた後の割れ発生の有無を調べ,表2にその試験結
果を併記したが,表2の結果より本発明による鋼および
方法で製造したものでは割れは発生せず,同一条件の疲
労試験では内側(F)R部ならびに外側(R)R部のミ
クロクラックや割れが発生するものはいずれも疲労試験
により割れ発生し,疲労寿命に大きく影響していること
が認められる。
In order to investigate the influence of the surface condition at the time of forming on the fatigue characteristics, a test piece having a W-shaped bead shape as shown in FIG. 4 was sandwiched between load variation flanges, as shown in FIG. The presence or absence of cracking after 1 million cycles of A → B compression repetition was examined, and the test results are also shown in Table 2. The results of Table 2 show that the steel and the method according to the present invention were manufactured. No cracks occur, and in the fatigue test under the same conditions, microcracks or cracks in the inner (F) R part and the outer (R) R part both occur in the fatigue test, which greatly affects the fatigue life. Is recognized.

【0039】図3は微細再結晶特性に及ぼす焼鈍時間の
影響を示したものである。処理温度は700℃である。供
試材はいずれも本発明鋼のN1である。焼鈍前(本発明
でいう調質前焼鈍)の冷間圧延率を35% (●印) 施した
ものと, 55% (○印) 施したものではその再結晶特性が
異なる。焼鈍前の冷間圧延率が本発明範囲である55%の
ものでは, 10分前後から硬さは急速に軟化し, 20分では
十分再結晶していることが認められた。しかしながら,
35%冷延材では軟化するのに300分前後を必要とし, し
かも再結晶も部分的に起こり, 未再結晶部分を含む混合
組織となって均一で微細な再結晶組織のものが得難かっ
た。
FIG. 3 shows the effect of annealing time on the fine recrystallization characteristics. The processing temperature is 700 ° C. The test materials are all N1 of the steel of the present invention. The recrystallization characteristics differ between those subjected to the cold rolling reduction of 35% (●) and those subjected to 55% (○) before annealing (pre-annealing in the present invention). It was confirmed that when the cold rolling rate before annealing was 55%, which is within the range of the present invention, the hardness rapidly softened from around 10 minutes and sufficiently recrystallized after 20 minutes. However,
It took about 300 minutes for the 35% cold rolled material to soften, and recrystallization partially occurred, and it was difficult to obtain a uniform and fine recrystallized structure as a mixed structure including unrecrystallized parts. ..

【0040】[0040]

【発明の効果】本発明によれば,成形加工性および疲労
特性に優れたメタルガスケット用ステンレス鋼が得られ
る。本発明材料は従来のメタルガスケット用材であるSU
S301に比べ, 時効による強度上昇が大きいので時効処理
前の強度を下げることができ,このため成形加工性に優
れる。特に微細結晶粒を得る製造法の採用によって成形
加工性を顕著に向上でき,またメタルガスケットとして
使用した場合の寿命に対して,この成形加工性の向上が
大きく寄与する。そして,かような特性をもつ本発明鋼
の製造は従来設備を使用して行なうことができ,調質前
焼鈍も連続焼鈍ラインで効果的に行なうことができるか
ら, コスト的にも有利に製造できる。
According to the present invention, it is possible to obtain stainless steel for metal gaskets which is excellent in formability and fatigue characteristics. The material of the present invention is SU, which is a conventional metal gasket material.
Compared with S301, the increase in strength due to aging is large, so the strength before aging treatment can be reduced, and therefore the workability is excellent. In particular, by adopting a manufacturing method that obtains fine crystal grains, the formability can be significantly improved, and this improvement in formability greatly contributes to the service life when used as a metal gasket. Further, the steel of the present invention having such characteristics can be manufactured by using the conventional equipment, and the pre-annealing annealing can be effectively performed by the continuous annealing line. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 比較例No.11の成形加工後の内側(F)R部
の金属表面の写真である。
FIG. 1 is a photograph of the metal surface of the inner (F) R portion after the forming process of Comparative Example No. 11.

【図2】 本発明例No.1の成形加工後の内側(F)のR
部の金属表面の写真である。
FIG. 2 R of the inner side (F) after the forming process of the invention example No. 1
It is a photograph of the metal surface of the part.

【図3】 成形加工性を評価したWビード形状を示す略
断面図である。
FIG. 3 is a schematic cross-sectional view showing a W bead shape evaluated for moldability.

【図4】 Wビード加工付与材の圧縮繰り返し変動疲労
試験法を説明するための断面図である。
FIG. 4 is a cross-sectional view for explaining a compression repeated variable fatigue test method for a W beading imparting material.

【図5】 本発明鋼N1の焼鈍(調質前焼鈍)前の圧延
率を35%と65%施した材料の700℃での焼鈍時間と硬さ
および結晶粒径との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the annealing time at 700 ° C. and the hardness and the grain size of the material of the present invention steel N1 subjected to the rolling ratios of 35% and 65% before annealing (pre-annealing). is there.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月14日[Submission date] October 14, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 比較例 No.11の成形加工後の内側(F)R部
の金属組織を示す写真である。
FIG. 1 is a photograph showing the metal structure of the inner (F) R portion after the forming process of Comparative Example No. 11.

【図2】 本発明例 No.1の成形加工後の内側(F)の
R部の金属組織を示す写真である。
FIG. 2 is a photograph showing the metallographic structure of the R portion of the inner side (F) after the forming process of Inventive Example No. 1.

【図3】 成形加工性を評価したWビード形状を示す略
断面図である。
FIG. 3 is a schematic cross-sectional view showing a W bead shape evaluated for moldability.

【図4】 Wビード加工付与材の圧縮繰り返し変動疲労
試験法を説明するための断面図である。
FIG. 4 is a cross-sectional view for explaining a compression repeated variable fatigue test method for a W beading imparting material.

【図5】 本発明鋼N1の焼鈍(調質前焼鈍)前の圧延
率35%と65%施した材料の700 ℃での焼鈍時間と硬さお
よび結晶粒径との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the annealing time at 700 ° C., the hardness, and the grain size of the material of the present invention steel N1 before annealing (pre-annealing) at a rolling ratio of 35% and 65%. ..

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F16J 15/08 M 7233−3J (72)発明者 武本 敏彦 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 (72)発明者 林 茂人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社鉄鋼研究所内 (72)発明者 杉野 智幸 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 柴田 新次 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location F16J 15/08 M 7233-3J (72) Inventor Toshihiko Takemoto 4976 Nomura Minamimachi, Shinnanyo City, Yamaguchi Prefecture Nisshin Steel Co., Ltd. Steel Research Laboratory (72) Inventor Shigeto Hayashi 4976 Nomura Minami-cho, Shinnanyo-shi, Yamaguchi Prefecture Nisshin Steel Co., Ltd. Steel Research Laboratory (72) Inventor Tomoyuki Sugino 1 Toyota-cho, Aichi Prefecture Inside Toyota Motor Co., Ltd. (72) Inventor Shinji Shibata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%において, C:0.03%以下, S
i:1.0%を越え〜3.0%, Mn:4.0%以下, Ni:4.0%
〜10.0%, Cr:13.0〜20.0%, N:0.30%以下, S:
0.01%以下, O:0.007%以下を含み,かつ, M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(320×N%) の式に従うM値が30以上100以下となるようにC,Si,M
n,Ni,Cr,N量が調整されており,残部がFeおよび不
可避的に混入してくる不純物からなる成形加工性および
疲労特性に優れたメタルガスケット用ステンレス鋼。
1. In weight%, C: 0.03% or less, S
i: 1.0% to 3.0%, Mn: 4.0% or less, Ni: 4.0%
~ 10.0%, Cr: 13.0 ~ 20.0%, N: 0.30% or less, S:
0.01% or less, O: 0.007% or less, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr %)-(320 × N%) so that the M value is 30 or more and 100 or less, C, Si, M
Stainless steel for metal gaskets, which has an adjusted amount of n, Ni, Cr, and N, and whose balance is Fe and impurities that are inevitably mixed in and has excellent formability and fatigue characteristics.
【請求項2】 重量%において, C:0.03%以下, S
i:1.0%を越え〜3.0%, Mn:4.0%以下, Ni:4.0%
〜10.0%, Cr:13.0〜20.0%, N:0.30%以下, S:
0.01%以下, O:0.007%以下を含み, 更に, 3.0%以下
のMoまたは0.5〜3.0%のCuを1種または2種および/
またはTi,Nb,Vを0.1〜1.0%の範囲でそれぞれ1種ま
たは2種以上を含み, かつ, M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上100以下となるようにC,Si,M
n,Ni,Cr,Mo,Cu,N量が調整されており,残部がFe
および不可避的に混入してくる不純物からなる成形加工
性および疲労特性に優れたメタルガスケット用ステンレ
ス鋼。
2. In weight%, C: 0.03% or less, S
i: 1.0% to 3.0%, Mn: 4.0% or less, Ni: 4.0%
~ 10.0%, Cr: 13.0 ~ 20.0%, N: 0.30% or less, S:
0.01% or less, O: 0.007% or less, and further, 3.0% or less of Mo or 0.5 to 3.0% Cu of 1 type or 2 types and / or
Alternatively, Ti, Nb, and V each contain one or more kinds in the range of 0.1 to 1.0%, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) -(14 × Ni%)-(5.7 × Cr%)-(5 × Mo%)-(14 × Cu%)-(320 × N%) , Si, M
The amount of n, Ni, Cr, Mo, Cu, N is adjusted, and the balance is Fe.
And stainless steel for metal gaskets, which is excellent in forming processability and fatigue characteristics, which consists of impurities that are inevitably mixed.
【請求項3】 Mn:0.5%以下, S:0.004%以下,
N:0.06〜0.20%である請求項1または2に記載のステ
ンレス鋼。
3. Mn: 0.5% or less, S: 0.004% or less,
N: 0.06 to 0.20%, The stainless steel according to claim 1 or 2.
【請求項4】 重量%において, C:0.03%以下, S
i:1.0%を越え〜3.0%, Mn:4.0%以下, Ni:4.0%
〜10.0%, Cr:13.0〜20.0%, N:0.30%以下, S:
0.01%以下, O:0.007%以下を含み, 場合によっては
更に, 3.0%以下のMoまたは0.5〜3.0%のCuを1種ま
たは2種および/またはTi,Nb,Vを0.1〜1.0%の範囲
でそれぞれ1種または2種以上を含み, かつ, M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上100以下となるようにC,Si,M
n,Ni,Cr,Mo,Cu,N量が調整されており,残部がFe
および不可避的に混入してくる不純物からなるステンレ
ス鋼を通常の熱間圧延工程および冷間圧延工程を経たう
え焼鈍後に調質圧延して鋼板とするにさいし,該調質圧
延前焼鈍に先立ち圧延率50%以上の冷間圧延を施し, 該
調質圧延前焼鈍で結晶粒径が10μ以下の実質的にオース
テナイト相からなる微細粒組織としてから該調質圧延を
施すことを特徴とする成形加工性および疲労特性に優れ
たメタルガスケット用ステンレス鋼の製造方法。
4. In weight%, C: 0.03% or less, S
i: 1.0% to 3.0%, Mn: 4.0% or less, Ni: 4.0%
~ 10.0%, Cr: 13.0 ~ 20.0%, N: 0.30% or less, S:
0.01% or less, O: 0.007% or less, and depending on the case, one or two kinds of Mo less than 3.0% or 0.5 to 3.0% Cu and / or Ti, Nb, V in the range of 0.1 to 1.0% And each contains one or more, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr% ) − (5 × Mo%) − (14 × Cu%) − (320 × N%) so that the M value is 30 or more and 100 or less.
The amount of n, Ni, Cr, Mo, Cu, N is adjusted, and the balance is Fe.
In addition, stainless steel consisting of impurities that are inevitably mixed is subjected to normal hot rolling and cold rolling steps and then temper-rolled after annealing to obtain a steel sheet, which is rolled prior to the annealing before temper-rolling. Forming process characterized by subjecting to cold rolling at a rate of 50% or more and performing a temper rolling after the fine grain structure consisting essentially of an austenite phase with a grain size of 10 μ or less is obtained by annealing before temper rolling Of stainless steel for metal gaskets, which has excellent fatigue and fatigue properties.
【請求項5】 調質圧延は25〜45%未満の圧延率で実施
される請求項4に記載の製造方法。
5. The manufacturing method according to claim 4, wherein the temper rolling is performed at a rolling rate of 25 to less than 45%.
【請求項6】 調質圧延前焼鈍は700℃以上1000℃以下
の温度領域で行われる請求項4または5に記載の製造方
法。
6. The manufacturing method according to claim 4, wherein the annealing before temper rolling is performed in a temperature range of 700 ° C. or higher and 1000 ° C. or lower.
【請求項7】 調質圧延された鋼板は,所望のガスケッ
ト形状に成形加工後に300℃以上600℃以下の温度範囲で
10秒間以上の時効処理が施される請求項4,5または6
に記載の製造方法。
7. The temper-rolled steel sheet is formed into a desired gasket shape after being processed in a temperature range of 300 ° C. to 600 ° C.
The aging treatment is applied for 10 seconds or more.
The manufacturing method described in.
JP11211991A 1991-04-18 1991-04-18 Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture Withdrawn JPH05117813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11211991A JPH05117813A (en) 1991-04-18 1991-04-18 Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11211991A JPH05117813A (en) 1991-04-18 1991-04-18 Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture

Publications (1)

Publication Number Publication Date
JPH05117813A true JPH05117813A (en) 1993-05-14

Family

ID=14578662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11211991A Withdrawn JPH05117813A (en) 1991-04-18 1991-04-18 Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture

Country Status (1)

Country Link
JP (1) JPH05117813A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118809A (en) * 1993-10-20 1995-05-09 Kawasaki Steel Corp Fe-cr-ni alloy excellent in deep drawability
JPH09263895A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in high temperature salt damage corrosion resistance.
JPH1030157A (en) * 1996-07-17 1998-02-03 Nikko Kinzoku Kk Iron-chromium-nickel alloy stock excellent in press formability, and its production
WO2000014292A1 (en) * 1998-09-04 2000-03-16 Sumitomo Metal Industries, Ltd. Stainless steel for engine gasket and production method therefor
JP2003503646A (en) * 1999-06-30 2003-01-28 フェデラル−モーグル コーポレイション Metal gasket and manufacturing method
JP2003082441A (en) * 2001-09-10 2003-03-19 Nisshin Steel Co Ltd High strength austenitic stainless steel for metal gasket
JP2004183001A (en) * 2002-11-29 2004-07-02 Toyo Kohan Co Ltd Material for gasket, production method therefor, and gasket
JP2004244725A (en) * 2003-01-21 2004-09-02 Nikko Metal Manufacturing Co Ltd High strength austenitic stainless steel strip having excellent fatigue property
US6893727B2 (en) 2001-04-27 2005-05-17 Sumitomo Metal Industries, Ltd. Metal gasket and a material for its manufacture and a method for their manufacture
FR2864108A1 (en) * 2003-12-22 2005-06-24 Ugine Et Alz France Stainless steel with high mechanical strength and good elongation with an austenitic microstructure and limited martensite pockets for the fabrication of motor vehicle structural components
WO2006035667A1 (en) 2004-09-28 2006-04-06 Sumitomo Metal Industries, Ltd. Stainless steel sheet for gasket and method for producing same
JP2008139552A (en) * 2006-12-01 2008-06-19 Ricoh Co Ltd Developer regulating member, developing device, process cartridge, image forming apparatus, and manufacturing method of developer regulating member
WO2008112620A1 (en) * 2007-03-09 2008-09-18 Federal-Mogul Corporation Metal gasket
EP2072631A1 (en) * 2007-12-20 2009-06-24 Ugine & Alz France Austenitic stainless steel sheet and method for obtaining this sheet
WO2014133058A1 (en) * 2013-02-28 2014-09-04 日新製鋼株式会社 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
WO2015039005A3 (en) * 2013-09-13 2015-08-27 Federal-Mogul Corporation Hot gasket with stainless steel
EP2138598A4 (en) * 2007-04-19 2017-02-15 Nisshin Steel Co., Ltd. Exhaust guide part of turbocharger with nozzle vane
JP2017531093A (en) * 2014-08-21 2017-10-19 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj High strength austenitic stainless steel and method for producing the same
JP2017208336A (en) * 2016-05-13 2017-11-24 株式会社不二越 Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part
JPWO2017057665A1 (en) * 2015-09-30 2018-07-26 東洋鋼鈑株式会社 Metal laminate and manufacturing method thereof
JP2019091665A (en) * 2017-11-17 2019-06-13 株式会社不二越 Separator for solid polymer type fuel cell and manufacturing method thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118809A (en) * 1993-10-20 1995-05-09 Kawasaki Steel Corp Fe-cr-ni alloy excellent in deep drawability
JPH09263895A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Austenitic stainless steel excellent in high temperature salt damage corrosion resistance.
JPH1030157A (en) * 1996-07-17 1998-02-03 Nikko Kinzoku Kk Iron-chromium-nickel alloy stock excellent in press formability, and its production
WO2000014292A1 (en) * 1998-09-04 2000-03-16 Sumitomo Metal Industries, Ltd. Stainless steel for engine gasket and production method therefor
US6338762B1 (en) 1998-09-04 2002-01-15 Sumitomo Metal Industries, Ltd. Stainless steel for use in engine gaskets and a method for manufacturing thereof
EP1036853A4 (en) * 1998-09-04 2004-11-10 Sumitomo Metal Ind Stainless steel for engine gasket and production method therefor
JP2003503646A (en) * 1999-06-30 2003-01-28 フェデラル−モーグル コーポレイション Metal gasket and manufacturing method
US6893727B2 (en) 2001-04-27 2005-05-17 Sumitomo Metal Industries, Ltd. Metal gasket and a material for its manufacture and a method for their manufacture
JP2003082441A (en) * 2001-09-10 2003-03-19 Nisshin Steel Co Ltd High strength austenitic stainless steel for metal gasket
JP2004183001A (en) * 2002-11-29 2004-07-02 Toyo Kohan Co Ltd Material for gasket, production method therefor, and gasket
JP2004244725A (en) * 2003-01-21 2004-09-02 Nikko Metal Manufacturing Co Ltd High strength austenitic stainless steel strip having excellent fatigue property
FR2864108A1 (en) * 2003-12-22 2005-06-24 Ugine Et Alz France Stainless steel with high mechanical strength and good elongation with an austenitic microstructure and limited martensite pockets for the fabrication of motor vehicle structural components
US7731807B2 (en) 2004-09-28 2010-06-08 Sumitomo Metal Industries, Ltd. Stainless steel sheet for a gasket
WO2006035667A1 (en) 2004-09-28 2006-04-06 Sumitomo Metal Industries, Ltd. Stainless steel sheet for gasket and method for producing same
JP2008139552A (en) * 2006-12-01 2008-06-19 Ricoh Co Ltd Developer regulating member, developing device, process cartridge, image forming apparatus, and manufacturing method of developer regulating member
US7945195B2 (en) 2006-12-01 2011-05-17 Ricoh Company, Ltd. Developing device having developer regulating member, and image forming apparatus using developing device
WO2008112620A1 (en) * 2007-03-09 2008-09-18 Federal-Mogul Corporation Metal gasket
US8470098B2 (en) 2007-03-09 2013-06-25 Federal-Mogul Corporation Metal gasket
EP2138598A4 (en) * 2007-04-19 2017-02-15 Nisshin Steel Co., Ltd. Exhaust guide part of turbocharger with nozzle vane
EP2072631A1 (en) * 2007-12-20 2009-06-24 Ugine & Alz France Austenitic stainless steel sheet and method for obtaining this sheet
JP5791791B2 (en) * 2013-02-28 2015-10-07 日新製鋼株式会社 Method for producing high elastic limit non-magnetic steel
KR20150121061A (en) * 2013-02-28 2015-10-28 닛신 세이코 가부시키가이샤 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
JP2015206124A (en) * 2013-02-28 2015-11-19 日新製鋼株式会社 Austenitic stainless steel sheet and high elastic limit nonmagnetic steel material
JPWO2014133058A1 (en) * 2013-02-28 2017-02-02 日新製鋼株式会社 Method for producing highly elastic non-magnetic steel
WO2014133058A1 (en) * 2013-02-28 2014-09-04 日新製鋼株式会社 Austenitic stainless-steel sheet and process for producing high-elastic-limit nonmagnetic steel material therefrom
US10125404B2 (en) 2013-02-28 2018-11-13 Nisshin Steel Co., Ltd. Method for producing high elastic limit nonmagnetic steel material using an austenitic stainless steel sheet
WO2015039005A3 (en) * 2013-09-13 2015-08-27 Federal-Mogul Corporation Hot gasket with stainless steel
US9175637B2 (en) 2013-09-13 2015-11-03 Federal-Mogul Corporation Hot gasket with stainless steel
JP2017531093A (en) * 2014-08-21 2017-10-19 オウトクンプ オサケイティオ ユルキネンOutokumpu Oyj High strength austenitic stainless steel and method for producing the same
JPWO2017057665A1 (en) * 2015-09-30 2018-07-26 東洋鋼鈑株式会社 Metal laminate and manufacturing method thereof
JP2017208336A (en) * 2016-05-13 2017-11-24 株式会社不二越 Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part
JP2019091665A (en) * 2017-11-17 2019-06-13 株式会社不二越 Separator for solid polymer type fuel cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH05117813A (en) Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture
JP4321066B2 (en) Metal gasket, material thereof and method for producing the same
KR100769837B1 (en) High-strength, high-toughness martensitic stainless steel sheet, method of inhibiting cold-rolled steel sheet edge cracking, and method of producing the steel sheet
KR100385342B1 (en) Stainless steel for gaskets and production thereof
JP6128291B2 (en) Martensitic stainless steel
JP4019630B2 (en) Stainless steel for engine gasket and its manufacturing method
JPH07278758A (en) Stainless steel for engine gasket and its production
JP6226111B1 (en) Martensitic stainless steel sheet
JPH05279802A (en) Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production
JP3347582B2 (en) Austenitic stainless steel for metal gasket and method for producing the same
JP3068861B2 (en) Stainless steel for engine gasket excellent in moldability and method of manufacturing the same
JP3521852B2 (en) Duplex stainless steel sheet and method for producing the same
JP2002332543A (en) High strength stainless steel for metal gasket having excellent fatigue performance and high temperature setting resistance and production method therefor
JPH073407A (en) Stainless steel for gasket and production thereof
JPH04191352A (en) Gasket material for internal combustion engine excellent in settling resistance
JP4353060B2 (en) Stainless steel for gasket
JPH06228641A (en) Production of gasket material for internal combustion engine excellent in stress corrosion cracking resistance
JP2003073783A (en) Precipitation-hardening type martensitic stainless steel sheet for flapper valve, and manufacturing method therefor
JP6077693B1 (en) Stainless steel for metal gasket
JP2008111192A (en) Stainless steel for use in engine gasket and method for manufacturing thereof
JPH05105989A (en) High strength stainless cold rolled steel strip excellent in formability and fatigue property and giving high strength by aging treatment and manufacture thereof
JP2007092178A (en) Stainless steel for use in engine gasket and method for manufacturing thereof
JP2003105502A (en) Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket
JPH073406A (en) Stainless steel for gasket and production thereof
EP0713924A2 (en) Corrosion-resistant spring steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711