JP3068861B2 - Stainless steel for engine gasket excellent in moldability and method of manufacturing the same - Google Patents
Stainless steel for engine gasket excellent in moldability and method of manufacturing the sameInfo
- Publication number
- JP3068861B2 JP3068861B2 JP2410613A JP41061390A JP3068861B2 JP 3068861 B2 JP3068861 B2 JP 3068861B2 JP 2410613 A JP2410613 A JP 2410613A JP 41061390 A JP41061390 A JP 41061390A JP 3068861 B2 JP3068861 B2 JP 3068861B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- annealing
- steel
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Gasket Seals (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は,内燃機関(エンジンと
呼ぶ)のガスケット用材料に関する。特に本発明は,ビ
ード加工部の締めつけでシール性を確保するエンジン用
ガスケットにおいて優れた諸特性を発現するメタルガス
ケット用材料に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a gasket of an internal combustion engine (referred to as an engine). In particular, the present invention relates to a metal gasket material that exhibits excellent characteristics in an engine gasket that secures sealing properties by tightening a beaded portion.
【0002】[0002]
【従来の技術】エンジンを構成する部品の一つに,接合
部に介装されるガスケットがある。このガスケットは,
接合面の気密を維持するに必要な諸特性を,エンジン特
有の高温,高圧および高振動下でしかも温度変化と圧力
変化が繰り返される長期期間にわたって具備しなければ
ない。従来,エンジンガスケット用素材としては特に耐
熱性の点からアスベスト等が一般に使用されていた。し
かし,近年のエンジンの高性能化やノンアスベストの法
規制化の動きに対応して,メタルガスケットが使用され
つつある。メタルガスケット用素材としては,冷間圧延
によって簡単に高強度が得られる加工硬化型の準安定オ
ーステナイト系ステンレス鋼,例えばSUS301 系鋼が主
に用いられている。その使用の態様としては,板厚0.1
〜0.4mm程度の所要形状の薄板にビードを形成し,これ
を燃焼室の周囲や水溝, 油溝の周囲の接合面に介装し,
このビードを締めつけたときに発生する高い面圧によっ
てガス, 水, 油をシールするのが一般である。2. Description of the Related Art One of the components constituting an engine is a gasket interposed at a joint. This gasket
The characteristics required to maintain the airtightness of the joint surface must be provided under the high temperature, high pressure and high vibration characteristic of the engine, and over a long period of time in which the temperature and pressure changes are repeated. Conventionally, asbestos or the like has been generally used as a material for an engine gasket, particularly from the viewpoint of heat resistance. However, metal gaskets are being used in response to the recent trend toward higher performance engines and non-asbestos regulations. As a material for metal gaskets, work-hardening metastable austenitic stainless steel, for example, SUS301 steel, which can easily obtain high strength by cold rolling, is mainly used. The mode of use is as follows:
A bead is formed in a thin plate of required shape of about 0.4 mm, and this is interposed on the joint surface around the combustion chamber and around water and oil grooves.
Generally, gas, water and oil are sealed by the high surface pressure generated when the bead is tightened.
【0003】[0003]
【発明が解決しようとする課題】エンジンのシリンダー
ヘッドに使用されるメタルガスケットは,エンジンサイ
クルの圧縮時に高圧となるので特に良好なガスシール性
を必要とする。このため,ビード成形高さを高くして面
圧を高くすると共に,材料強度も十分に強くなければな
らない。これに対応できるステンレス鋼としては,SUS3
01系鋼 (SUS301,304,Type301L等) が挙げられる。The metal gasket used for the cylinder head of the engine needs a particularly good gas sealing property because it has a high pressure when the engine cycle is compressed. For this reason, the bead forming height must be increased to increase the surface pressure, and the material strength must be sufficiently high. Stainless steel that can handle this is SUS3
Series 01 steel (SUS301, 304, Type301L, etc.).
【0004】しかしSUS301系鋼では,高強度を得るため
には強度な冷間加工を施す必要があり,このために成形
性が低下し,ビード成形加工時にビード外側R部に割れ
が発生するという問題があった。一方,成形加工性を高
めるために強度を低くした場合には,面圧の高さでシー
ル性を高めるべく,よりビード成形高さを高くする必要
がある。そのさいビード成形高さを高くすると,ビード
肩R部(内側R部,外側R部)にミクロクラックが発生
しやすくなり,使用中にこのミクロクラックを起点に割
れが発生し,耐シール性が低下するという問題があっ
た。本発明はこのような問題の解決を意図し,エンジン
用メタルガスケットとして優れた特性を有する材料の開
発を目的としたものである。[0004] However, in order to obtain high strength, it is necessary to perform strong cold working with SUS301 series steel, and as a result, the formability is reduced, and cracks are generated in the bead outside R during bead forming. There was a problem. On the other hand, when the strength is reduced in order to enhance the formability, it is necessary to further increase the bead forming height in order to enhance the sealing performance with a high surface pressure. If the bead forming height is increased at that time, microcracks tend to occur at the bead shoulder R (inner R, outer R), and cracks occur during use in the microcracks as starting points. There was a problem of lowering. The present invention is intended to solve such a problem, and an object of the present invention is to develop a material having excellent characteristics as a metal gasket for an engine.
【0005】[0005]
【課題を解決するための手段】本発明によれば,重量%
において, C;0.03%以下 Si;1.0%以下, Mn;2.5%以下, Ni;4.0〜10.0%, Cr;13.0〜20.0%, N;0.06〜0.30%, S;0.01%以下, O;0.007%以下, を含み,かつ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%) −(320×N%) の式に従うM値が30以上となるように各成分量が調整さ
れ,残部がFeおよび不可避的不純物からなる成形加工
性に優れたエンジンガスケット用ステンレス鋼,並び
に,この鋼に,さらに, i). 3.0%以下のMoまたは0.5〜3.0%のCuの少なくと
も1種, ii). 0.1〜1.0%のTi,NbまたはVの少なくとも1種,
のi群とii群の元素を単独または複合して含み,且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%) −(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるように各成分量が調整さ
れ,残部がFeおよび不可避的不純物からなる成形加工
性に優れたエンジンガスケット用ステンレス鋼を提供す
る。According to the present invention, the weight%
C: 0.03% or less Si; 1.0% or less, Mn: 2.5% or less, Ni: 4.0 to 10.0%, Cr: 13.0 to 20.0%, N: 0.06 to 0.30%, S: 0.01% or less, O: 0.007% And M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr%) − (320 × N% )), The amount of each component is adjusted so that the M value is 30 or more, and the balance is Fe and unavoidable impurities, the stainless steel for engine gaskets having excellent moldability, and this steel, and i. ). At least one of Mo of 3.0% or less or Cu of 0.5-3.0%, ii). At least one of Ti, Nb or V of 0.1-1.0%,
Containing the elements of group i and group ii alone or in combination, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − ( 5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) − (320 × N%) Each component amount is adjusted so that the M value is 30 or more, and the remainder is Fe and inevitable Provided is a stainless steel for an engine gasket which is excellent in molding workability and is composed of a metallic impurity.
【0006】また,これらの鋼は,鋼板としての製造の
さいに,調質前焼鈍に先立ち減面率で50%を越える冷間
圧延を施し,平均結晶粒径が10μm以下となるように調
質前焼鈍を行い,そして調質圧延を施すという製造法を
採用することにより,エンジンガスケットに要求される
諸特性を有利に具備させることができる。また調質圧延
後において,300℃以上600℃以下,好ましくは350℃以
上550℃以下の温度範囲に10秒以上保持する時効処理を
施すことによって一層高強度を発現する。この時効処理
はガスケットに成形加工する前でも後でもよい。調質前
焼鈍は好ましくは700℃以上1000℃以下の温度領域で行
う。[0006] Prior to annealing before tempering, these steels are subjected to cold rolling at a reduction ratio of more than 50% so as to reduce the average grain size to 10 µm or less. By adopting a manufacturing method of performing pre-annealing and performing temper rolling, various characteristics required for an engine gasket can be advantageously provided. Further, after temper rolling, even higher strength is exhibited by performing an aging treatment of maintaining the temperature in a temperature range of 300 ° C. to 600 ° C., preferably 350 ° C. to 550 ° C. for 10 seconds or more. This aging treatment may be performed before or after forming into a gasket. Pre-temper annealing is preferably performed in a temperature range of 700 ° C. or more and 1000 ° C. or less.
【0007】以下に,先ず本発明鋼における各成分の含
有量範囲について,その限定理由の概要を説明する。First, the outline of the reasons for limiting the content ranges of the respective components in the steel of the present invention will be described.
【0008】〔発明の詳述〕 Cはオーステナイト生成元素であり, 高温で生成するδ
フェライトの抑制および冷間加工で誘発されたマルテン
サイト相の強化に極めて有効である。しかし,調質圧延
後により良い成形加工性を得るためには冷間加工による
強化があまり著しいと成形加工性に劣るようになる。ま
た,あまりCを高くすると調質前焼鈍, あるいは時効処
理条件によっては炭化物の析出を伴うおそれもある。こ
の理由によりCは0.03%以下とする。[Detailed Description of the Invention] C is an austenite forming element, and δ formed at high temperature
It is extremely effective in suppressing ferrite and strengthening the martensite phase induced by cold working. However, in order to obtain better formability after temper rolling, if the reinforcement by cold working is too remarkable, the formability becomes poor. If C is too high, carbide precipitation may be accompanied by annealing before tempering or depending on the aging treatment conditions. For this reason, C is set to 0.03% or less.
【0009】Siは脱酸剤として有効であるが,1.0%以
上添加してもその効果は1.0%の場合と同様でむしろコ
スト上昇を招くので1.0%以下とする。下限は特に限定
されないが脱酸効果という面からは0.2%以上が望まし
い。Although Si is effective as a deoxidizing agent, its effect is the same as in the case of 1.0% even if it is added in an amount of 1.0% or more. The lower limit is not particularly limited, but is preferably 0.2% or more from the viewpoint of the deoxidizing effect.
【0010】Mnは脱酸剤としても有効に働くが,オー
ステナイト相の安定度を支配する元素であり,その活用
は他の元素とのバランスのもとに考慮される。本発明鋼
では2.5%までのMn量でその活用が図られる。ただ本発
明鋼では高強度でかつ成形加工性が重要視されるので,
特に成形加工性が厳しい形状のガスケットに対してはM
n量を0.5%未満とし,MnS等の介在物の生成を極力避
けるのが好ましい。Mn works effectively as a deoxidizing agent, but is an element that controls the stability of the austenite phase, and its use is considered in balance with other elements. In the steel of the present invention, its utilization can be achieved at an Mn amount of up to 2.5%. However, in the steel of the present invention, high strength and formability are considered important.
In particular, M
It is preferable that the n content is less than 0.5% to minimize the formation of inclusions such as MnS.
【0011】Crは耐食性を確保する上で必須の成分で
ある。エンジン用ガスケットとしての意図する耐食性お
よび耐熱性を付与するためには少なくとも13%以上を必
要とする。しかし, Crはフェライト生成元素であるた
め,高くしすぎると高温でδフェライトが多量に生成し
てしまう。そこで,δフェライト相抑制のためにオース
テナイト生成元素 (C,N,Ni,Mnなど)をそれに見合
った量で添加しなければならなくなるが, オーステナイ
ト生成元素を多く添加すると室温でのオーステナイト相
が安定し,冷間加工によって,あるいはさらに以後の時
効処理後において, 高強度が得られなくなる。このよう
なことからCrの上限は20%とする。[0011] Cr is an essential component for ensuring corrosion resistance. At least 13% or more is required to provide the intended corrosion resistance and heat resistance as an engine gasket. However, since Cr is a ferrite-forming element, if it is too high, a large amount of δ-ferrite will be formed at high temperatures. Therefore, it is necessary to add an austenite-forming element (C, N, Ni, Mn, etc.) in an appropriate amount to suppress the δ ferrite phase, but if a large amount of austenite-forming element is added, the austenite phase at room temperature becomes stable. However, high strength cannot be obtained by cold working or after further aging treatment. For this reason, the upper limit of Cr is set to 20%.
【0012】Niは高温および室温でオーステナイト相
を得るために必須の成分であるが, 本発明鋼の場合, 室
温で準安定オーステナイト相にしてより良好な成形性を
得るため,低い冷間加工で適度なマルテンサイト相を誘
発させ, 高強度が得られるようにしなければならない。
本発明では,Niを4%より低くすると高温で多量のδ
フェライト相が生成し,かつ室温でオーステナイト相以
外にマルテンサイトが生成し難くなる。また,10%を越
えると冷間加工でマルテンサイト相が誘発されにくくな
る。このためNi量は4.0〜10.0%とし,より好ましくは
5.0〜8.0%とする。さらにガスケットの耐久性および耐
熱性の面からも4.0%以上のNiの添加は有利である。し
かし10%を越えて添加してもその効果も飽和状態とな
る。この理由によりNiは4.0〜10.0%,好ましくは5.0
〜8.0%とする。Ni is an essential component for obtaining an austenite phase at high temperature and room temperature. However, in the case of the steel of the present invention, Ni is converted to a metastable austenite phase at room temperature to obtain better formability. It is necessary to induce a moderate martensitic phase so that high strength can be obtained.
In the present invention, when Ni is lower than 4%, a large amount of δ
A ferrite phase is formed, and martensite other than an austenite phase is hardly formed at room temperature. On the other hand, if it exceeds 10%, it becomes difficult to induce a martensite phase in cold working. For this reason, the Ni content is set to 4.0 to 10.0%, more preferably
5.0 to 8.0%. Further, from the viewpoints of durability and heat resistance of the gasket, addition of Ni of 4.0% or more is advantageous. However, the effect becomes saturated even if it exceeds 10%. For this reason, Ni is 4.0-1.0%, preferably 5.0%.
To 8.0%.
【0013】Moは鋼のベース硬さを上昇させるととも
に時効処理後の硬さを上昇させるので高強度を得る上で
有効に作用する。しかし, フェライトフォーマーである
ために多量に添加するとδフェライト相を晶出させ, か
えって強度低下の要因となるので上限を3.0%とする。Mo increases the base hardness of the steel and increases the hardness after aging treatment, so that Mo effectively acts to obtain high strength. However, since it is a ferrite former, if it is added in large amounts, it will crystallize out the δ-ferrite phase, which may cause a reduction in strength. Therefore, the upper limit is set to 3.0%.
【0014】Cuは時効処理の際にSiとの相互作用によ
り鋼を硬化させる作用を供するが,少なすぎるとその効
果は小さく, 多すぎると熱間加工性を阻害し,割れの要
因となる。このため0.5〜3.0%とする。[0014] Cu provides the effect of hardening the steel by interaction with Si during the aging treatment. However, if the content is too small, the effect is small, and if the content is too large, the hot workability is impaired and causes cracking. Therefore, the content is set to 0.5 to 3.0%.
【0015】Ti,Nb,Vは時効処理後の硬さを上昇させ
る上で有効に作用する。この作用を発現させるためには
0.1%以上の添加を必要とする。しかし, 必要以上に添
加すると, 多量の非金属介在物を生成し疲労強度の低
下, 表面性状の悪化につながるのでそれぞれの上限を1.
0%以下とする。Ti, Nb, and V effectively act to increase the hardness after the aging treatment. To achieve this effect
Requires addition of 0.1% or more. However, if added more than necessary, a large amount of non-metallic inclusions are formed, leading to a decrease in fatigue strength and deterioration of surface properties.
0% or less.
【0016】NはCと同様にオーステナイト生成元素で
あると共に, オーステナイト相およびマルテンサイト相
を硬化するのに有効な元素である。また, Cに比べ析出
物を形成しにくいため, 耐久性の面からも有効である。
このため, Cに変えて少なくとも0.06%を添加する。し
かし,多量に添加するとブローホールの原因となるの
で,0.30%以下とし,より好ましくは0.06〜0.20%とす
る。N, like C, is an austenite-forming element and an element effective for hardening the austenite phase and the martensite phase. In addition, since precipitates are less likely to be formed than C, it is effective in terms of durability.
Therefore, at least 0.06% is added instead of C. However, if added in a large amount, it causes blowholes, so the content should be 0.30% or less, more preferably 0.06 to 0.20%.
【0017】SはMnとの共存のもとにMnSを生成し,
これが延性および曲げなどの加工性の低下をもたらすの
で0.010%以下とする。なお,ガスケットの形状によっ
ては薄板で成形加工か厳しい領域のものではMnおよび
Sはさらに低い方が好ましく,Mn量は0.5%未満, S量
は0.004%以下が好ましい。S generates MnS under coexistence with Mn,
Since this causes a reduction in workability such as ductility and bending, the content is set to 0.010% or less. Note that, depending on the shape of the gasket, Mn and S are preferably lower in a thin plate or in a severely processed area, and the Mn content is preferably less than 0.5% and the S content is preferably 0.004% or less.
【0018】Oは疲労破壊の起点となる非金属介在物を
形成しやすい元素であり, 特にAl,TiなどOと親和力
の強い元素を含むときは顕著となる。このためにOは低
い程好ましいが, 本発明鋼では0.007%までは許容され
る。このためOは0.007%以下とした。O is an element that easily forms non-metallic inclusions that are the starting points of fatigue fracture, and is particularly remarkable when an element having a strong affinity for O, such as Al or Ti, is included. For this reason, O is preferably as low as possible, but up to 0.007% is allowable in the steel of the present invention. Therefore, O is set to 0.007% or less.
【0019】M値;30以上についてC,Si,Mn,Ni,C
r,Mo,CuおよびNについて上記の範囲で含有させるが,
下記(1)式に従うM値が30以上となるように各成分を調
整する。 M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%)−(5×Mo%)−(14×Cu%)−(320×N%) ・・(1) (1)式の各成分の定数は,本発明材料の開発中に実験室
的に確認されたものである。このM値はオーステナイト
安定度の指標となるもので,このM値が30未満のところ
で冷間圧延あるいは時効処理後に意図する高強度を得る
ためには,冷間圧延において室温で70%以上の強加工を
施す必要がありこのために材料の延性が低下し,エンジ
ン用ガスケットとしてのビード成形性が低下する。この
ため,M値は30以上を必要とする。M value; C, Si, Mn, Ni, C for 30 or more
r, Mo, Cu and N are contained in the above range.
Each component is adjusted so that the M value according to the following equation (1) is 30 or more. M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) %) − (320 × N%) (1) The constants of the components in the formula (1) were confirmed in the laboratory during the development of the material of the present invention. This M value is an index of austenite stability. In order to obtain the intended high strength after cold rolling or aging treatment when the M value is less than 30, a strength of 70% or more at room temperature in cold rolling is required. Since it is necessary to perform processing, the ductility of the material is reduced, and the bead formability as an engine gasket is reduced. Therefore, the M value needs to be 30 or more.
【0020】このようにして本発明鋼は,冷間加工後の
成形加工性をできるだけ高めるべく,冷間加工によって
生ずるマルテンサイト相を, 低い冷間加工で適量生成す
るように成分をバランスさせ,また時効処理後できるだ
け高強度が得られるようにしたものである。また後述の
低温或いは短時間の再結晶焼鈍中(微細結晶処理時)に
Cr炭化物の析出を避けるためCを下げ, このC低下に
伴う強度低下(加工硬化の低下分)をNの添加で補うと
共にN添加による時効硬化と微細結晶処理による時効硬
化度の上昇を有効に活用するようにし, より高強度が発
現できるようにした点に特徴がある。そして微細結晶化
により低い調質圧延率でも微細かつ緻密にα'相を分布
させることができること,そしてNの添加は時効による
強度上昇が大きいこと等の知見事実から,調質圧延率を
低く保つことを可能にし,これによって成形加工性を改
善したところに特徴がある。Thus, in order to enhance the formability after cold working as much as possible, the components of the steel of the present invention are balanced so that an appropriate amount of a martensite phase generated by cold working is produced by low cold working. Further, after the aging treatment, as high strength as possible can be obtained. In addition, during the low-temperature or short-time recrystallization annealing described later (at the time of fine crystal treatment), C is lowered in order to avoid precipitation of Cr carbides, and the decrease in strength (the decrease in work hardening) accompanying this decrease in C is compensated for by the addition of N. In addition, it is characterized in that the age hardening due to the addition of N and the increase in the age hardening degree due to the fine crystal treatment are effectively utilized, so that higher strength can be developed. From the facts that the α 'phase can be finely and densely distributed even at a low temper reduction ratio due to fine crystallization, and that the addition of N greatly increases the strength due to aging, the temper reduction ratio is kept low. The feature is that the moldability is improved by this.
【0021】なお,これらの成分以外に脱酸剤,脱硫剤
として常用されるCa或いはREM(希土類元素), 熱間
加工性改善効果のあるB(0.01%以下) 等を必要に応じ
て含有することができ,また不可避的に混入する不純物
を含有することができる。但し, Alは高強度でかつ疲
労強度の高いものが要求される場合は使用しないか,あ
るいは鋼中に非金属介在物を形成しない程度の量とする
ことが望ましい。In addition to these components, Ca or REM (rare earth element) commonly used as a deoxidizing agent or desulfurizing agent, B (having 0.01% or less) having an effect of improving hot workability, etc. are contained as necessary. And can contain impurities that are unavoidably mixed. However, Al is not used when high strength and high fatigue strength are required, or it is desirable to use Al in such an amount that nonmetallic inclusions are not formed in steel.
【0022】上述の範囲に成分組成が調整された本発明
鋼は溶体化処理状態で実質的にはオーステナイト組織を
呈する。この組織状態の鋼に50%を超える冷間圧延を加
え,700℃〜1000℃の温度で,調質前焼鈍を行うと均一な
微細結晶組織を得ることができる。そして,この微細結
晶組織の状態で調質圧延を施すとエンジンガスケット材
としての優れた特性を得ることができる。またガスケッ
トへの成形加工の前または後に300℃以上600℃以下の温
度範囲に10秒以上保持する時効処理を施せば硬さの向上
ひいては強度が一層高くなり,エンジン部材としての耐
久性を一層向上させることができる。The steel of the present invention whose component composition is adjusted to the above range substantially exhibits an austenite structure in a solution treatment state. A uniform fine crystal structure can be obtained by applying cold rolling exceeding 50% to the steel in this structure state and performing annealing before tempering at a temperature of 700 ° C to 1000 ° C. When temper rolling is performed in the state of the fine crystal structure, excellent characteristics as an engine gasket material can be obtained. In addition, aging treatment that maintains the temperature in the temperature range of 300 ° C to 600 ° C for 10 seconds or more before or after forming the gasket improves the hardness and thus the strength, further improving the durability as an engine member. Can be done.
【0023】以下にこの製造条件について説明する。従
来のこの種の鋼板の製造法では結晶粒径は25μ前後のも
のが一般的である。本発明者らはエンジンガスケットの
ビード成形加工時のミクロクラックの発生は,この結晶
粒径に関係していることを知見した。後述の実施例で示
すように,調質圧延後のビード成形加工のさいに,ビー
ド加工部における結晶粒界や加工歪によって発生したス
リップバンド部分からミクロクラックが発生しガスケッ
トとしての寿命を短くしている。本発明によれば,まず
調質前焼鈍を行う前の冷間圧延において50%を超える減
面率を付与することにより, 後述の実施例で示すように
短時間の調質前焼鈍で均一でかつ10μm以下の微細な結
晶粒を得, 調質前焼鈍状態での強度レベルを高めること
で低い調質圧延率でも十分な強度特性を得ることがで
き,このために成形加工性に優れかつ表面肌荒れ, ミク
ロクラックの発生のない材料が得られる。したがってエ
ンジンガスケットとしての寿命を著しく長くすることが
できる。また,調質圧延後の時効処理による強度上昇も
N添加と微細結晶処理により従来材に比べ大きく, 時効
処理後同一強度を得んとすれば,調質圧延後の強度レベ
ルは低くすることが可能で,さらに成形加工性に優れた
ものとすることができる。Hereinafter, the manufacturing conditions will be described. In a conventional method of manufacturing this type of steel sheet, the crystal grain size is generally about 25 μm. The present inventors have found that the occurrence of microcracks during bead forming of an engine gasket is related to the crystal grain size. As shown in the examples below, during the bead forming after temper rolling, microcracks are generated from the crystal grain boundaries in the bead processed part and the slip band generated due to processing strain, shortening the life as a gasket. ing. According to the present invention, first, by applying a reduction in area of more than 50% in the cold rolling before performing the pre-tempering annealing, a short pre-tempering annealing is performed uniformly as shown in the examples described later. In addition, by obtaining fine crystal grains of 10 μm or less and by increasing the strength level in the pre-temper annealing state, sufficient strength characteristics can be obtained even at a low temper rolling reduction. A material free from rough skin and micro cracks can be obtained. Therefore, the life of the engine gasket can be significantly prolonged. In addition, the increase in strength due to aging treatment after temper rolling is larger than that of conventional materials by adding N and fine crystal treatment. If the same strength is obtained after aging treatment, the strength level after temper rolling can be lowered. It is possible, and it can be made to have excellent moldability.
【0024】ここで調質圧延前焼鈍は700℃以上1000℃
以下とするのがよい。これは700℃以下では微細結晶粒
を得るのに長時間を要し工業的でないこと,さらに1000
℃以上では再結晶および粒成長が著しく10μm以下の結
晶粒を安定して得ることが難しいからである。この焼鈍
は工業的規模での連続焼鈍ラインで実施できる。Here, annealing before temper rolling is 700 ° C. or more and 1000 ° C.
It is better to do the following. This is because it takes a long time to obtain fine crystal grains below 700 ° C and is not industrial.
If the temperature is higher than ℃, recrystallization and grain growth are remarkable, and it is difficult to stably obtain crystal grains of 10 μm or less. This annealing can be carried out on a continuous annealing line on an industrial scale.
【0025】調質圧延率については調質圧延前焼鈍後の
強度レベルやオーステナイト相の安定度などに支配さ
れ,これに応じて種々変化させることができるが,本質
的には実施例に示されるごとく従来鋼よりも低い圧下率
で目標強度が達成され,通常は20以上50%以下が適当で
ある。時効処理については,エンジンガスケットとして
の強度特性を得るためには300℃以上600℃以下の温度範
囲が好ましい。300℃未満の温度では目標の強度レベル
を得るのに長時間を要し経済的でないし,また600℃を
越える温度では, 強度が上昇する以前に大幅な回復の進
行が起こり, メタルガスケットとして要求される強度が
得られないからである。時効処理時間は10秒以上とす
る。これ未満の短時間では十分な強度特性が得られな
い。この処理時間の上限については製造コスト面から考
えると1時間前後が好ましい。The temper rolling reduction is governed by the strength level after annealing before temper rolling and the stability of the austenite phase, and can be variously changed in accordance therewith, but is essentially shown in Examples. As described above, the target strength is achieved at a lower rolling reduction than that of conventional steel, and usually an appropriate value is 20 to 50%. For the aging treatment, a temperature range of 300 ° C. or more and 600 ° C. or less is preferable in order to obtain strength characteristics as an engine gasket. At temperatures below 300 ° C, it takes a long time to achieve the target strength level and it is not economical. At temperatures above 600 ° C, significant recovery progresses before the strength increases, and it is required as a metal gasket. This is because the required strength cannot be obtained. The aging time is 10 seconds or more. If the time is shorter than this, sufficient strength characteristics cannot be obtained. The upper limit of the processing time is preferably about one hour from the viewpoint of manufacturing cost.
【0026】以上のように本発明によれば, 前述の成分
組成を採用したうえ,その鋼帯の製造にさいして調質前
焼鈍の前に50%を越える冷間加工を施し, 700℃〜1000
℃の温度範囲で再結晶粒径が10μm以下, 実質的には1
〜5μmとなるような処理条件で調質前焼鈍を連続焼鈍
炉にて行い,そして調質圧延を施すことによって従来材
と同等またはそれ以上の強度を得ながら, 従来材では得
られなかった成形加工性に優れたエンジンガスケット用
材料が得られる。なお本発明鋼は固溶状態で準安定オー
ステナイト相を呈するので,調質前焼鈍より前の工程は
従来材と同要領で製造することができる。もっとも, 安
定した微細結晶粒を得るためには調質前焼鈍を施す前に
50%を越える冷間圧延を施す必要がある。As described above, according to the present invention, in addition to adopting the above-mentioned composition, the steel strip is subjected to a cold working process of more than 50% before the tempering pre-annealing, and to 700 ° C. 1000
Recrystallized grain size of 10μm or less in the temperature range of ℃, practically 1
Pre-temper annealing in a continuous annealing furnace under the processing conditions of ~ 5μm and temper rolling to obtain a strength equal to or higher than that of the conventional material, An engine gasket material having excellent workability can be obtained. In addition, since the steel of the present invention exhibits a metastable austenite phase in a solid solution state, the steps before annealing before tempering can be manufactured in the same manner as conventional materials. However, in order to obtain stable fine crystal grains,
It is necessary to perform cold rolling exceeding 50%.
【0027】[0027]
【実施例】表1に示す化学成分値 (重量%) の本発明鋼
(M1〜10), 従来鋼 (A) および比較鋼 (a,b)を通
常の大気溶解炉で溶製し,熱間圧延を施した後, 冷延,
焼鈍, 酸洗を行い最終調質圧延後の板厚を0.25mmとして
サンプルを採取した。さらに該鋼板に400℃で30分間の
時効処理を施し, これを時効処理後のサンプルとした。
なお,各鋼の調質前焼鈍の直前の冷間圧延率, 調質前焼
鈍条件, および調質圧延率の詳細を表2中に示した。EXAMPLES Steels of the present invention (M1 to 10), conventional steels (A) and comparative steels (a, b) having the chemical component values (% by weight) shown in Table 1 were melted in a normal atmospheric melting furnace and heated. After cold rolling,
Annealing and pickling were performed, and a sample was taken with a sheet thickness of 0.25 mm after final temper rolling. Further, the steel sheet was subjected to an aging treatment at 400 ° C. for 30 minutes, and this was used as a sample after the aging treatment.
Table 2 shows the details of the cold rolling rate, pre-tempering annealing conditions, and temper rolling rate of each steel immediately before annealing.
【0028】図1に,本発明鋼のM1を供試材とした場
合の微細再結晶特性に及ぼす焼鈍時間の影響を示した。
焼鈍前(本発明でいう調質前焼鈍)の冷間圧延率を35%
(●印) 施したものと, 55% (○印) 施したものではそ
の再結晶特性が異なっている。焼鈍前の冷間圧延率が55
%では,10分前後から硬さは急速に軟化し,20分では十
分再結晶していることが認められた。しかしながら,35
%冷延材では軟化するのに300分前後を必要とし,しか
も, 再結晶も部分的に起こり, 未再結晶部分を含む混合
組織となり均一で微細な再結晶組織のものが得難かっ
た。すなわち,工業的生産規模で容易に短時間で均一な
再結晶粒を得るためには,焼鈍前に十分な冷間加工を付
与しておくことが必要であることが認められる。FIG. 1 shows the effect of annealing time on the fine recrystallization characteristics when M1 of the steel of the present invention was used as a test material.
35% cold rolling reduction before annealing (annealing before tempering in the present invention)
The recrystallization characteristics are different between those subjected to (●) and those subjected to 55% (○). Cold rolling rate before annealing is 55
%, The hardness rapidly softened from around 10 minutes, and it was found that the crystals recrystallized sufficiently in 20 minutes. However, 35
% Cold-rolled material requires about 300 minutes to soften, and also partially recrystallized, resulting in a mixed structure containing unrecrystallized parts, making it difficult to obtain a uniform and fine recrystallized structure. That is, in order to easily obtain uniform recrystallized grains in a short time on an industrial production scale, it is recognized that it is necessary to provide sufficient cold working before annealing.
【0029】表2は,表1の各鋼の製造条件と, それぞ
れの結晶粒径, 時効処理前の成形加工性, 引張特性, 時
効処理後の引張特性を調べた結果および疲労試験結果を
総括して示したものである。表2中のΔTSは時効処理前
後の引張強さ(TS)の差を表している。メタルガスケット
材としては高強度であることが望ましく,時効処理後の
引張強さで少なくとも170kg/mm2前後が目標値となる。Table 2 summarizes the manufacturing conditions of each steel in Table 1, the crystal grain size, the formability before aging treatment, the tensile properties, the tensile properties after aging treatment, and the fatigue test results. It is shown. ΔTS in Table 2 represents a difference in tensile strength (TS) before and after the aging treatment. It is desirable that the metal gasket material has high strength, and the target value is at least around 170 kg / mm 2 in tensile strength after aging treatment.
【0030】表中の成形加工性のFとRは,各サンプル
を第2図に示す形状に加工したさいの内側R部(F)と
外側R部(R)にミクロクラックが発生しなかったもの
を○印,微細なミクロクラックが生じたものを△印,そ
して割れの発生したものを×印として評価した。The moldability F and R in the table indicate that no microcracks occurred in the inner R portion (F) and the outer R portion (R) when each sample was processed into the shape shown in FIG. The samples were evaluated as ○, those with microcracks were evaluated as Δ, and those with cracks were evaluated as X.
【0031】また振動試験では,これらの成形加工時の
表面状態が疲労特性に及ぼす影響を調査するため,板に
ビード形状を円目状に成形した試験片 (平板に50mm前後
の穴を開け, その外側円周上にビードを成形付与したも
の)を作成し,図3の(a)と(b)に示すように,この試験
片1を負荷変動フランジ2の間に挟んで(a)の状態から
(b)の状態に締め付けを繰り返す振動試験を100万回実施
したあとの板貫通割れ発生の有無を調べた。In the vibration test, in order to investigate the influence of the surface condition during the forming process on the fatigue characteristics, a test piece having a bead shape formed on a plate in a circular shape (a hole of about 50 mm was made in a flat plate, A bead is formed on the outer circumference of the test piece 1), and as shown in FIGS. 3 (a) and 3 (b), this test piece 1 From the state
After the vibration test in which the tightening was repeated in the state of (b) 1 million times was performed, it was examined whether or not the through crack occurred.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【発明の効果】表2の結果から次のことがわかる。本発
明に従う発明鋼(M1〜10) の微細結晶処理材では,い
ずれのも成形加工時ミクロクラックあるいは割れを発生
することなく, しかも時効処理後十分な引張強さを有し
ている。しかし,本発明鋼(M1)でも調質前圧延率や調
質前焼鈍条件が従来法のものでは比較材として示すよう
に時効処理後高強度を得るためには,時効処理前の調質
圧延率を60%程度まで高める必要があり, このため成形
加工時に内側, 外側のR部ともにミクロクラックが発生
する。また成形加工性を高めるために調質圧延率を45%
まで下げると外側のR部には割れを発生することなく成
形できるが,内側R部(F)にはミクロクラックが発生す
る。したがってメタルガスケットとしての十分な特性が
得られない。さらに, 本発明鋼 (M3) について, 調質
前焼鈍の圧延率が低いものも比較材に示しているが, こ
の場合には微細結晶処理を施しても混粒となり内側R部
(F)には微細なミクロクラックが発生する。比較鋼
(a)はN値が低いものであるが,CとNが低いので加
工硬化が小さく,時効処理後に高強度を得るためには,
時効処理前の調質圧延率を高める必要がある。このた
め,外側R部で割れが発生する。比較鋼(b)は,本発
明で規定するM値が低く本発明で規定する範囲を外れて
いるものであるが,加工硬化が小さいので時効処理後高
強度を得ようとすると比較鋼(a)と同様な結果をもた
らす。また,従来鋼(A)も時効処理後170kg/mm2前後
の引張強さを得ようとすると時効処理前の成形加工後は
内側と外側のR部ともにミクロクラックや割れが発生す
る。また,時効処理後の引張強さを160kg/mm2前後とな
るように調質圧延率を低下させても結晶粒径が大きいた
め内側R部に(F)ミクロクラックが発生する。The following can be seen from the results in Table 2. Each of the fine crystal-treated materials of the invention steels (M1 to 10) according to the present invention does not generate microcracks or cracks during forming and has sufficient tensile strength after aging treatment. However, even in the case of the steel of the present invention (M1), in order to obtain a high strength after aging treatment as shown as a comparative material in the conventional method with the reduction ratio before tempering and the annealing condition before tempering, the tempering rolling before aging treatment is required. It is necessary to increase the rate to about 60%, so that microcracks occur at both the inner and outer R portions during molding. In addition, the temper rolling rate is 45% to enhance the formability.
When it is lowered to a lower level, the outer R portion can be formed without cracking, but microcracks occur in the inner R portion (F). Therefore, sufficient characteristics as a metal gasket cannot be obtained. Furthermore, the steel of the present invention (M3) also shows a low rolling reduction in the pre-temper annealing, but in this case, even if the fine crystal treatment was applied, the grains became mixed and the inner R
In (F), fine microcracks are generated. The comparative steel (a) has a low N value. However, since C and N are low, work hardening is small, and to obtain high strength after aging treatment,
It is necessary to increase the temper rolling rate before the aging treatment. For this reason, cracks occur at the outer R portion. The comparative steel (b) has a low M value specified in the present invention and is out of the range specified in the present invention. However, since the work hardening is small, it is difficult to obtain high strength after aging treatment. ) With similar results. In addition, if the conventional steel (A) also attempts to obtain a tensile strength of about 170 kg / mm 2 after the aging treatment, microcracks and cracks occur in both the inner and outer R portions after forming before the aging treatment. Further, even if the temper rolling reduction is reduced so that the tensile strength after aging treatment is about 160 kg / mm 2 , (F) microcracks occur in the inner R portion because the crystal grain size is large.
【0035】図4〜図6はいずれも成形加工後のR部表
面の走査型電子顕微鏡写真であり,図4のものは本発明
鋼(M1)を従来法で製造した場合の内側R部(F)で
あり,多くのミクロクラックの発生が認められる。図5
は本発明鋼(M1)を本発明法で製造した場合の内側R
部(F)であるが,ミクロクラックの発生は認められな
い。図6は比較鋼(b)の外側R部(R)であるが, 冷
間圧延率が高いため大きな割れが発生している。4 to 6 are scanning electron micrographs of the surface of the R portion after the forming process. FIG. 4 shows the inner R portion (FIG. 4) when the steel (M1) of the present invention was manufactured by the conventional method. F), and many microcracks are observed. FIG.
Is the inner R when steel of the present invention (M1) is manufactured by the method of the present invention.
In part (F), generation of microcracks is not recognized. FIG. 6 shows the outer R portion (R) of the comparative steel (b), in which a large crack is generated due to a high cold rolling reduction.
【0036】これらの成形加工時の表面状態が疲労特性
に影響を及ぼしていることが振動試験結果から明らかで
ある。本発明に従う鋼はいずれも100万回の振動試験で
も割れは発生しないのに対し, 比較材, 従来鋼および比
較鋼のように内側R部ならびに外側R部にミクロクラッ
クや割れが存在するものはいずれも貫通割れを発生して
しまい,これらが疲労寿命に大きく影響することが認め
られる。It is apparent from the results of the vibration test that the surface condition at the time of these forming processes affects the fatigue characteristics. While none of the steels according to the present invention cracked even after one million vibration tests, the ones with microcracks or cracks at the inner R and outer R parts, such as the comparative material, conventional steel and comparative steel, did not In each case, penetration cracks occurred, and it was recognized that these greatly affected the fatigue life.
【0037】このように,本発明鋼は従来のメタルガス
ケット用材であるSUS301に比べ, 時効による強度上昇が
大きいので時効処理前の強度を下げることができ, 成形
加工性に優れる。特に本発明に従う製造法を採用すれば
成形加工性に著しい特性が得られるのであり,メタルガ
スケットとして使用した場合の寿命を著しく向上させる
ことができる。またその製造法自身はコスト的に負担と
なるようなものでもないので経済的有利に製造できる。As described above, the steel of the present invention has a large increase in strength due to aging as compared with the conventional metal gasket material SUS301, so that the strength before aging treatment can be reduced and the formability is excellent. In particular, when the manufacturing method according to the present invention is adopted, remarkable characteristics in molding workability can be obtained, and the life when used as a metal gasket can be significantly improved. In addition, the manufacturing method itself is not costly, so that it can be manufactured economically and advantageously.
【0038】[0038]
【図1】実施例に示したM1鋼の焼鈍(調質前焼鈍)の
前の圧延率が35%と55%である材料の700℃での焼鈍時
間と硬さおよび結晶粒径との関係を示す図である。FIG. 1 shows the relationship between the annealing time at 700 ° C., the hardness, and the grain size of the materials having the rolling reductions before annealing (temper annealing) of 35% and 55% of the M1 steel shown in the examples. FIG.
【図2】成形加工性の試験に供した試験片形状を示す断
面図である。FIG. 2 is a cross-sectional view showing the shape of a test piece used for a test of moldability.
【図3】振動試験の荷重負荷前(a) と荷重負荷状態(b)
の試験状態を示す略断面図である。Fig. 3 Before (a) and under load (b) in the vibration test
It is a schematic sectional drawing which shows the test state of.
【図4】成形加工金属試験片のR部における表面を写し
た顕微鏡写真である。FIG. 4 is a photomicrograph of the surface of a molded metal test piece at the R portion.
【図5】成形加工金属試験片のR部における表面を写し
た顕微鏡写真である。FIG. 5 is a photomicrograph showing the surface of a molded metal test piece at an R portion.
【図6】成形加工金属試験片のR部における表面を写し
た顕微鏡写真である。FIG. 6 is a photomicrograph of the surface of a molded metal test piece at the R portion.
1 金属試験片 2 負荷変動フランジ 1 metal test piece 2 load fluctuation flange
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武本 敏彦 山口県新南陽市野村南町4976番地 日新 製鋼株式会社鉄鋼研究所内 (72)発明者 林 茂人 山口県新南陽市野村南町4976番地 日新 製鋼株式会社鉄鋼研究所内 (72)発明者 田中 秀記 山口県新南陽市野村南町4976番地 日新 製鋼株式会社鉄鋼研究所内 (72)発明者 柴田 新次 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 前田 千芳利 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭63−206429(JP,A) 特開 平1−92342(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/40 C21D 8/02 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshihiko Takemoto 4976 Nomuraminamicho, Shinnanyo-shi, Yamaguchi Prefecture Inside Nippon Steel Research Institute (72) Inventor Shigeto Hayashi 4976 Nomuraminamicho, Shinnanyo-shi, Yamaguchi Japan New Steel Works, Ltd.Steel Research Laboratories (72) Inventor Hideki Tanaka 4976 Nomura Minamicho, Shinnanyo-shi, Yamaguchi Prefecture Nissin Steel Works, Ltd.Steel Research Laboratories (72) Inventor Shibata Shinji 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor (72) Inventor Chiyoshi Toshima Maeda 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP-A-63-206429 (JP, A) JP-A-1-92342 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/40 C21D 8/02
Claims (7)
れ,残部がFeおよび不可避的不純物からなる成形加工
性に優れたエンジンガスケット用ステンレス鋼。1. In weight%, C: 0.03% or less Si; 1.0% or less, Mn: 2.5% or less, Ni: 4.0 to 10.0%, Cr: 13.0 to 20.0%, N: 0.06 to 0.30%, S; 0.01 %; O; 0.007% or less, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr%) )-(320 × N%) A stainless steel for engine gaskets, whose components are adjusted so that the M value in accordance with the equation of (320 × N%) is 30 or more, and whose balance is Fe and unavoidable impurities and has excellent moldability.
も1種, ii). 0.1〜1.0%のTi,NbまたはVの少なくとも1種,
のi群とii群の元素を単独または複合して含み, 且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%) −(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるように各成分量が調整さ
れ,残部がFeおよび不可避的不純物からなる成形加工
性に優れたエンジンガスケット用ステンレス鋼。2. In% by weight, C: 0.03% or less Si; 1.0% or less, Mn: 2.5% or less, Ni: 4.0 to 10.0%, Cr: 13.0 to 20.0%, N: 0.06 to 0.30%, S; 0.01 %, O; 0.007% or less; and i). At least one of Mo of 3.0% or less or Cu of 0.5 to 3.0%, ii). At least one of Ti, Nb or V of 0.1 to 1.0%. seed,
And M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − ( 5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) − (320 × N%) Each component amount is adjusted so that the M value is 30 or more, and the remainder is Fe and inevitable Stainless steel for engine gaskets, which is excellent in moldability and is composed of chemical impurities.
N;0.06〜0.20%である請求項1または2に記載のステ
ンレス鋼。3. Mn: 0.5% or less, S: 0.004% or less,
The stainless steel according to claim 1 or 2, wherein N is 0.06 to 0.20%.
れ,残部がFeおよび不可避的不純物からなるステンレ
ス鋼を,調質前焼鈍に先立ち減面率で50%を越える冷間
圧延を施し,平均結晶粒径が10μm以下となるように調
質前焼鈍を行い,そして調質圧延を施すことを特徴とす
る成形加工性に優れたエンジンガスケット用ステンレス
鋼板の製造方法。4. In% by weight, C: 0.03% or less Si; 1.0% or less, Mn: 2.5% or less, Ni: 4.0 to 10.0%, Cr: 13.0 to 20.0%, N: 0.06 to 0.30%, S; 0.01 %; O; 0.007% or less, and M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − (5.7 × Cr%) ) − (320 × N%) The content of each component is adjusted so that the M value according to the formula of (320 × N%) becomes 30 or more, and the balance of stainless steel containing Fe and unavoidable impurities is reduced by the surface reduction rate before annealing before tempering. A stainless steel sheet for engine gaskets with excellent formability characterized by cold rolling exceeding 50%, pre-annealing so that the average crystal grain size is 10 μm or less, and then temper rolling. Manufacturing method.
も1種, ii). 0.1〜1.0%のTi,NbまたはVの少なくとも1種,
のi群とii群の元素を単独または複合して含み, 且つ M=330−(480×C%)−(2×Si%)−(10×Mn%)−(14×Ni%) −(5.7×Cr%) −(5×Mo%)−(14×Cu%)−(320×N%) の式に従うM値が30以上となるように各成分量が調整さ
れ,残部がFeおよび不可避的不純物からなるステンレ
ス鋼を,調質前焼鈍に先立ち減面率で50%を越える冷間
圧延を施し,平均結晶粒径が10μm以下となるように調
質前焼鈍を行い,そして調質圧延を施すことを特徴とす
る成形加工性に優れたエンジンガスケット用ステンレス
鋼板の製造方法。5. In% by weight, C: 0.03% or less Si; 1.0% or less, Mn: 2.5% or less, Ni: 4.0 to 10.0%, Cr: 13.0 to 20.0%, N: 0.06 to 0.30%, S; 0.01 %, O; 0.007% or less; and i). At least one of Mo of 3.0% or less or Cu of 0.5 to 3.0%, ii). At least one of Ti, Nb or V of 0.1 to 1.0%. seed,
And M = 330− (480 × C%) − (2 × Si%) − (10 × Mn%) − (14 × Ni%) − ( 5.7 × Cr%) − (5 × Mo%) − (14 × Cu%) − (320 × N%) Each component amount is adjusted so that the M value is 30 or more, and the remainder is Fe and inevitable Stainless steel consisting of chemical impurities is subjected to cold rolling with a reduction in area of more than 50% prior to annealing before tempering, annealing before tempering so that the average crystal grain size is 10 μm or less, and then temper rolling. A method for producing a stainless steel sheet for an engine gasket, which is excellent in formability, characterized by applying a method.
の温度領域で行われる請求項4または5に記載の製造方
法。6. The method according to claim 4, wherein the pre-temper annealing is performed in a temperature range of 700 ° C. or more and 1000 ° C. or less.
以下の温度範囲に10秒以上保持する時効処理が施される
請求項4,5または6に記載の製造方法。7. The temper-rolled steel is at least 300 ° C. and 600 ° C.
The method according to claim 4, 5 or 6, wherein an aging treatment is carried out for 10 seconds or more in the following temperature range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2410613A JP3068861B2 (en) | 1990-12-14 | 1990-12-14 | Stainless steel for engine gasket excellent in moldability and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2410613A JP3068861B2 (en) | 1990-12-14 | 1990-12-14 | Stainless steel for engine gasket excellent in moldability and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04214841A JPH04214841A (en) | 1992-08-05 |
JP3068861B2 true JP3068861B2 (en) | 2000-07-24 |
Family
ID=18519749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2410613A Expired - Lifetime JP3068861B2 (en) | 1990-12-14 | 1990-12-14 | Stainless steel for engine gasket excellent in moldability and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3068861B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3236713B2 (en) * | 1993-10-20 | 2001-12-10 | 川崎製鉄株式会社 | Fe-Cr-Ni alloy with excellent deep drawability |
KR100356930B1 (en) | 1998-09-04 | 2002-10-18 | 스미토모 긴조쿠 고교 가부시키가이샤 | Stainless steel for engine gasket and production method therefor |
CN1234897C (en) * | 2001-04-27 | 2006-01-04 | 住友金属工业株式会社 | Metal gasket and a material for its manufacture and a method for their manufacture |
JP4325521B2 (en) | 2004-09-28 | 2009-09-02 | 住友金属工業株式会社 | Stainless steel sheet for gasket and its manufacturing method |
JP5347600B2 (en) * | 2009-03-16 | 2013-11-20 | 新日鐵住金株式会社 | Austenitic stainless steel and method for producing austenitic stainless steel sheet |
JP5500960B2 (en) * | 2009-12-01 | 2014-05-21 | 新日鐵住金ステンレス株式会社 | Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability |
WO2016047734A1 (en) * | 2014-09-25 | 2016-03-31 | 新日鐵住金株式会社 | Austenitic stainless steel sheet and method for producing same |
CN105420636A (en) * | 2015-11-25 | 2016-03-23 | 铜陵市经纬流体科技有限公司 | High-plasticity anti-abrasion stainless steel pump valve casting and preparation method thereof |
CN105839030B (en) * | 2016-04-28 | 2017-06-06 | 交通运输部公路科学研究所 | Bridge stainless steel wire hot-cast anchor cable and its drag-line used |
-
1990
- 1990-12-14 JP JP2410613A patent/JP3068861B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04214841A (en) | 1992-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900006605B1 (en) | Process for making a hogh strength stainless steel having excellent workability and free form weld softening | |
JP4321066B2 (en) | Metal gasket, material thereof and method for producing the same | |
EP1118687B1 (en) | High-strength, high-toughness martensitic stainless steel sheet, method of inhibiting cold-rolled steel sheet edge cracking, and method of producing the steel sheet | |
JPH05117813A (en) | Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture | |
JP4019630B2 (en) | Stainless steel for engine gasket and its manufacturing method | |
JPH07278758A (en) | Stainless steel for engine gasket and its production | |
US4452649A (en) | Motorcycle disc braking materials of a low carbon martensitic stainless steel | |
JPH05279802A (en) | Stainless steel for spring excellent in fatigue characteristic in formed part as well as in spring characteristic and its production | |
JP3068861B2 (en) | Stainless steel for engine gasket excellent in moldability and method of manufacturing the same | |
JP3347582B2 (en) | Austenitic stainless steel for metal gasket and method for producing the same | |
JP3521852B2 (en) | Duplex stainless steel sheet and method for producing the same | |
JP4524894B2 (en) | Multi-layer structure Cr-based stainless steel and method for producing the same | |
JP2002332543A (en) | High strength stainless steel for metal gasket having excellent fatigue performance and high temperature setting resistance and production method therefor | |
JPH08134595A (en) | High strength stainless steel sheet excellent in stress corrosion cracking resistance | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP4209513B2 (en) | Martensitic stainless steel annealed steel with good strength, toughness and spring properties | |
JP2826819B2 (en) | Method for producing high-strength stainless steel with excellent workability and no welding softening | |
JPH0254416B2 (en) | ||
JPH06100990A (en) | Ferritic stainless steel excellent in strength at high temperature | |
JPH06228641A (en) | Production of gasket material for internal combustion engine excellent in stress corrosion cracking resistance | |
JPH0742550B2 (en) | Stainless steel with excellent strength and ductility | |
JP2000063947A (en) | Manufacture of high strength stainless steel | |
JPH08260104A (en) | Chromium steel sheet excellent in formability and atmospheric corrosion resistance | |
JP2001049337A (en) | Production of high strength spring excellent in fatigue strength | |
JP2003105502A (en) | Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000509 |