JP2017208336A - Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part - Google Patents

Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part Download PDF

Info

Publication number
JP2017208336A
JP2017208336A JP2017095948A JP2017095948A JP2017208336A JP 2017208336 A JP2017208336 A JP 2017208336A JP 2017095948 A JP2017095948 A JP 2017095948A JP 2017095948 A JP2017095948 A JP 2017095948A JP 2017208336 A JP2017208336 A JP 2017208336A
Authority
JP
Japan
Prior art keywords
stainless steel
fuel cell
separator
solid polymer
polymer type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017095948A
Other languages
Japanese (ja)
Other versions
JP6856871B2 (en
Inventor
昌信 熊谷
Masanobu Kumagai
昌信 熊谷
一郎 吉野
Ichiro Yoshino
一郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Publication of JP2017208336A publication Critical patent/JP2017208336A/en
Application granted granted Critical
Publication of JP6856871B2 publication Critical patent/JP6856871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide: a solid polymer type fuel cell separator part having desired electrical conductivity and corrosion resistance which a separator for fuel cell use is required to have; and a method for manufacturing the solid polymer type fuel cell separator part.SOLUTION: A solid polymer type fuel cell separator part is made of stainless steel. In the stainless steel, crystal grains of 3.0 μm or smaller in diameter account for 60% or more of all of crystal grains. If the stainless steel is austenite stainless steel, an oxygen content in the stainless steel is 30 ppm or less by weight. The solid polymer type fuel cell separator part may be arranged to further comprise a styrene-butadiene rubber attached to the surface thereof, provided that the styrene-butadiene rubber includes titanium nitride particles.SELECTED DRAWING: Figure 1

Description

本発明は、主に車輌、船舶、航空機などの乗物に搭載され、または企業や一般家庭で使用されている燃料電池、特に固体高分子形燃料電池に用いるセパレータ素材、当該素材を用いた固体高分子形燃料電池用セパレータ部品および固体高分子形燃料電池用セパレータの部品の製造方法に関する。   The present invention mainly relates to a fuel cell that is mounted on a vehicle such as a vehicle, a ship, or an aircraft, or is used in a company or a general household, particularly a separator material used for a polymer electrolyte fuel cell, and a solid height using the material. The present invention relates to a method of manufacturing a separator part for a molecular fuel cell and a separator part for a polymer electrolyte fuel cell.

近年、自動車やバスの電源として搭載されている燃料電池や一般家庭向けの電源として提供されている燃料電池は、その多くが固体高分子形燃料電池(PEFCまたはPEMFC)である。固体高分子形燃料電池は、りん酸形燃料電池など他の燃料電池に比べて小形かつ軽量化が可能であり、起動時の操作が比較的に容易であることから各産業分野でその普及が進みつつある。そのため固体高分子形燃料電池を構成するセパレータとしては、良好な電気伝導性に加えて、酸における耐食性や加工時における成形性などの諸特性が求められている。   In recent years, many of the fuel cells mounted as power sources for automobiles and buses and the fuel cells provided as power sources for general households are polymer electrolyte fuel cells (PEFC or PEMFC). Solid polymer fuel cells are smaller and lighter than other fuel cells, such as phosphoric acid fuel cells, and are relatively easy to operate at startup. Progressing. Therefore, as a separator constituting the polymer electrolyte fuel cell, various properties such as corrosion resistance in acid and moldability during processing are required in addition to good electrical conductivity.

例えば、特許文献1ではステンレス鋼製の燃料電池用セパレータとして平均結晶粒径が1〜40μmの範囲のオーステナイト系ステンレス鋼板が開示されている。オーステナイト系ステンレス鋼板の平均結晶粒径を一定範囲に規定することで、適度な寸法精度と成形性が確保できることが説明されている。   For example, Patent Document 1 discloses an austenitic stainless steel sheet having an average crystal grain size in the range of 1 to 40 μm as a stainless steel fuel cell separator. It is described that an appropriate dimensional accuracy and formability can be ensured by defining the average crystal grain size of the austenitic stainless steel sheet within a certain range.

また、特許文献2にも特許文献1と同様に燃料電池用セパレータ素材としてオーステナイト系ステンレス鋼材の化学成分が開示されている。特に、鋼材中の酸素(O)濃度については酸化物の生成を抑制、中でも鋼材中の硫黄(S)と結合することを阻止する観点から比較的に低濃度であることで求められている。これにより、高温雰囲気中における燃料電池用セパレータ素材の耐酸化特性と電気伝導性を実現できることが説明されている。 Similarly to Patent Document 1, Patent Document 2 discloses a chemical component of an austenitic stainless steel material as a fuel cell separator material. In particular, the oxygen (O) concentration in the steel material is required to be a relatively low concentration from the viewpoint of suppressing the formation of oxides and, in particular, preventing bonding with sulfur (S) in the steel material. Thus, it is explained that the oxidation resistance and electrical conductivity of the fuel cell separator material in a high temperature atmosphere can be realized.

特開2004−339569号公報Japanese Patent Application Laid-Open No. 2004-339569 特開平11−293941号公報Japanese Patent Laid-Open No. 11-293941

しかし、特許文献1に開示されているPEFC(固体高分子形燃料電池)用ステンレス鋼製セパレータでは、模擬PEFC環境中(低pHやフッ化物イオンの雰囲気)におけるステンレス鋼の耐食性についてのみ開示されており、通常のステンレス鋼の腐食の起点となる鋼中の介在物(酸化物や硫化物)や鋼中の酸素濃度の影響や実際のPEFCの環境下でのステンレス鋼製セパレータの耐食性については何ら開示されていない。 However, the stainless steel separator for PEFC (solid polymer fuel cell) disclosed in Patent Document 1 discloses only the corrosion resistance of stainless steel in a simulated PEFC environment (low pH and fluoride ion atmosphere). What is the influence of the inclusions (oxides and sulfides) in the steel, the starting point of corrosion of normal stainless steel, the oxygen concentration in the steel, and the corrosion resistance of the stainless steel separator in the actual PEFC environment? Not disclosed.

また、特許文献2に開示されているPEFC(固体高分子形燃料電池)用ステンレス鋼製のセパレータでは、腐食の起点となる鋼中の酸化物や硫化物の影響について、873K 以上の高温酸化雰囲気におけるステンレス鋼の耐食性に限定しており、PEFCの作動温度である353K付近でのステンレス鋼の耐食性やステンレス鋼を薄肉化した際の強度や加工性については何ら開示されていない。 In addition, in the stainless steel separator for PEFC (Polymer Polymer Fuel Cell) disclosed in Patent Document 2, a high-temperature oxidizing atmosphere of 873 K or higher with respect to the influence of oxides and sulfides in the steel that is the starting point of corrosion. The corrosion resistance of stainless steel at 353 K, which is the operating temperature of PEFC, and the strength and workability when the stainless steel is thinned are not disclosed.

そこで、本発明においては燃料電池用途のセパレータとして求められる所望の電気伝導性および耐食性を兼ね備えた燃料電池用セパレータ部品を提供することを課題とする。   Therefore, an object of the present invention is to provide a fuel cell separator component that has both desired electrical conductivity and corrosion resistance required as a separator for fuel cell applications.

前述した課題を解決するために、本発明者はステンレス鋼製の固体高分子形燃料電池用セパレータ部品であって、このステンレス鋼の結晶粒径について3.0μm以下の結晶粒径が全体に対して占める割合を60%以上とする。また、ステンレス鋼がオーステナイト系ステンレス鋼である場合には、当該ステンレス鋼に含有される酸素量を質量%で30ppm以下とする固体高分子形燃料電池用セパレータ部品とする。 In order to solve the above-described problems, the present inventor is a separator for a polymer electrolyte fuel cell made of stainless steel, and the crystal grain size of the stainless steel is 3.0 μm or less relative to the whole. The proportion of the total is 60% or more. Further, when the stainless steel is an austenitic stainless steel, a separator for a polymer electrolyte fuel cell in which the amount of oxygen contained in the stainless steel is 30 ppm or less by mass% is used.

また、前述の固体高分子形燃料電池用セパレータ部品の表面に窒化チタン粒子(以下、「TiN」という)を含有するスチレンブタジエンゴム(以下、「SBR」という)を付着させる固体高分子形燃料電池用セパレータとすることもできる。 Further, a solid polymer fuel cell in which styrene butadiene rubber (hereinafter referred to as “SBR”) containing titanium nitride particles (hereinafter referred to as “TiN”) is attached to the surface of the separator part for a solid polymer fuel cell described above. It can also be used as a separator.

固体高分子形燃料電池用セパレータ部品の製造方法としては、ステンレス鋼の表面を常圧の雰囲気下で80℃以上220℃以下の温度範囲で加熱した状態でTiN粒子を含むSBRを密着させることができる。また、ステンレス鋼の表面を80℃以上100℃以下の温度範囲で加熱した後、150℃以上220℃以下の温度範囲まで昇温することで前記ステンレス鋼の表面を段階的に加熱しても構わない。 As a method for producing a separator for a polymer electrolyte fuel cell, SBR containing TiN particles is adhered in a state where the surface of stainless steel is heated in a temperature range of 80 ° C. or higher and 220 ° C. or lower in an atmosphere of normal pressure. it can. Further, after the surface of the stainless steel is heated in a temperature range of 80 ° C. or higher and 100 ° C. or lower, the surface of the stainless steel may be heated stepwise by raising the temperature to a temperature range of 150 ° C. or higher and 220 ° C. or lower. Absent.

本発明に係る固体高分子形燃料電池用セパレータ部品とすることで、燃料電池用途のセパレータとして求められる所望の電気伝導性および耐食性の両立を図ることができる。また、本発明の固体高分子形燃料電池用セパレータ部品の製造方法は常圧雰囲気の中で、かつ200℃前後の加熱温度で素材(ステンレス鋼)にTiN粒子を含むSBRを付着するので、比較的に低コストでセパレータ部品を製造できるという効果を奏する。 By using the separator part for a polymer electrolyte fuel cell according to the present invention, it is possible to achieve both desired electrical conductivity and corrosion resistance required as a separator for a fuel cell. In addition, the method for producing a separator part for a polymer electrolyte fuel cell according to the present invention attaches SBR containing TiN particles to a material (stainless steel) in a normal pressure atmosphere and at a heating temperature of around 200 ° C. In particular, it is possible to produce separator parts at low cost.

実施例1における本発明材1、2および比較材1〜3をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果である。It is a power generation test result up to 500 hours in each cell in which the present invention materials 1 and 2 and comparative materials 1 to 3 in Example 1 are separately incorporated. ステンレス鋼の表面にTiN粒子を含むSBRを付着させた状態を示すSEM写真である。It is a SEM photograph which shows the state which adhered SBR containing TiN particle | grains to the surface of stainless steel. 実施例2における本発明材1〜4および比較材としての樹脂含浸黒鉛材(比較材4)をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果である。It is an electric power generation test result to 500 hours in each cell which each incorporated the present invention materials 1-4 in Example 2, and the resin impregnation graphite material (comparative material 4) as a comparison material separately.

本発明の実施の形態の一例について説明する。本発明の固体高分子形燃料電池用セパレータ部品は、ステンレス鋼製とし、鋼種としては例えばオーステナイト系ステンレス鋼やフェライト系ステンレス鋼などが適用できる。 An example of an embodiment of the present invention will be described. The separator part for a polymer electrolyte fuel cell of the present invention is made of stainless steel, and examples of the steel type include austenitic stainless steel and ferritic stainless steel.

また、ステンレス鋼の結晶粒径については、3.0μm以下の結晶粒径が全体に対して占める割合を60%以上とする。ステンレス鋼の結晶粒径の割合を規定した理由は、3.0μm以下の結晶粒径が全体に対して占める割合が60%未満になると、素材たるステンレス鋼をセパレータに加工する特性は向上する(加工しやすくなる)が、セパレータ部品の素材としての材料強度が低下する、もしくは加工工程においてスプリングバックを考慮した金型設計が必要になるためである。 Moreover, about the crystal grain size of stainless steel, the ratio for which the crystal grain size of 3.0 micrometers or less occupies with respect to the whole shall be 60% or more. The reason for specifying the ratio of the crystal grain size of stainless steel is that when the ratio of the crystal grain size of 3.0 μm or less to the whole is less than 60%, the characteristics of processing the stainless steel as a material into a separator are improved ( This is because the strength of the material as the material of the separator component is reduced, or a mold design that takes the spring back into consideration in the processing process is required.

さらに、ステンレス鋼の鋼種がオーステナイト系ステンレス鋼の場合には、当該ステンレス鋼に含有される酸素(O)量は質量%で30ppm以下とする。オーステナイト系ステンレス鋼に含有される酸素量の上限を30ppmに規定した理由は、オーステナイト系ステンレス鋼の酸素量が30ppmを超えるとオーステナイト系ステンレス鋼中の酸化物系介在物が増加することでセパレータ部品としての耐食性が低下し、ひいてはセパレータとしての発電効率の低下につながるためである。 Furthermore, when the steel type of the stainless steel is austenitic stainless steel, the amount of oxygen (O) contained in the stainless steel is 30 ppm or less by mass%. The reason why the upper limit of the amount of oxygen contained in the austenitic stainless steel is defined as 30 ppm is that when the oxygen content of the austenitic stainless steel exceeds 30 ppm, the oxide inclusions in the austenitic stainless steel increase, so that separator parts This is because the corrosion resistance of the separator is lowered, and as a result, the power generation efficiency of the separator is lowered.

セパレータ部品の素材(原材料)であるステンレス鋼の表面を改質する方法としては、金メッキ等の貴金属メッキ法やCVD法やPVD法によるカーボンや窒化物の被覆、熱窒化法によるクロム窒化物を析出させる方法がある。しかし、表面を改質する際に用いる装置や工程が複雑であることから、本発明では簡便な泳動電着法によりステンレス鋼の表面にTiN粒子を具備(含有)したSBRを付着させることとした。 As a method of modifying the surface of stainless steel, which is the material (raw material) of separator parts, precious metal plating methods such as gold plating, carbon and nitride coating by CVD method and PVD method, and chromium nitride by thermal nitriding method are deposited. There is a way to make it. However, since the apparatus and process used for modifying the surface are complicated, in the present invention, the SBR containing (containing) TiN particles is attached to the surface of stainless steel by a simple electrophoretic electrodeposition method. .

これにより、電極基板となるガス拡散層(以下、「GDL」という)との接触抵抗の低減を図ることができる。ここで泳動電着法とは、導電性粒子を分散させた分散浴中に2枚の電極を浸漬した状態で、これら2枚の電極間に電圧を印加することにより一方の電極上に導電性粒子を吸着、堆積させる方法をいうものとする。 Thereby, the contact resistance with the gas diffusion layer (hereinafter referred to as “GDL”) serving as the electrode substrate can be reduced. Here, the electrophoretic electrodeposition method is a method in which two electrodes are immersed in a dispersion bath in which conductive particles are dispersed, and a voltage is applied between the two electrodes to cause the conductivity on one electrode. A method of adsorbing and depositing particles shall be said.

上述の泳動電着法に使用する分散浴には、例えば分散媒として2−プロパノール、導電性粒子としては平均粒径が50nmのTiN粒子、ゴム系のバインダーとしてはSBRをそれぞれ選定することができる。当該分散媒中にはTiN粒子を0.050wt%、SBRを0.074wt%の割合で加えた後、超音波振動によりTiN粒子およびSBRを分散媒中に充分に分散させたものを分散浴とすることができる。 For the dispersion bath used in the electrophoretic electrodeposition method, for example, 2-propanol can be selected as a dispersion medium, TiN particles having an average particle diameter of 50 nm can be selected as conductive particles, and SBR can be selected as a rubber-based binder. . In the dispersion medium, 0.05% by weight of TiN particles and 0.074% by weight of SBR were added, and then the dispersion medium was sufficiently dispersed with TiN particles and SBR by ultrasonic vibration. can do.

本発明材(2水準)および比較材(3水準)をそれぞれ別個のセルに組み込んでセパレータとしての発電試験を行ったので、その試験結果について図面を用いて説明する。本試験に用いた供試材は、まず本発明材としてステンレス鋼に含有される酸素量が重量%で30ppm以下のSUS316L鋼に対して結晶粒を微細化させたものを用いた(本発明材1〜2の酸素量はすべて22ppm)。本発明材1は表2に示すように結晶粒を微細化させた結果、平均結晶粒径が1.5μm、全結晶粒に対して結晶粒径が3.0μm以下である結晶粒の占める割合が96%である供試材である。本発明材2は平均結晶粒径が2.9μm、全結晶粒に対して結晶粒径が3.0μm以下である結晶粒の占める割合が63%である供試材である。 Since the inventive material (2 levels) and the comparative material (3 levels) were incorporated in separate cells and a power generation test as a separator was conducted, the test results will be described with reference to the drawings. The test material used in this test was a material obtained by refining crystal grains with respect to SUS316L steel having an oxygen content of 30 ppm or less by weight% as stainless steel according to the present invention. The oxygen amount of 1-2 is all 22 ppm). As a result of refining crystal grains as shown in Table 2, the present invention material 1 has an average crystal grain size of 1.5 μm and a ratio of crystal grains having a crystal grain size of 3.0 μm or less with respect to all crystal grains Is 96%. Invention material 2 is a test material having an average crystal grain size of 2.9 μm, and the proportion of crystal grains having a crystal grain size of 3.0 μm or less with respect to all crystal grains is 63%.

これに対して、結晶粒微細化させていない供試材(以下、「比較材1」という)、ステンレス鋼に含有される酸素量が重量%で30ppm以上のSUS316L鋼に対して結晶粒を微細化させていない供試材(以下、「比較材2」という)および結晶粒を微細化させた供試材(以下、「比較材3」という)を比較材1〜3とした。本試験に用いた供試材の化学組成(単位:重量%)を表1に、供試材の平均結晶粒径などを表2に、供試材の仕様および試験条件を表3にそれぞれ示す。 On the other hand, the test grains (hereinafter referred to as “Comparative Materials 1”) that have not been refined with crystal grains, and the SUS316L steel with an oxygen content of 30 ppm or more by weight% are finer. The test materials (hereinafter referred to as “Comparative Materials 2”) and the test materials (hereinafter referred to as “Comparative Materials 3”) in which the crystal grains were refined were designated as Comparative Materials 1 to 3. Table 1 shows the chemical composition (unit:% by weight) of the test material used in this test, Table 2 shows the average crystal grain size of the test material, and Table 3 shows the specifications and test conditions of the test material. .

Figure 2017208336
Figure 2017208336

Figure 2017208336
Figure 2017208336

Figure 2017208336
Figure 2017208336

なお、供試材の厚さ(板厚)は本発明材1、2および比較材3が0.07mm、比較材1および2は0.10mmとした。   The thickness of the test material (plate thickness) was 0.07 mm for the inventive materials 1 and 2 and the comparative material 3, and 0.10 mm for the comparative materials 1 and 2.

本発明材1、2および比較材1〜3のいずれについてのセパレータ部品の溝深さは、流路形成材と流路底板の溝深さが0.5mmとなるように流路底板の溝深さを設定し、当該流路底板に機械加工によりサーペンタイン流路を成型した。また、本発電試験において流路形成材と流路底板が接する面には流路形成材側に接触抵抗を低減する金メッキ処理を施した。   The groove depth of the separator part for any of the inventive materials 1 and 2 and the comparative materials 1 to 3 is such that the groove depth of the flow path forming material and the flow path bottom plate is 0.5 mm. The serpentine channel was formed by machining on the channel bottom plate. In this power generation test, the surface where the flow path forming material and the flow path bottom plate contact each other was subjected to a gold plating process for reducing contact resistance on the flow path forming material side.

本発明材1、2および比較材1〜3をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果を図1に示す。本試験中における発電試験中のセル電圧の経時変化を図1に示すグラフより直線近似して、本発明材1、2および比較材1〜3の発電開始時のセル電圧と平均セル電圧低下速度を求めた。その結果、発電開始時のセル電圧は本発明材1では約0.64V、本発明材2では約0.67V、比較材1、2では約0.62V、比較材3では約0.65Vであった。また、平均セル電圧低下速度を比較すると、本発明材1は0.23×10−4Vh−1、本発明材2は0.25×10−4Vh−1、比較材1は0.19×10−4Vh−1、比較材2は0.29×10−4Vh−1、比較材3は0.46×10−4Vh−1であった。 FIG. 1 shows the power generation test results up to 500 hours in each cell in which the inventive materials 1 and 2 and the comparative materials 1 to 3 are separately incorporated. The cell voltage and the average cell voltage drop rate at the start of power generation of Invention Materials 1 and 2 and Comparative Materials 1 to 3 are linearly approximated from the graph shown in FIG. Asked. As a result, the cell voltage at the start of power generation is about 0.64 V for the invention material 1, about 0.67 V for the invention material 2, about 0.62 V for the comparison materials 1 and 2, and about 0.65 V for the comparison material 3. there were. Further, when the average cell voltage drop rate is compared, the present material 1 is 0.23 × 10 −4 Vh −1 , the present material 2 is 0.25 × 10 −4 Vh −1 , and the comparative material 1 is 0.19. × 10 −4 Vh −1 , Comparative Material 2 was 0.29 × 10 −4 Vh −1 , and Comparative Material 3 was 0.46 × 10 −4 Vh −1 .

比較材1と2の電圧低下速度を比較すると、酸素低減化処理を施した比較材1は酸素低減処理をしていない比較材2よりも優れていた。セパレータの薄肉化によるスタックのコンパクト化を目的とし、比較材1および比較材2に対して酸素低減処理および結晶粒微細加工を施した本発明材1および2は、酸素低減化処理をしていない比較材3に対して電圧低下速度が優れていた。 Comparing the voltage drop rates of the comparative materials 1 and 2, the comparative material 1 subjected to the oxygen reduction treatment was superior to the comparative material 2 not subjected to the oxygen reduction treatment. The present invention materials 1 and 2 in which oxygen reduction treatment and crystal grain fine processing have been performed on the comparative material 1 and the comparison material 2 for the purpose of compacting the stack by thinning the separator are not subjected to oxygen reduction treatment. The voltage drop rate was superior to that of Comparative Material 3.

また、発電試験後にそれぞれのセルを分解して、本発明材1、2および比較材1〜3の各セパレータの表面を光学顕微鏡で観察した。その結果、本発明材1、2はアノード側およびカソード側の両極においてセパレータ部品の表面には腐食痕は観察されなかった。また、比較材1〜3のアノード側のセパレータ部品の表面も同様に腐食痕は観察されなかった。これに対して、比較材2、3のカソード側のセパレータ部品の表面全体は均一に腐食していた。 Moreover, each cell was decomposed | disassembled after the electric power generation test, and the surface of each separator of this invention materials 1 and 2 and the comparative materials 1-3 was observed with the optical microscope. As a result, according to the present invention materials 1 and 2, corrosion marks were not observed on the surfaces of the separator parts on both the anode side and the cathode side. Similarly, no corrosion marks were observed on the surfaces of the anode-side separator parts of Comparative Materials 1 to 3. In contrast, the entire surfaces of the separator parts on the cathode side of the comparative materials 2 and 3 were uniformly corroded.

これは、素材であるステンレス鋼中の酸化物系介在物の影響が原因の一つとして考えられる。すなわち、本発明材1、2および比較材1は酸素低減化処理したことにより腐食の起点となるステンレス鋼中の酸化物系介在物が比較材2の約50%まで低減した。このことにより、発電試験中にステンレス鋼中の不純物の溶出が抑制され、本発明材1、2および比較材1と比較材2、3の耐食性に差異がでたものと思われる。 This is considered to be one of the causes due to the influence of oxide inclusions in the stainless steel material. That is, the inventive materials 1 and 2 and the comparative material 1 were reduced in oxygen to about 50% of the oxide-based inclusions in the stainless steel as a starting point of corrosion due to the oxygen reduction treatment. Thus, it is considered that the elution of impurities in the stainless steel was suppressed during the power generation test, and that the corrosion resistances of the inventive materials 1 and 2 and the comparative material 1 and the comparative materials 2 and 3 were different.

以上より、本発明材(板厚=0.07mm)は比較材(板厚=0.10mm)よりも板厚を薄くしても耐食性を保った状態で同等の発電効率を得ることができるので、所定の容量のセルスタック内にはより多い枚数のセパレータを収容することができる。その結果、燃料電池として高電圧を出力することが可能になる。もしくは同じ電圧を出力するための燃料電池スタックの容量を小型化することができる。 As described above, the material of the present invention (plate thickness = 0.07 mm) can obtain the same power generation efficiency while maintaining the corrosion resistance even if the plate thickness is made thinner than the comparative material (plate thickness = 0.10 mm). A larger number of separators can be accommodated in a cell stack having a predetermined capacity. As a result, it becomes possible to output a high voltage as a fuel cell. Alternatively, the capacity of the fuel cell stack for outputting the same voltage can be reduced.

次に、本発明材1および2の表面に電着処理を行った供試材(以下、「本発明材3、4」という)をそれぞれ別個のセルに組み込んで発電試験を行った。同時に、比較材として樹脂含浸黒鉛材(比較材4)をセパレータとして組込だセルの発電試験も行ったので、それらの試験結果について図面を用いて説明する。   Next, a power generation test was performed by incorporating the test materials (hereinafter referred to as “present invention materials 3 and 4”), which were subjected to electrodeposition treatment on the surfaces of the present invention materials 1 and 2, into separate cells. At the same time, since a power generation test was performed on a cell incorporating a resin-impregnated graphite material (Comparative Material 4) as a comparative material as a separator, the test results will be described with reference to the drawings.

本発明材3、4は表面処理として泳動電着法によりステンレス鋼の表面にTiN粒子を含有するSBRを付着させることによりGDLとの接触抵抗の改善を行ったものである。具体的には、本発明材1および2に対してTiN粒子を含むSBR分散浴(分散媒:2−プロパノール、導電性粒子:TiN(平均粒径は50nm)0.050wt%、ゴム系バインダー:SBRバインダー0.074wt%)中に浸漬させた状態で、対極にSUS304鋼を使用して所定の電圧を印加した。 Inventive materials 3 and 4 are obtained by improving the contact resistance with GDL by attaching SBR containing TiN particles to the surface of stainless steel by electrophoretic deposition as a surface treatment. Specifically, an SBR dispersion bath containing TiN particles with respect to the inventive materials 1 and 2 (dispersion medium: 2-propanol, conductive particles: TiN (average particle size is 50 nm) 0.050 wt%, rubber-based binder: A predetermined voltage was applied to the counter electrode using SUS304 steel while being immersed in 0.074 wt% of SBR binder.

次に、本発明材1および2を大気中にて353K(80℃)の温度で加熱した後、453K(180℃)まで昇温して再度加熱することで乾燥させて、本発明材3、4を作製した。ステンレス鋼の表面にTiN粒子を含むSBRを付着させた状態の一例(SEM写真)を図2に示す。 Next, after heating this invention material 1 and 2 at the temperature of 353K (80 degreeC) in air | atmosphere, it was dried by heating up to 453K (180 degreeC) and heating again, this invention material 3, 4 was produced. An example (SEM photograph) of a state in which SBR containing TiN particles is attached to the surface of stainless steel is shown in FIG.

本実施例の試験条件は、実施例1と同様に表2に示す条件で行った。本発明材1〜4、比較材4をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果を図3に示す。   The test conditions of this example were the same as those of Example 1 and the conditions shown in Table 2. FIG. 3 shows the power generation test results up to 500 hours in each cell in which the inventive materials 1 to 4 and the comparative material 4 are separately incorporated.

本発電試験中のセル電圧の経時変化を図3に示すグラフより直線近似し、本発明材1〜4および比較材4をセパレータとして組込だセルの発電開始時のセル電圧を比較した結果、本発明材1では約0.64V、本発明材2では約0.67V、本発明材3では約0.66V、本発明材4では約0.66V、比較材4では0.66Vであった。 The time-dependent change of the cell voltage during the power generation test was linearly approximated from the graph shown in FIG. 3, and the results of comparing the cell voltage at the start of power generation of the cells incorporating the present invention materials 1 to 4 and the comparative material 4 as separators, Inventive Material 1 was about 0.64 V, Invented Material 2 was about 0.67 V, Invented Material 3 was about 0.66 V, Invented Material 4 was about 0.66 V, and Comparative Material 4 was 0.66 V. .

本発明材1および2に表面処理を行なうことで発電開始時のセル電圧がベンチマークとなる比較材4(樹脂含浸黒鉛材)と同等となった。また、発電試験後に各セルを分解して、セパレータの表面を光学顕微鏡で観察した。その結果、本発明材3、4の表面のTiN粒子を具備するSBRは発電試験中に剥離することなく、ステンレス鋼の表面における腐食も確認されなかった。 By subjecting the inventive materials 1 and 2 to surface treatment, the cell voltage at the start of power generation became equivalent to the comparative material 4 (resin-impregnated graphite material) serving as a benchmark. Moreover, each cell was decomposed | disassembled after the electric power generation test, and the surface of the separator was observed with the optical microscope. As a result, the SBR having TiN particles on the surfaces of the inventive materials 3 and 4 did not peel during the power generation test, and no corrosion on the surface of the stainless steel was confirmed.

Claims (5)

ステンレス鋼製の固体高分子形燃料電池用セパレータ素材であって、
前記ステンレス鋼の全結晶粒に対して、結晶粒径が3.0μm以下である結晶粒の占める割合は60%以上であることを特徴とする固体高分子形燃料電池用セパレータ部品。
A separator material for a polymer electrolyte fuel cell made of stainless steel,
A separator for a polymer electrolyte fuel cell, wherein a ratio of crystal grains having a crystal grain size of 3.0 μm or less to all the crystal grains of the stainless steel is 60% or more.
前記ステンレス鋼はオーステナイト系ステンレス鋼であって、
かつ前記オーステナイト系ステンレス鋼に含有される酸素量は質量%で30ppm以下であることを特徴とする請求項1に記載の固体高分子形燃料電池用セパレータ部品。
The stainless steel is an austenitic stainless steel,
2. The separator component for a polymer electrolyte fuel cell according to claim 1, wherein the amount of oxygen contained in the austenitic stainless steel is 30 ppm or less by mass%.
請求項1または請求項2のいずれかの請求項に記載の固体高分子形燃料電池用セパレータ部品の表面には、窒化チタン粒子を含有するスチレンブタジエンゴムが具備されていることを特徴とする固体高分子形燃料電池用セパレータ部品。 A solid polymer fuel cell separator component according to any one of claims 1 and 2, wherein the surface of the separator component for a polymer electrolyte fuel cell is provided with a styrene butadiene rubber containing titanium nitride particles. Separator parts for polymer fuel cells. 前記ステンレス鋼の表面を、常圧の雰囲気下で80℃以上220℃以下の温度範囲で加熱した状態で前記スチレンブタジエンゴムを付着させることを特徴とする固体高分子形燃料電池用セパレータ部品の製造方法。   Production of a separator component for a polymer electrolyte fuel cell, wherein the styrene butadiene rubber is adhered in a state where the surface of the stainless steel is heated in a temperature range of 80 ° C. or higher and 220 ° C. or lower in an atmosphere of normal pressure. Method. 前記ステンレス鋼の表面を80℃以上100℃以下の温度範囲で加熱した後、150℃以上220℃以下の温度範囲まで昇温することで前記ステンレス鋼の表面を段階的に加熱することを特徴とする請求項4に記載の固体高分子形燃料電池用セパレータ部品の製造方法。   The surface of the stainless steel is heated in a temperature range of 80 ° C. or more and 100 ° C. or less, and then heated to a temperature range of 150 ° C. or more and 220 ° C. or less to heat the surface of the stainless steel stepwise. The manufacturing method of the separator component for polymer electrolyte fuel cells of Claim 4.
JP2017095948A 2016-05-13 2017-05-12 Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells Active JP6856871B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016096624 2016-05-13
JP2016096624 2016-05-13

Publications (2)

Publication Number Publication Date
JP2017208336A true JP2017208336A (en) 2017-11-24
JP6856871B2 JP6856871B2 (en) 2021-04-14

Family

ID=60417356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095948A Active JP6856871B2 (en) 2016-05-13 2017-05-12 Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells

Country Status (1)

Country Link
JP (1) JP6856871B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192331A (en) * 2018-04-18 2019-10-31 株式会社不二越 Solid polymer electrolyte fuel cell separator and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7037054B2 (en) * 2017-07-03 2022-03-16 株式会社不二越 Separator for polymer electrolyte fuel cell
JP6959521B2 (en) * 2017-11-17 2021-11-02 株式会社不二越 Method for manufacturing solid polymer fuel cell separator and polymer electrolyte fuel cell separator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117813A (en) * 1991-04-18 1993-05-14 Nisshin Steel Co Ltd Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture
JPH08283915A (en) * 1995-04-12 1996-10-29 Nkk Corp Austenitic stainless steel excellent in workability
JP2004339569A (en) * 2003-05-15 2004-12-02 Nippon Steel Corp Stainless steel sheet for solid high polymer type fuel cell separator, its production method, and its forming method
JP2005190866A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Fuel cell metal separator
JP2009123376A (en) * 2007-11-12 2009-06-04 Taiyo Stainless Spring Kk Metal separator for polymer electrolyte fuel cell
JP2009167502A (en) * 2008-01-18 2009-07-30 Daido Steel Co Ltd Austenitic stainless steel for fuel cell separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117813A (en) * 1991-04-18 1993-05-14 Nisshin Steel Co Ltd Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture
JPH08283915A (en) * 1995-04-12 1996-10-29 Nkk Corp Austenitic stainless steel excellent in workability
JP2004339569A (en) * 2003-05-15 2004-12-02 Nippon Steel Corp Stainless steel sheet for solid high polymer type fuel cell separator, its production method, and its forming method
JP2005190866A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp Fuel cell metal separator
JP2009123376A (en) * 2007-11-12 2009-06-04 Taiyo Stainless Spring Kk Metal separator for polymer electrolyte fuel cell
JP2009167502A (en) * 2008-01-18 2009-07-30 Daido Steel Co Ltd Austenitic stainless steel for fuel cell separator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019192331A (en) * 2018-04-18 2019-10-31 株式会社不二越 Solid polymer electrolyte fuel cell separator and manufacturing method thereof
JP7045632B2 (en) 2018-04-18 2022-04-01 株式会社不二越 Separator for polymer electrolyte fuel cell and its manufacturing method

Also Published As

Publication number Publication date
JP6856871B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP5591302B2 (en) Stainless steel separator for fuel cell and manufacturing method thereof
JP4886885B2 (en) Titanium fuel cell separator
JP5476328B2 (en) Method for producing metal separator for fuel cell
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
JP5342462B2 (en) Manufacturing method of fuel cell separator
EA024612B1 (en) Process for producing a fuel cell stack
KR101107862B1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP6856871B2 (en) Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells
JP2012043776A (en) Method for manufacturing separator for fuel cell system
JP2010027262A (en) Fuel cell separator and fuel cell
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP2009289511A (en) Titanium base material for fuel cell separator, fuel cell separator, and method for manufacturing fuel cell separator
JP2007134107A (en) Separator for fuel cell, its manufacturing method and fuel cell
KR101356954B1 (en) Stainless steel for polymer electrolyte membrane fuel cell separator and the method of manufacturing the same
JP2008177152A (en) Alloy coated film for metal separator of fuel cell, method for producing same, sputtering target material, metal separator, and fuel cell
JP6959521B2 (en) Method for manufacturing solid polymer fuel cell separator and polymer electrolyte fuel cell separator
JP4854992B2 (en) Separator for polymer electrolyte fuel cell and method for producing the same
JP6686822B2 (en) Metal materials, separators, cells, and fuel cells
JP7037054B2 (en) Separator for polymer electrolyte fuel cell
JP6878239B2 (en) Manufacturing method of separator for fuel cell
JP6945424B2 (en) Method of forming a conductive carbon film
JP2007157639A (en) Metal separator for fuel cell and its manufacturing method
JP6753165B2 (en) Titanium material for separators of polymer electrolyte fuel cells, and separators using it
JP6206622B1 (en) Titanium material, separator and polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6856871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150