JP6856871B2 - Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells - Google Patents

Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells Download PDF

Info

Publication number
JP6856871B2
JP6856871B2 JP2017095948A JP2017095948A JP6856871B2 JP 6856871 B2 JP6856871 B2 JP 6856871B2 JP 2017095948 A JP2017095948 A JP 2017095948A JP 2017095948 A JP2017095948 A JP 2017095948A JP 6856871 B2 JP6856871 B2 JP 6856871B2
Authority
JP
Japan
Prior art keywords
stainless steel
electrolyte fuel
polymer electrolyte
fuel cell
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017095948A
Other languages
Japanese (ja)
Other versions
JP2017208336A (en
Inventor
昌信 熊谷
昌信 熊谷
一郎 吉野
一郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Publication of JP2017208336A publication Critical patent/JP2017208336A/en
Application granted granted Critical
Publication of JP6856871B2 publication Critical patent/JP6856871B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、主に車輌、船舶、航空機などの乗物に搭載され、または企業や一般家庭で使用されている燃料電池、特に固体高分子形燃料電池に用いるセパレータ素材、当該素材を用いた固体高分子形燃料電池用セパレータ部品および固体高分子形燃料電池用セパレータの部品の製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention relates to a separator material used mainly for vehicles such as vehicles, ships, and aircraft, or used in companies and general households, particularly a polymer electrolyte fuel cell, and a solid height using the material. The present invention relates to a method for manufacturing a separator component for a molecular fuel cell and a separator component for a polymer electrolyte fuel cell.

近年、自動車やバスの電源として搭載されている燃料電池や一般家庭向けの電源として提供されている燃料電池は、その多くが固体高分子形燃料電池(PEFCまたはPEMFC)である。固体高分子形燃料電池は、りん酸形燃料電池など他の燃料電池に比べて小形かつ軽量化が可能であり、起動時の操作が比較的に容易であることから各産業分野でその普及が進みつつある。そのため固体高分子形燃料電池を構成するセパレータとしては、良好な電気伝導性に加えて、酸における耐食性や加工時における成形性などの諸特性が求められている。 In recent years, most of the fuel cells mounted as a power source for automobiles and buses and the fuel cells provided as a power source for general households are polymer electrolyte fuel cells (PEFC or PEMFC). Polymer electrolyte fuel cells are smaller and lighter than other fuel cells such as phosphoric acid fuel cells, and are relatively easy to operate at startup, so they are widely used in various industrial fields. It's progressing. Therefore, the separator constituting the polymer electrolyte fuel cell is required to have various properties such as corrosion resistance in acid and moldability during processing, in addition to good electrical conductivity.

例えば、特許文献1ではステンレス鋼製の燃料電池用セパレータとして平均結晶粒径が1〜40μmの範囲のオーステナイト系ステンレス鋼板が開示されている。オーステナイト系ステンレス鋼板の平均結晶粒径を一定範囲に規定することで、適度な寸法精度と成形性が確保できることが説明されている。 For example, Patent Document 1 discloses an austenitic stainless steel sheet having an average crystal grain size in the range of 1 to 40 μm as a stainless steel fuel cell separator. It is explained that by defining the average crystal grain size of the austenitic stainless steel sheet within a certain range, appropriate dimensional accuracy and moldability can be ensured.

また、特許文献2にも特許文献1と同様に燃料電池用セパレータ素材としてオーステナイト系ステンレス鋼材の化学成分が開示されている。特に、鋼材中の酸素(O)濃度については酸化物の生成を抑制、中でも鋼材中の硫黄(S)と結合することを阻止する観点から比較的に低濃度であることで求められている。これにより、高温雰囲気中における燃料電池用セパレータ素材の耐酸化特性と電気伝導性を実現できることが説明されている。 Further, Patent Document 2 also discloses a chemical composition of an austenitic stainless steel material as a separator material for a fuel cell as in Patent Document 1. In particular, the oxygen (O) concentration in the steel material is required to be relatively low from the viewpoint of suppressing the formation of oxides, and in particular, preventing the bond with sulfur (S) in the steel material. It is explained that this makes it possible to realize the oxidation resistance and electrical conductivity of the fuel cell separator material in a high temperature atmosphere.

特開2004−339569号公報Japanese Unexamined Patent Publication No. 2004-339569 特開平11−293941号公報Japanese Unexamined Patent Publication No. 11-293941

しかし、特許文献1に開示されているPEFC(固体高分子形燃料電池)用ステンレス鋼製セパレータでは、模擬PEFC環境中(低pHやフッ化物イオンの雰囲気)におけるステンレス鋼の耐食性についてのみ開示されており、通常のステンレス鋼の腐食の起点となる鋼中の介在物(酸化物や硫化物)や鋼中の酸素濃度の影響や実際のPEFCの環境下でのステンレス鋼製セパレータの耐食性については何ら開示されていない。 However, in the stainless steel separator for PEFC (solid polymer fuel cell) disclosed in Patent Document 1, only the corrosion resistance of stainless steel in a simulated PEFC environment (low pH or atmosphere of fluoride ions) is disclosed. What about the influence of inclusions (oxides and sulfides) in steel, which is the starting point of corrosion of ordinary stainless steel, the oxygen concentration in steel, and the corrosion resistance of stainless steel separators in the actual PEFC environment? Not disclosed.

また、特許文献2に開示されているPEFC(固体高分子形燃料電池)用ステンレス鋼製のセパレータでは、腐食の起点となる鋼中の酸化物や硫化物の影響について、873K 以上の高温酸化雰囲気におけるステンレス鋼の耐食性に限定しており、PEFCの作動温度である353K付近でのステンレス鋼の耐食性やステンレス鋼を薄肉化した際の強度や加工性については何ら開示されていない。 Further, in the stainless steel separator for PEFC (solid polymer fuel cell) disclosed in Patent Document 2, the influence of oxides and sulfides in the steel, which is the starting point of corrosion, has a high temperature oxidation atmosphere of 873 K or more. It is limited to the corrosion resistance of the stainless steel in the above, and the corrosion resistance of the stainless steel near the operating temperature of PEFC of 353 K and the strength and workability when the stainless steel is thinned are not disclosed at all.

そこで、本発明においては燃料電池用途のセパレータとして求められる所望の電気伝導性および耐食性を兼ね備えた燃料電池用セパレータ部品を提供することを課題とする。 Therefore, an object of the present invention is to provide a fuel cell separator component having desired electrical conductivity and corrosion resistance required as a separator for a fuel cell application.

前述した課題を解決するために、本発明者はステンレス鋼製の固体高分子形燃料電池用セパレータ部品であって、このステンレス鋼の結晶粒径について3.0μm以下の結晶粒径が全体に対して占める割合を60%以上とする。また、ステンレス鋼がオーステナイト系ステンレス鋼である場合には、当該ステンレス鋼に含有される酸素量を質量%で30ppm以下とする固体高分子形燃料電池用セパレータ部品とする。 In order to solve the above-mentioned problems, the present inventor is a separator component for a polymer electrolyte fuel cell made of stainless steel, and the crystal grain size of the stainless steel is 3.0 μm or less with respect to the whole. The ratio shall be 60% or more. When the stainless steel is an austenitic stainless steel, it is used as a separator component for a polymer electrolyte fuel cell in which the amount of oxygen contained in the stainless steel is 30 ppm or less in mass%.

また、前述の固体高分子形燃料電池用セパレータ部品の表面に窒化チタン粒子(以下、「TiN」という)を含有するスチレンブタジエンゴム(以下、「SBR」という)を付着させる固体高分子形燃料電池用セパレータとすることもできる。 Further, a polymer electrolyte fuel cell in which styrene-butadiene rubber (hereinafter referred to as “SBR”) containing titanium nitride particles (hereinafter referred to as “TiN”) is adhered to the surface of the separator component for the polymer electrolyte fuel cell described above. It can also be used as a separator.

固体高分子形燃料電池用セパレータ部品の製造方法としては、ステンレス鋼の表面を常圧の雰囲気下で80℃以上220℃以下の温度範囲で加熱した状態でTiN粒子を含むSBRを密着させることができる。また、ステンレス鋼の表面を80℃以上100℃以下の温度範囲で加熱した後、150℃以上220℃以下の温度範囲まで昇温することで前記ステンレス鋼の表面を段階的に加熱しても構わない。 As a method for manufacturing a separator component for a polymer electrolyte fuel cell, SBR containing TiN particles may be brought into close contact with the surface of stainless steel heated in a temperature range of 80 ° C. or higher and 220 ° C. or lower in an atmosphere of normal pressure. it can. Further, the surface of the stainless steel may be heated stepwise by heating the surface of the stainless steel in a temperature range of 80 ° C. or higher and 100 ° C. or lower and then raising the temperature to a temperature range of 150 ° C. or higher and 220 ° C. or lower. Absent.

本発明に係る固体高分子形燃料電池用セパレータ部品とすることで、燃料電池用途のセパレータとして求められる所望の電気伝導性および耐食性の両立を図ることができる。また、本発明の固体高分子形燃料電池用セパレータ部品の製造方法は常圧雰囲気の中で、かつ200℃前後の加熱温度で素材(ステンレス鋼)にTiN粒子を含むSBRを付着するので、比較的に低コストでセパレータ部品を製造できるという効果を奏する。 By using the separator component for a polymer electrolyte fuel cell according to the present invention, it is possible to achieve both the desired electrical conductivity and corrosion resistance required as a separator for a fuel cell application. Further, in the method for manufacturing a separator component for a polymer electrolyte fuel cell of the present invention, SBR containing TiN particles adheres to a material (stainless steel) in a normal pressure atmosphere and at a heating temperature of about 200 ° C., so that comparison is made. It has the effect of being able to manufacture separator parts at low cost.

実施例1における本発明材1、2および比較材1〜3をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果である。It is a power generation test result up to 500 hours in each cell which separately incorporated the materials 1 and 2 of the present invention and the materials 1 to 3 of the comparative materials in Example 1. ステンレス鋼の表面にTiN粒子を含むSBRを付着させた状態を示すSEM写真である。It is an SEM photograph which shows the state which SBR containing TiN particles is attached to the surface of stainless steel. 実施例2における本発明材1〜4および比較材としての樹脂含浸黒鉛材(比較材4)をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果である。It is a power generation test result up to 500 hours in each cell which separately incorporated the materials 1 to 4 of the present invention and the resin impregnated graphite material (comparative material 4) as a comparative material in Example 2.

本発明の実施の形態の一例について説明する。本発明の固体高分子形燃料電池用セパレータ部品は、ステンレス鋼製とし、鋼種としては例えばオーステナイト系ステンレス鋼やフェライト系ステンレス鋼などが適用できる。 An example of an embodiment of the present invention will be described. The separator component for the polymer electrolyte fuel cell of the present invention is made of stainless steel, and as the steel type, for example, austenitic stainless steel or ferritic stainless steel can be applied.

また、ステンレス鋼の結晶粒径については、3.0μm以下の結晶粒径が全体に対して占める割合を60%以上とする。ステンレス鋼の結晶粒径の割合を規定した理由は、3.0μm以下の結晶粒径が全体に対して占める割合が60%未満になると、素材たるステンレス鋼をセパレータに加工する特性は向上する(加工しやすくなる)が、セパレータ部品の素材としての材料強度が低下する、もしくは加工工程においてスプリングバックを考慮した金型設計が必要になるためである。 Regarding the crystal grain size of stainless steel, the ratio of the crystal grain size of 3.0 μm or less to the whole is set to 60% or more. The reason for specifying the ratio of the crystal grain size of stainless steel is that when the ratio of the crystal grain size of 3.0 μm or less to the whole is less than 60%, the characteristics of processing the raw material stainless steel into a separator are improved ( This is because it becomes easier to process), but the strength of the material as a material for the separator parts decreases, or it is necessary to design the mold in consideration of springback in the processing process.

さらに、ステンレス鋼の鋼種がオーステナイト系ステンレス鋼の場合には、当該ステンレス鋼に含有される酸素(O)量は質量%で30ppm以下とする。オーステナイト系ステンレス鋼に含有される酸素量の上限を30ppmに規定した理由は、オーステナイト系ステンレス鋼の酸素量が30ppmを超えるとオーステナイト系ステンレス鋼中の酸化物系介在物が増加することでセパレータ部品としての耐食性が低下し、ひいてはセパレータとしての発電効率の低下につながるためである。 Further, when the steel grade of the stainless steel is austenitic stainless steel, the amount of oxygen (O) contained in the stainless steel is 30 ppm or less in mass%. The reason why the upper limit of the amount of oxygen contained in austenitic stainless steel is set to 30 ppm is that when the amount of oxygen in the austenitic stainless steel exceeds 30 ppm, oxide-based inclusions in the austenitic stainless steel increase, so that the separator component This is because the corrosion resistance of the stainless steel is lowered, which in turn leads to a decrease in the power generation efficiency of the separator.

セパレータ部品の素材(原材料)であるステンレス鋼の表面を改質する方法としては、金メッキ等の貴金属メッキ法やCVD法やPVD法によるカーボンや窒化物の被覆、熱窒化法によるクロム窒化物を析出させる方法がある。しかし、表面を改質する際に用いる装置や工程が複雑であることから、本発明では簡便な泳動電着法によりステンレス鋼の表面にTiN粒子を具備(含有)したSBRを付着させることとした。 As a method of modifying the surface of stainless steel, which is the material (raw material) of the separator parts, carbon or nitride coating by a noble metal plating method such as gold plating, a CVD method or a PVD method, and chromium nitride by a thermal nitriding method are precipitated. There is a way to make it. However, since the apparatus and process used for modifying the surface are complicated, in the present invention, SBR containing (containing) TiN particles is attached to the surface of stainless steel by a simple electrophoretic electrodeposition method. ..

これにより、電極基板となるガス拡散層(以下、「GDL」という)との接触抵抗の低減を図ることができる。ここで泳動電着法とは、導電性粒子を分散させた分散浴中に2枚の電極を浸漬した状態で、これら2枚の電極間に電圧を印加することにより一方の電極上に導電性粒子を吸着、堆積させる方法をいうものとする。 As a result, it is possible to reduce the contact resistance with the gas diffusion layer (hereinafter referred to as "GDL") serving as the electrode substrate. Here, the electrophoretic electrodeposition method is a state in which two electrodes are immersed in a dispersion bath in which conductive particles are dispersed, and a voltage is applied between these two electrodes to make them conductive on one of the electrodes. It refers to a method of adsorbing and depositing particles.

上述の泳動電着法に使用する分散浴には、例えば分散媒として2−プロパノール、導電性粒子としては平均粒径が50nmのTiN粒子、ゴム系のバインダーとしてはSBRをそれぞれ選定することができる。当該分散媒中にはTiN粒子を0.050wt%、SBRを0.074wt%の割合で加えた後、超音波振動によりTiN粒子およびSBRを分散媒中に充分に分散させたものを分散浴とすることができる。 For the dispersion bath used in the above-mentioned electrophoresis electrodeposition method, for example, 2-propanol can be selected as the dispersion medium, TiN particles having an average particle size of 50 nm as the conductive particles, and SBR as the rubber-based binder. .. After adding TiN particles at a ratio of 0.050 wt% and SBR at a ratio of 0.074 wt% to the dispersion medium, the dispersion bath is a mixture of TiN particles and SBR sufficiently dispersed in the dispersion medium by ultrasonic vibration. can do.

本発明材(2水準)および比較材(3水準)をそれぞれ別個のセルに組み込んでセパレータとしての発電試験を行ったので、その試験結果について図面を用いて説明する。本試験に用いた供試材は、まず本発明材としてステンレス鋼に含有される酸素量が重量%で30ppm以下のSUS316L鋼に対して結晶粒を微細化させたものを用いた(本発明材1〜2の酸素量はすべて22ppm)。本発明材1は表2に示すように結晶粒を微細化させた結果、平均結晶粒径が1.5μm、全結晶粒に対して結晶粒径が3.0μm以下である結晶粒の占める割合が96%である供試材である。本発明材2は平均結晶粒径が2.9μm、全結晶粒に対して結晶粒径が3.0μm以下である結晶粒の占める割合が63%である供試材である。 Since the material of the present invention (2nd level) and the comparative material (3rd level) were incorporated into separate cells to perform a power generation test as a separator, the test results will be described with reference to the drawings. As the test material used in this test, first, as the material of the present invention, a material in which crystal grains were finely divided with respect to SUS316L steel in which the amount of oxygen contained in the stainless steel was 30 ppm or less in weight% was used (the material of the present invention). The amount of oxygen in 1-2 is 22 ppm). As a result of refining the crystal grains of the material 1 of the present invention as shown in Table 2, the ratio of the crystal grains having an average crystal grain size of 1.5 μm and a crystal grain size of 3.0 μm or less to the total crystal grains is occupied. Is 96% of the test material. The material 2 of the present invention is a test material having an average crystal grain size of 2.9 μm and a ratio of crystal grains having a crystal grain size of 3.0 μm or less to 63% of all crystal grains.

これに対して、結晶粒微細化させていない供試材(以下、「比較材1」という)、ステンレス鋼に含有される酸素量が重量%で30ppm以上のSUS316L鋼に対して結晶粒を微細化させていない供試材(以下、「比較材2」という)および結晶粒を微細化させた供試材(以下、「比較材3」という)を比較材1〜3とした。本試験に用いた供試材の化学組成(単位:重量%)を表1に、供試材の平均結晶粒径などを表2に、供試材の仕様および試験条件を表3にそれぞれ示す。 On the other hand, the crystal grains are finer than that of the SUS316L steel in which the amount of oxygen contained in the test material (hereinafter referred to as "comparative material 1") and the stainless steel, which are not refined, is 30 ppm or more in weight%. The test materials that were not converted (hereinafter referred to as "comparative material 2") and the test materials in which the crystal grains were refined (hereinafter referred to as "comparative material 3") were designated as comparative materials 1 to 3. Table 1 shows the chemical composition (unit: weight%) of the test material used in this test, Table 2 shows the average crystal grain size of the test material, and Table 3 shows the specifications and test conditions of the test material. ..

Figure 0006856871
Figure 0006856871

Figure 0006856871
Figure 0006856871

Figure 0006856871
Figure 0006856871

なお、供試材の厚さ(板厚)は本発明材1、2および比較材3が0.07mm、比較材1および2は0.10mmとした。 The thickness (plate thickness) of the test material was 0.07 mm for the materials 1 and 2 of the present invention and the comparative material 3, and 0.10 mm for the materials 1 and 2.

本発明材1、2および比較材1〜3のいずれについてのセパレータ部品の溝深さは、流路形成材と流路底板の溝深さが0.5mmとなるように流路底板の溝深さを設定し、当該流路底板に機械加工によりサーペンタイン流路を成型した。また、本発電試験において流路形成材と流路底板が接する面には流路形成材側に接触抵抗を低減する金メッキ処理を施した。 The groove depth of the separator component for any of the materials 1 and 2 of the present invention and the comparative materials 1 to 3 is the groove depth of the flow path bottom plate so that the groove depth of the flow path forming material and the flow path bottom plate is 0.5 mm. A serpentine flow path was formed on the bottom plate of the flow path by machining. Further, in this power generation test, the surface where the flow path forming material and the flow path bottom plate are in contact with each other is gold-plated on the flow path forming material side to reduce the contact resistance.

本発明材1、2および比較材1〜3をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果を図1に示す。本試験中における発電試験中のセル電圧の経時変化を図1に示すグラフより直線近似して、本発明材1、2および比較材1〜3の発電開始時のセル電圧と平均セル電圧低下速度を求めた。その結果、発電開始時のセル電圧は本発明材1では約0.64V、本発明材2では約0.67V、比較材1、2では約0.62V、比較材3では約0.65Vであった。また、平均セル電圧低下速度を比較すると、本発明材1は0.23×10−4Vh−1、本発明材2は0.25×10−4Vh−1、比較材1は0.19×10−4Vh−1、比較材2は0.29×10−4Vh−1、比較材3は0.46×10−4Vh−1であった。 FIG. 1 shows the results of a power generation test up to 500 hours in each cell in which the materials 1 and 2 of the present invention and the materials 1 and 3 of the comparative materials were separately incorporated. The change over time of the cell voltage during the power generation test during this test is linearly approximated from the graph shown in FIG. 1, and the cell voltage and average cell voltage decrease rate at the start of power generation of the materials 1 and 2 of the present invention and the comparative materials 1 to 3 Asked. As a result, the cell voltage at the start of power generation is about 0.64 V for the material 1 of the present invention, about 0.67 V for the material 2 of the present invention, about 0.62 V for the materials 1 and 2, and about 0.65 V for the material 3. there were. Comparing the average cell voltage reduction rates, the material 1 of the present invention was 0.23 × 10 -4 Vh -1 , the material 2 of the present invention was 0.25 × 10 -4 Vh -1 , and the material 1 was 0.19. × 10 -4 Vh -1 , the comparative material 2 was 0.29 × 10 -4 Vh -1 , and the comparative material 3 was 0.46 × 10 -4 Vh -1 .

比較材1と2の電圧低下速度を比較すると、酸素低減化処理を施した比較材1は酸素低減処理をしていない比較材2よりも優れていた。セパレータの薄肉化によるスタックのコンパクト化を目的とし、比較材1および比較材2に対して酸素低減処理および結晶粒微細加工を施した本発明材1および2は、酸素低減化処理をしていない比較材3に対して電圧低下速度が優れていた。 Comparing the voltage reduction rates of Comparative Materials 1 and 2, Comparative Material 1 subjected to the oxygen reduction treatment was superior to Comparative Material 2 not subjected to the oxygen reduction treatment. The materials 1 and 2 of the present invention, which have been subjected to oxygen reduction treatment and crystal grain microfabrication on the comparative material 1 and the comparative material 2 for the purpose of making the stack compact by thinning the separator, have not been subjected to the oxygen reduction treatment. The voltage reduction rate was superior to that of the comparative material 3.

また、発電試験後にそれぞれのセルを分解して、本発明材1、2および比較材1〜3の各セパレータの表面を光学顕微鏡で観察した。その結果、本発明材1、2はアノード側およびカソード側の両極においてセパレータ部品の表面には腐食痕は観察されなかった。また、比較材1〜3のアノード側のセパレータ部品の表面も同様に腐食痕は観察されなかった。これに対して、比較材2、3のカソード側のセパレータ部品の表面全体は均一に腐食していた。 Further, after the power generation test, each cell was disassembled, and the surfaces of the separators of the materials 1 and 2 of the present invention and the materials 1 to 3 were observed with an optical microscope. As a result, no corrosion marks were observed on the surface of the separator component of the materials 1 and 2 of the present invention on both the anode side and the cathode side. Similarly, no corrosion marks were observed on the surfaces of the separator components on the anode side of Comparative Materials 1 to 3. On the other hand, the entire surface of the separator component on the cathode side of the comparative materials 2 and 3 was uniformly corroded.

これは、素材であるステンレス鋼中の酸化物系介在物の影響が原因の一つとして考えられる。すなわち、本発明材1、2および比較材1は酸素低減化処理したことにより腐食の起点となるステンレス鋼中の酸化物系介在物が比較材2の約50%まで低減した。このことにより、発電試験中にステンレス鋼中の不純物の溶出が抑制され、本発明材1、2および比較材1と比較材2、3の耐食性に差異がでたものと思われる。 This is considered to be one of the causes due to the influence of oxide-based inclusions in the stainless steel material. That is, the oxygen-reducing treatment of the materials 1 and 2 of the present invention and the comparative material 1 reduced the oxide-based inclusions in the stainless steel, which is the starting point of corrosion, to about 50% of that of the comparative material 2. As a result, it is considered that the elution of impurities in the stainless steel was suppressed during the power generation test, and the corrosion resistance of the materials 1 and 2 of the present invention and the comparative materials 1 and the comparative materials 2 and 3 were different.

以上より、本発明材(板厚=0.07mm)は比較材(板厚=0.10mm)よりも板厚を薄くしても耐食性を保った状態で同等の発電効率を得ることができるので、所定の容量のセルスタック内にはより多い枚数のセパレータを収容することができる。その結果、燃料電池として高電圧を出力することが可能になる。もしくは同じ電圧を出力するための燃料電池スタックの容量を小型化することができる。 From the above, the material of the present invention (plate thickness = 0.07 mm) can obtain the same power generation efficiency while maintaining the corrosion resistance even if the plate thickness is thinner than that of the comparative material (plate thickness = 0.10 mm). , A larger number of separators can be accommodated in a cell stack of a predetermined capacity. As a result, it becomes possible to output a high voltage as a fuel cell. Alternatively, the capacity of the fuel cell stack for outputting the same voltage can be reduced.

次に、本発明材1および2の表面に電着処理を行った供試材(以下、「本発明材3、4」という)をそれぞれ別個のセルに組み込んで発電試験を行った。同時に、比較材として樹脂含浸黒鉛材(比較材4)をセパレータとして組込だセルの発電試験も行ったので、それらの試験結果について図面を用いて説明する。 Next, the test materials (hereinafter referred to as “materials 3 and 4”) obtained by subjecting the surfaces of the materials 1 and 2 of the present invention to electrodeposition treatment were incorporated into separate cells to perform a power generation test. At the same time, a power generation test of a cell in which a resin-impregnated graphite material (comparative material 4) was incorporated as a separator was also performed, and the test results will be described with reference to the drawings.

本発明材3、4は表面処理として泳動電着法によりステンレス鋼の表面にTiN粒子を含有するSBRを付着させることによりGDLとの接触抵抗の改善を行ったものである。具体的には、本発明材1および2に対してTiN粒子を含むSBR分散浴(分散媒:2−プロパノール、導電性粒子:TiN(平均粒径は50nm)0.050wt%、ゴム系バインダー:SBRバインダー0.074wt%)中に浸漬させた状態で、対極にSUS304鋼を使用して所定の電圧を印加した。 The materials 3 and 4 of the present invention have improved contact resistance with GDL by adhering SBR containing TiN particles to the surface of stainless steel by an electrophoretic electrodeposition method as a surface treatment. Specifically, an SBR dispersion bath containing TiN particles with respect to the materials 1 and 2 of the present invention (dispersion medium: 2-propanol, conductive particles: TiN (average particle size is 50 nm) 0.050 wt%, rubber binder: A predetermined voltage was applied to the counter electrode using SUS304 steel while being immersed in the SBR binder (0.074 wt%).

次に、本発明材1および2を大気中にて353K(80℃)の温度で加熱した後、453K(180℃)まで昇温して再度加熱することで乾燥させて、本発明材3、4を作製した。ステンレス鋼の表面にTiN粒子を含むSBRを付着させた状態の一例(SEM写真)を図2に示す。 Next, the materials 1 and 2 of the present invention are heated in the air at a temperature of 353 K (80 ° C.), then heated to 453 K (180 ° C.) and heated again to be dried. 4 was prepared. FIG. 2 shows an example (SEM photograph) of a state in which SBR containing TiN particles is attached to the surface of stainless steel.

本実施例の試験条件は、実施例1と同様に表2に示す条件で行った。本発明材1〜4、比較材4をそれぞれ別個に組み込んだ各セルにおける500時間までの発電試験結果を図3に示す。 The test conditions of this example were the same as those of Example 1 under the conditions shown in Table 2. FIG. 3 shows the results of power generation tests up to 500 hours in each cell in which the materials 1 to 4 of the present invention and the comparative material 4 were separately incorporated.

本発電試験中のセル電圧の経時変化を図3に示すグラフより直線近似し、本発明材1〜4および比較材4をセパレータとして組込だセルの発電開始時のセル電圧を比較した結果、本発明材1では約0.64V、本発明材2では約0.67V、本発明材3では約0.66V、本発明材4では約0.66V、比較材4では0.66Vであった。 As a result of linearly approximating the change with time of the cell voltage during the present power generation test from the graph shown in FIG. 3 and comparing the cell voltage at the start of power generation of the cell incorporating the materials 1 to 4 of the present invention and the comparison material 4 as separators. The material 1 of the present invention was about 0.64 V, the material 2 of the present invention was about 0.67 V, the material 3 of the present invention was about 0.66 V, the material 4 of the present invention was about 0.66 V, and the comparative material 4 was 0.66 V. ..

本発明材1および2に表面処理を行なうことで発電開始時のセル電圧がベンチマークとなる比較材4(樹脂含浸黒鉛材)と同等となった。また、発電試験後に各セルを分解して、セパレータの表面を光学顕微鏡で観察した。その結果、本発明材3、4の表面のTiN粒子を具備するSBRは発電試験中に剥離することなく、ステンレス鋼の表面における腐食も確認されなかった。 By surface-treating the materials 1 and 2 of the present invention, the cell voltage at the start of power generation became equivalent to that of the comparative material 4 (resin-impregnated graphite material) as a benchmark. After the power generation test, each cell was disassembled and the surface of the separator was observed with an optical microscope. As a result, the SBR having TiN particles on the surfaces of the materials 3 and 4 of the present invention did not peel off during the power generation test, and no corrosion on the surface of the stainless steel was confirmed.

Claims (3)

含有される酸素量が質量%で30ppm以下であり、かつ結晶粒径が3.0μm以下である結晶粒の占める割合が全結晶粒に対して60%以上であるオーステナイト系ステンレス鋼製の固体高分子形燃料電池用セパレータ素材の表面に窒化チタン粒子を含有するスチレンブタジエンゴムが具備されていることを特徴とする固体高分子形燃料電池用セパレータ部品。 Solid height of austenitic stainless steel in which the amount of oxygen contained is 30 ppm or less in mass% and the ratio of crystal grains having a crystal grain size of 3.0 μm or less is 60% or more with respect to all crystal grains. Separator component for polymer electrolyte fuel cell, characterized in that styrene butadiene rubber containing titanium nitride particles is provided on the surface of the separator material for molecular electrolyte fuel cell. 請求項1に記載の固体高分子形燃料電池用セパレータ部品の製造方法であって、前記オーステナイト系ステンレス鋼の表面を常圧の雰囲気下で80℃以上220℃以下の温度範囲で加熱した状態で、前記スチレンブタジエンゴムを前記オーステナイト系ステンレス鋼の表面に付着させることを特徴とする固体高分子形燃料電池用セパレータ部品の製造方法。The method for manufacturing a separator component for a polymer electrolyte fuel cell according to claim 1, wherein the surface of the austenitic stainless steel is heated in a temperature range of 80 ° C. or higher and 220 ° C. or lower in an atmosphere of normal pressure. , A method for manufacturing a separator component for a polymer electrolyte fuel cell, which comprises adhering the styrene butadiene rubber to the surface of the austenitic stainless steel. 前記オーステナイト系ステンレス鋼の表面を80℃以上100℃以下の温度範囲で加熱した後、150℃以上220℃以下の温度範囲まで昇温することで前記オーステナイト系ステンレス鋼の表面を段階的に加熱することを特徴とする請求項2に記載の固体高分子形燃料電池用セパレータ部品の製造方法。The surface of the austenitic stainless steel is heated in a temperature range of 80 ° C. or higher and 100 ° C. or lower, and then the surface of the austenitic stainless steel is heated stepwise by raising the temperature to a temperature range of 150 ° C. or higher and 220 ° C. or lower. The method for manufacturing a separator component for a polymer electrolyte fuel cell according to claim 2, wherein the separator component is for a solid polymer fuel cell.
JP2017095948A 2016-05-13 2017-05-12 Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells Active JP6856871B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016096624 2016-05-13
JP2016096624 2016-05-13

Publications (2)

Publication Number Publication Date
JP2017208336A JP2017208336A (en) 2017-11-24
JP6856871B2 true JP6856871B2 (en) 2021-04-14

Family

ID=60417356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095948A Active JP6856871B2 (en) 2016-05-13 2017-05-12 Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells

Country Status (1)

Country Link
JP (1) JP6856871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016591A (en) * 2017-07-03 2019-01-31 株式会社不二越 Separator for solid polymer fuel cell
JP2019091665A (en) * 2017-11-17 2019-06-13 株式会社不二越 Separator for solid polymer type fuel cell and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045632B2 (en) * 2018-04-18 2022-04-01 株式会社不二越 Separator for polymer electrolyte fuel cell and its manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117813A (en) * 1991-04-18 1993-05-14 Nisshin Steel Co Ltd Stainless steel for metal gasket having excellent formability and fatigue characteristic and this manufacture
JPH08283915A (en) * 1995-04-12 1996-10-29 Nkk Corp Austenitic stainless steel excellent in workability
JP4331975B2 (en) * 2003-05-15 2009-09-16 新日本製鐵株式会社 Manufacturing method and forming method of stainless steel plate for polymer electrolyte fuel cell separator
JP4483289B2 (en) * 2003-12-26 2010-06-16 トヨタ自動車株式会社 Fuel cell stack
JP2009123376A (en) * 2007-11-12 2009-06-04 Taiyo Stainless Spring Kk Metal separator for polymer electrolyte fuel cell
JP2009167502A (en) * 2008-01-18 2009-07-30 Daido Steel Co Ltd Austenitic stainless steel for fuel cell separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016591A (en) * 2017-07-03 2019-01-31 株式会社不二越 Separator for solid polymer fuel cell
JP7037054B2 (en) 2017-07-03 2022-03-16 株式会社不二越 Separator for polymer electrolyte fuel cell
JP2019091665A (en) * 2017-11-17 2019-06-13 株式会社不二越 Separator for solid polymer type fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017208336A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP5591302B2 (en) Stainless steel separator for fuel cell and manufacturing method thereof
JP4886885B2 (en) Titanium fuel cell separator
JP6726735B2 (en) Stainless steel for fuel cell separator and method of manufacturing the same
JP6856871B2 (en) Manufacturing method of separator parts for polymer electrolyte fuel cells and separator parts for polymer electrolyte fuel cells
EP2302721B1 (en) Stainless steel material for separator of solid polymer fuel cell and solid polymer fuel cell using the same
KR101387767B1 (en) Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
JP5342462B2 (en) Manufacturing method of fuel cell separator
JP5507496B2 (en) Manufacturing method of fuel cell separator
WO2012011200A1 (en) Titanium fuel cell separator
JP6633772B2 (en) Stainless steel with improved hydrophilicity and corrosion resistance for separator of polymer fuel cell and method for producing the same
KR101107862B1 (en) Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP2007234244A (en) Separator for polymer electrolyte fuel cell and its manufacturing method
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2011198764A (en) Metal separator plate for fuel cell and method of manufacturing same
JP2012043775A (en) Method for manufacturing titanic separator for fuel cell
JP2008176988A (en) Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
JP6959521B2 (en) Method for manufacturing solid polymer fuel cell separator and polymer electrolyte fuel cell separator
JP7037054B2 (en) Separator for polymer electrolyte fuel cell
CN108028395A (en) The battery unit and polymer electrolyte fuel cell of use in solid polymer fuel cell carbon separator, polymer electrolyte fuel cell
JP2008177152A (en) Alloy coated film for metal separator of fuel cell, method for producing same, sputtering target material, metal separator, and fuel cell
Scherer et al. Influence of metallic bipolar plates on the durability of polymer electrolyte fuel cells
JP2007157639A (en) Metal separator for fuel cell and its manufacturing method
JP6753165B2 (en) Titanium material for separators of polymer electrolyte fuel cells, and separators using it
JP2020111806A (en) Stainless steel sheet and method for producing the same, separator for fuel battery, fuel battery cell, and fuel battery stack
JP2019071196A (en) Manufacturing method of separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6856871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150