JPH08283915A - Austenitic stainless steel excellent in workability - Google Patents

Austenitic stainless steel excellent in workability

Info

Publication number
JPH08283915A
JPH08283915A JP8705095A JP8705095A JPH08283915A JP H08283915 A JPH08283915 A JP H08283915A JP 8705095 A JP8705095 A JP 8705095A JP 8705095 A JP8705095 A JP 8705095A JP H08283915 A JPH08283915 A JP H08283915A
Authority
JP
Japan
Prior art keywords
workability
stainless steel
austenitic stainless
less
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8705095A
Other languages
Japanese (ja)
Inventor
Toru Inazumi
透 稲積
Naoyuki Asanuma
直行 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8705095A priority Critical patent/JPH08283915A/en
Publication of JPH08283915A publication Critical patent/JPH08283915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To stably provide an austenitic stainless steel excellent in workability by simultaneously controlling chemical composition and grain diameter. CONSTITUTION: The austenitic stainless steel excellent in workability can be obtained by providing a composition which contains, by weight, 0.002-0.03% C, <=0.7% Si, 0.5-5.0% Mn, 15.0-20.0% Cr, 7.0-15.0% Ni, 1.0-3.0% Cu, and 0.002-0.07% N and further contains, if necessary, prescribed amounts of Mo, Ti, Zr, Nb, V, Al, and REM and satisfying, with respect to the final crystalline grain diameter (d) (μm), the following relations: 11.18-0.149F<=log(d)<=0.0286F +0.571 and log(d)<=0, where F=40×(C+N)+Si+mn+3×Ni+5×Cu+1.5×(Cr+1.5×Mo)<=90 is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鍛造やロール成形等の
冷間加工性に優れたオーステナイトステンレス鋼に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic stainless steel excellent in cold workability such as forging and roll forming.

【0002】[0002]

【従来技術】オーステナイトステンレス鋼は種々の食器
や構造部材に使用されており、その多くは冷間鍛造やロ
ール成形により加工されている。しかしながら、オース
テナイトステンレス鋼は加工硬化を生じやすく、加工工
程に中間焼鈍を入れて軟質化する必要があるため、製造
コストの増加を招いていた。
2. Description of the Related Art Austenitic stainless steel is used for various tableware and structural members, and most of them are processed by cold forging or roll forming. However, austenitic stainless steel easily causes work hardening, and it is necessary to insert intermediate annealing in the working process to soften the work, resulting in an increase in manufacturing cost.

【0003】この問題に対する対策として、例えば特許
第1828927号には、Niを10wt%以上まで増
量するとともにCuを0.5wt%以上添加し、さらに
CおよびN含有量を制限する技術が示されている。ま
た、特開平4−72038号公報および特開平5−28
7459号公報にも同様に、Cuを添加してCおよびN
含有量を制限する技術が示されている。
As a countermeasure against this problem, for example, Japanese Patent No. 1828927 discloses a technique of increasing the amount of Ni to 10 wt% or more and adding Cu of 0.5 wt% or more, and further limiting the C and N contents. There is. In addition, JP-A-4-72038 and JP-A-5-28
Similarly, in 7459, Cu and C are added by adding Cu.
Techniques for limiting the content have been shown.

【0004】冷間加工によってオーステナイトステンレ
ス鋼が加工硬化を生じる原因は、加工誘起マルテンサイ
トの生成およびオーステナイト母相自体の硬化にあり、
上記従来技術では、(1)Niの増量に伴い母相である
オーステナイトの安定度が向上し、加工誘起マルテンサ
イト変態が抑制されること、(2)CおよびN含有量の
減少に伴い加工誘起マルテンサイトの強度が低下するこ
と、および(3)Cuの添加に伴い転位の集積が抑制さ
れ、オーステナイト母相の硬化が抑制されること、を利
用している。すなわち、従来技術はいずれも化学組成の
制御による対策である。
The cause of work hardening of austenitic stainless steel by cold working is the formation of work-induced martensite and hardening of the austenitic matrix itself.
In the above prior art, (1) the stability of austenite, which is the parent phase, is improved with an increase in Ni content, and the work-induced martensitic transformation is suppressed; (2) work-induced with a decrease in the C and N contents. The strength of martensite is reduced, and (3) the addition of Cu suppresses the accumulation of dislocations and suppresses the hardening of the austenite matrix. That is, the conventional techniques are all countermeasures by controlling the chemical composition.

【0005】[0005]

【発明が解決しようとする課題】ところで、オーステナ
イトステンレス鋼の結晶粒径は、化学組成、熱間加工条
件および熱処理条件によって微妙に変化する。粒径は機
械的特性や耐食性に影響を及ぼすので、安定して目的と
する特性を得るためには、適性範囲に粒径を制御する必
要がある。そして、オーステナイトステンレス鋼の加工
性に関する粒径の役割としては、結晶を細粒化すること
により加工誘起マルテンサイト変態が起こりにくくなる
ことが知られており(例えば、野原清彦 他:鉄と鋼,
Vol.63(1977),p.772 )、結晶を細粒側に調整す
れば、安定してより優れた加工性が得られるように考え
られる。
The crystal grain size of austenitic stainless steel slightly changes depending on the chemical composition, hot working conditions and heat treatment conditions. Since the particle size affects mechanical properties and corrosion resistance, it is necessary to control the particle size within an appropriate range in order to stably obtain desired properties. And, as the role of grain size on the workability of austenitic stainless steel, it is known that grain-refining grains make it difficult for the process-induced martensitic transformation to occur (for example, Kiyohiko Nohara et al .: Iron and steel,
Vol. 63 (1977), p. 772), if the crystals are adjusted to the fine grain side, it is considered that stable and superior workability can be obtained.

【0006】しかしながら、実際には、細粒化によって
オーステナイト母相の強度は上昇するので、細粒化の程
度によっては加工性がかえって劣化する場合もある。す
なわち、結晶粒径については、加工誘起マルテンサイト
変態に対する影響と、オーステナイト母相の強度に対す
る影響とのバランスを考え、最適範囲に制御しなければ
ならない。
However, since the strength of the austenite matrix increases in practice due to grain refinement, the workability may rather deteriorate depending on the degree of grain refinement. That is, the crystal grain size must be controlled within an optimum range in consideration of the balance between the influence on the work-induced martensitic transformation and the influence on the strength of the austenite matrix.

【0007】ここで、一定の化学組成に対して粒径の最
適範囲を求めることはそれほど困難ではないが、オース
テナイトステンレス鋼の実際の製造においては、Ni,
Cu,CおよびN等の含有量の変動があり、それに伴っ
て加工誘起マルテンサイト変態量およびオーステナイ母
相強度がともに変化して両者のバランスが変化するの
で、安定して目的とする加工性を得るためには、化学組
成と粒径とを同時に制御する必要がある。また、合金設
計においても、化学組成と粒径の同時制御を考える必要
がある。
Here, it is not so difficult to find the optimum range of the grain size for a certain chemical composition, but in the actual production of austenitic stainless steel, Ni,
There is a change in the contents of Cu, C, N, etc., and the work-induced martensitic transformation amount and the austenite matrix strength change together with this, and the balance between the two changes, so that the desired workability is stably obtained. In order to obtain it, it is necessary to control the chemical composition and the particle size at the same time. Also, in alloy design, it is necessary to consider simultaneous control of chemical composition and grain size.

【0008】しかしながら、上述した特許第18289
27号、特開平4−72038号公報および特開平5−
287459号公報に開示された技術に代表される従来
技術では、化学組成を規定しているに過ぎず、良好な加
工性を必ずしも安定して得ることはできない。そして、
化学組成と粒径とを同時に制御して加工性を改善する技
術は未だ提案されていない。
However, the above-mentioned Japanese Patent No. 18289.
27, JP-A-4-72038, and JP-A-5-
In the conventional technology represented by the technology disclosed in Japanese Patent No. 287459, only the chemical composition is defined, and good workability cannot always be obtained stably. And
A technique for simultaneously controlling the chemical composition and the particle size to improve the workability has not been proposed yet.

【0009】本発明はかかる事情に鑑みてなされたもの
であって、化学組成と粒径とを同時に制御して、安定し
て加工性に優れたオーステナイトステンレス鋼を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an austenitic stainless steel having stable and excellent workability by simultaneously controlling the chemical composition and the grain size.

【0010】[0010]

【課題を解決するための手段】本発明者らは、化学組成
を限定して加工硬化を抑制するとともに結晶粒径を制御
して、加工硬化とオーステナイト母相強度とのバランス
を最適化することにより、鍛造やロール成形等の冷間加
工性に優れたオーステナイトステンレス鋼が得られるこ
とを見出した。
The inventors of the present invention have optimized the balance between work hardening and austenite matrix strength by restricting work hardening by limiting the chemical composition and controlling the crystal grain size. According to the above, it was found that an austenitic stainless steel excellent in cold workability such as forging and roll forming can be obtained.

【0011】本発明はこのような知見に基づいてなされ
たものであり、第1に重量%で、C:0.002〜0.
03%、Si:0.7%以下、Mn:0.5〜5.0
%、Cr:15.0〜20.0%、Ni:7.0〜1
5.0%、Cu:1.0〜3.0%、N:0.002〜
0.07%を含有し、最終の結晶粒径d(μm)につい
て以下の関係が成り立つことを特徴とする、加工性に優
れたオーステナイトステンレス鋼を提供するものであ
る。
The present invention has been made on the basis of such findings. Firstly, in% by weight, C: 0.002 to 0.
03%, Si: 0.7% or less, Mn: 0.5 to 5.0
%, Cr: 15.0 to 20.0%, Ni: 7.0 to 1
5.0%, Cu: 1.0 to 3.0%, N: 0.002
Provided is an austenitic stainless steel containing 0.07% and having excellent workability, characterized in that the following relationship is established for the final crystal grain size d (μm).

【0012】11.18−0.149F≦logd≦
0.0286F+0.571 かつlogd≧0 ただし、 F=40×(C+N)+Si+Mn+3×Ni+5×C
u+1.5×(Cr+1.5×Mo)≦90 第2に、重量%で、C:0.002〜0.03%、S
i:0.7%以下、Mn:0.5〜5.0%、Cr:1
5.0〜20.0%、Ni:7.0〜15.0%、C
u:1.0〜3.0%、N:0.002〜0.07%を
含有し、さらに、Mo:3.0%以下、Ti:0.5%
以下、Zr:0.5%以下、Nb:0.5%以下、V:
0.5%以下、Al:0.05%以下、REM:0.0
1%以下のうち1種または2種以上を含有し、最終の結
晶粒径d(μm)について以下の関係が成り立つことを
特徴とする、加工性に優れたオーステナイトステンレス
鋼を提供するものである。
11.18-0.149 F≤logd≤
0.0286F + 0.571 and logd ≧ 0 However, F = 40 × (C + N) + Si + Mn + 3 × Ni + 5 × C
u + 1.5 × (Cr + 1.5 × Mo) ≦ 90 Secondly, in% by weight, C: 0.002 to 0.03%, S
i: 0.7% or less, Mn: 0.5 to 5.0%, Cr: 1
5.0-20.0%, Ni: 7.0-15.0%, C
u: 1.0 to 3.0%, N: 0.002 to 0.07%, Mo: 3.0% or less, Ti: 0.5%
Below, Zr: 0.5% or less, Nb: 0.5% or less, V:
0.5% or less, Al: 0.05% or less, REM: 0.0
Provided is an austenitic stainless steel having excellent workability, which contains one or more of 1% or less and has the following relationship with respect to the final crystal grain size d (μm). .

【0013】11.18−0.149F≦logd≦
0.0286F+0.571 かつlogd≧0 ただし、 F=40×(C+N)+Si+Mn+3×Ni+5×C
u+1.5×(Cr+1.5×Mo)≦90
11.18-0.149 F≤logd≤
0.0286F + 0.571 and logd ≧ 0 However, F = 40 × (C + N) + Si + Mn + 3 × Ni + 5 × C
u + 1.5 × (Cr + 1.5 × Mo) ≦ 90

【0014】[0014]

【作用】冷間加工によるオーステナイトステンレス鋼の
加工硬化を抑制するためには、(1)加工誘起マルテン
サイト変態、および(2)オーステナイト母相の硬化、
の2つを抑制する必要がある。具体的には、加工誘起マ
ルテンサイト変態については、Mn,NiおよびCu等
の増量により母相であるオーステナイトの安定度を高め
て変態量を低減するとともに、CおよびN等の強化元素
を制限してマルテンサイトの強度を低減する必要があ
る。また、オーステナイト母相の硬化に対しては、C,
NiおよびCuを増量しSiおよびNを低減して積層欠
陥エネルギーを高め、転位の交差すべりを促進して転位
の集積度を低減する必要がある。
In order to suppress the work hardening of the austenitic stainless steel due to cold working, (1) work-induced martensitic transformation, and (2) hardening of the austenitic matrix,
It is necessary to suppress the two. Specifically, regarding the work-induced martensitic transformation, by increasing the amounts of Mn, Ni, Cu, etc., the stability of austenite, which is the parent phase, is increased to reduce the transformation amount, and the strengthening elements such as C, N, etc. are restricted. It is necessary to reduce the strength of martensite. For hardening of the austenite matrix, C,
It is necessary to increase the amounts of Ni and Cu, reduce Si and N, increase the stacking fault energy, promote cross-slip of dislocations, and reduce the dislocation integration degree.

【0015】そこで、このことを踏まえて、重量%で、
C:0.002〜0.03%、Si:0.7%以下、M
n:0.5〜5.0%、Cr:15.0〜20.0%、
Ni:7.0〜15.0%、Cu:1.0〜3.0%、
N:0.002〜0.07%を基本組成とするステンレ
ス鋼について、加工硬化に及ぼす化学組成および結晶粒
径の影響を調査した。その結果、最終の結晶粒径d(μ
m)について、以下の式を満足することにより優れた加
工性が得られることを見出した。
Therefore, based on this fact, in weight%,
C: 0.002-0.03%, Si: 0.7% or less, M
n: 0.5 to 5.0%, Cr: 15.0 to 20.0%,
Ni: 7.0-15.0%, Cu: 1.0-3.0%,
The effects of the chemical composition and the crystal grain size on work hardening of the stainless steel having a basic composition of N: 0.002 to 0.07% were investigated. As a result, the final crystal grain size d (μ
Regarding m), it was found that excellent workability can be obtained by satisfying the following formula.

【0016】11.18−0.149F≦logd≦
0.0286F+0.571 かつlogd≧0 ただし、Fは加工硬化量に対する合金元素量の影響を示
すパラメータであり、 F=40×(C+N)+Si+Mn+3×Ni+5×C
u+1.5×(Cr+1.5×Mo)≦90 である。
11.18-0.149 F≤logd≤
0.0286F + 0.571 and logd ≧ 0 where F is a parameter indicating the influence of the amount of alloying elements on the work hardening amount, and F = 40 × (C + N) + Si + Mn + 3 × Ni + 5 × C.
u + 1.5 × (Cr + 1.5 × Mo) ≦ 90.

【0017】ここで、本発明で規定する化学成分を有す
るステンレス鋼について結晶粒径dを1μm未満とする
には、強加工および短時間加熱が必要であり、そのため
には新たに専用の設備投資を要するためコスト高となり
現実的ではない。したがって、d≧1μmすなわちlo
gd≧0とした。また、合金元素の増加によるコスト上
昇を考慮し、F≦90とした。
Here, in order to reduce the crystal grain size d of the stainless steel having the chemical composition defined in the present invention to less than 1 μm, strong working and short-time heating are required, and for that purpose, new dedicated capital investment is required. This is costly and therefore not realistic. Therefore, d ≧ 1 μm, that is, lo
gd ≧ 0. Further, considering the cost increase due to the increase of alloying elements, F ≦ 90.

【0018】次に、各合金元素の範囲を限定した理由に
ついて説明する。Cは、積層欠陥エネルギーを高めるこ
とによりオーステナイト母相の加工硬化を抑制すると同
時にオーステナイト安定度を高めて変態量を低減し、さ
らに鋼塊中のδ−フェライト量を低減して熱間加工性を
向上させる効果を有する。これらの効果は極めて重要で
あり、この効果を得るためには、0.002%以上含有
することが必要である。しかしながら、0.03%を超
えて添加すると、加工誘起マルテンサイトの強度を著し
く高めるとともに、固溶強化によってオーステナイト母
相の強度を高め、さらには溶接部の耐食性を劣化させ
る。したがって、Cの含有量は0.002〜0.03%
の範囲とする。
Next, the reason why the range of each alloying element is limited will be described. C suppresses the work hardening of the austenite matrix by increasing the stacking fault energy and at the same time increases the austenite stability to reduce the transformation amount, and further reduces the amount of δ-ferrite in the steel ingot to improve the hot workability. Has the effect of improving. These effects are extremely important, and in order to obtain these effects, it is necessary to contain 0.002% or more. However, when added in excess of 0.03%, the strength of the work-induced martensite is remarkably increased, the strength of the austenite matrix phase is increased by solid solution strengthening, and further the corrosion resistance of the welded portion is deteriorated. Therefore, the content of C is 0.002-0.03%
Range.

【0019】Siは脱酸剤として添加する必要がある
が、積層欠陥エネルギーを低減することによってオース
テナイト母相の加工硬化を促進するとともに、固溶強化
によってオーステナイト母相の強度を高める。さらに、
鋼塊中のδ−フェライト量を増して熱間加工性を劣化さ
せる。従って、製鋼段階で極力スラグ中に分配させて、
鋼中の残留量を上記のような影響が実質的に小さい0.
7%以下とする。
Si needs to be added as a deoxidizing agent, but it reduces the stacking fault energy to promote work hardening of the austenite matrix and enhances the strength of the austenite matrix by solid solution strengthening. further,
It increases the amount of δ-ferrite in the steel ingot and deteriorates hot workability. Therefore, in the steelmaking stage, distribute as much as possible into the slag,
The residual amount in steel has a value of 0.
7% or less.

【0020】Mnは、母相であるオーステナイトの安定
度を高めて変態量を低減するとともに、鋼塊中のδ−フ
ェライト量を低減して熱間加工性を向上させる効果を有
する。これらの効果を得るためには、0.5%以上含有
させる必要がある。しかしながら、5.0%を超えて添
加すると低温での衝撃特性を劣化させる。したがって、
Mnの含有量は0.5〜5.0%の範囲とする。
Mn has the effects of increasing the stability of the austenite matrix, reducing the amount of transformation, and reducing the amount of δ-ferrite in the steel ingot to improve hot workability. In order to obtain these effects, it is necessary to contain 0.5% or more. However, if added in excess of 5.0%, the impact properties at low temperatures deteriorate. Therefore,
The Mn content is in the range of 0.5 to 5.0%.

【0021】Crは、最低限の耐食性を確保するために
15.0%以上必要である。しかしながら、20.0%
を超えて添加すると熱間加工性を確保するために大量の
Niを添加する必要があり、コスト高となる。したがっ
て、Crの含有量を15.0〜20.0%の範囲とす
る。
Cr is required to be 15.0% or more in order to secure the minimum corrosion resistance. However, 20.0%
If it is added over the range, it is necessary to add a large amount of Ni in order to secure hot workability, resulting in high cost. Therefore, the content of Cr is set to the range of 15.0 to 20.0%.

【0022】Niは、積層欠陥エネルギーを高めること
によりオーステナイト母相の加工硬化を抑制すると同時
にオーステナイトの安定度を高めて変態量を低減し、さ
らに鋼塊中のδ−フェライト量を低減して熱間加工性を
向上させるといった極めて重要な効果を有する。これら
の効果を得るためにはその含有量が7.0%以上である
必要があり、その添加量は多いほど好ましいが、経済性
を考慮すると15.0%が上限となる。したがって、N
iの含有量は7.0〜15.0%の範囲とする。
Ni suppresses the work hardening of the austenite matrix by increasing the stacking fault energy and at the same time enhances the stability of austenite to reduce the transformation amount and further reduces the amount of δ-ferrite in the steel ingot to reduce the heat. It has an extremely important effect of improving inter-workability. In order to obtain these effects, the content needs to be 7.0% or more, and the larger the addition amount, the more preferable. However, considering economic efficiency, the upper limit is 15.0%. Therefore, N
The content of i is in the range of 7.0 to 15.0%.

【0023】Cuは、積層欠陥エネルギーを高めること
によりオーステナイト母相の加工硬化を抑制すると同時
にオーステナイトの安定度を高めて変態量を低減し、さ
らに鋼塊中のδ−フェライト量を低減して熱間加工性を
向上させるといった極めて重要な効果を有する。これら
の効果を得るためにはその含有量が1.0%以上である
必要があるが、3.0%を超えて添加すると熱間加工性
が著しく劣化する。したがって、Cuの含有量は1.0
〜3.0%の範囲とする。
Cu suppresses the work hardening of the austenite matrix by increasing the stacking fault energy and at the same time enhances the stability of austenite to reduce the transformation amount, and further reduces the amount of δ-ferrite in the steel ingot to reduce heat. It has an extremely important effect of improving inter-workability. In order to obtain these effects, the content needs to be 1.0% or more, but if added in excess of 3.0%, the hot workability deteriorates significantly. Therefore, the Cu content is 1.0
To 3.0%.

【0024】Nは、オーステナイトの安定度を高めて変
態量を低減すると同時に鋼塊中のδ−フェライト量を低
減して熱間加工性を向上させるといった極めて重要な効
果を有する。これらの効果を得るためにはその含有量が
0.002%以上である必要がある。しかしながら、
0.07%を超えて添加すると加工誘起マルテンサイト
の強度を著しく高めるとともに、固溶強化によってオー
ステナイト母相の強度を高め、さらには積層欠陥エネル
ギーを低減することによってオーステナイト母相の加工
硬化を促進する。したがって、Nの含有量は0.002
〜0.07%の範囲とする。
N has an extremely important effect of increasing the stability of austenite and reducing the amount of transformation, and at the same time, reducing the amount of δ-ferrite in the steel ingot to improve the hot workability. In order to obtain these effects, the content needs to be 0.002% or more. However,
When added in excess of 0.07%, the strength of work-induced martensite is significantly increased, the strength of the austenite matrix is increased by solid solution strengthening, and the work hardening of the austenite matrix is promoted by reducing stacking fault energy. To do. Therefore, the content of N is 0.002
The range is up to 0.07%.

【0025】以上は基本成分の限定理由であるが、本発
明ではMo、Ti、Zr、Nb、V、Al、REM(希
土類金属を表わす)の1種または2種以上を含有しても
よく、その限定理由は以下のとおりである。
The above are the reasons for limiting the basic components, but in the present invention, one or more of Mo, Ti, Zr, Nb, V, Al and REM (representing a rare earth metal) may be contained, The reason for the limitation is as follows.

【0026】Moは耐食性を高める効果を有するが、
3.0%を超えて添加すると熱間加工性が著しく劣化す
るので、Moを添加する場合はその上限を3.0%とす
る。Ti、Zr、Nb、VおよびREMは、熱間延性を
高める効果を有するが、過度の添加はオーステナイト母
相強度を上昇させるので、これらを添加する場合は、こ
れらの含有量をTi:0.5%以下、Zr:0.5%以
下、Nb:0.5%以下、V:0.5%以下、REM:
0.01%以下とする。Alの添加は耐高温酸化性を高
めるが、過度の添加はオーステナイト母相強度を上昇さ
せるので、Alを添加する場合はその上限を0.05%
とする。
Mo has the effect of enhancing corrosion resistance,
When added in excess of 3.0%, the hot workability is significantly deteriorated, so when Mo is added, its upper limit is made 3.0%. Ti, Zr, Nb, V and REM have the effect of enhancing hot ductility, but excessive addition increases the strength of the austenite matrix phase, so when these are added, their content should be Ti: 0. 5% or less, Zr: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less, REM:
0.01% or less. Addition of Al enhances the high temperature oxidation resistance, but excessive addition raises the strength of the austenite matrix phase. Therefore, when adding Al, the upper limit is 0.05%.
And

【0027】[0027]

【実施例】表1に示すNo.1〜23の化学組成を有す
るオーステナイトステンレス鋼を、真空高周波溶解炉で
各10kg溶製し、5mm厚まで熱間圧延後、950〜
1200℃で1分間の溶体化熱処理を施して種々の結晶
粒径に調整した。これらのうち、No.1〜15は本発
明鋼であり、No.16〜23は比較鋼である。
Example No. 1 shown in Table 1 Austenitic stainless steel having a chemical composition of 1 to 23 was melted in a vacuum high frequency melting furnace at a rate of 10 kg each, and hot rolled to a thickness of 5 mm, and then 950 to
Solution heat treatment was performed at 1200 ° C. for 1 minute to adjust various crystal grain sizes. Of these, Nos. 1 to 15 are steels of the present invention. 16 to 23 are comparative steels.

【0028】これらの供試鋼について50%の冷間圧延
を施した後に、硬さ(Hv10kg)を測定し、加工性
を評価した。表1に、得られた粒径、F値、本発明の関
係式を満足するか否か(○は満足、×は不満足)、およ
び硬さを併せて示す。
After subjecting these test steels to 50% cold rolling, the hardness (Hv10 kg) was measured to evaluate the workability. Table 1 also shows the obtained particle size, F value, whether or not the relational expression of the present invention is satisfied (◯ is satisfied, × is unsatisfactory), and hardness.

【0029】[0029]

【表1】 [Table 1]

【0030】No.1〜15の本発明鋼はいずれも、本
発明の粒径とF値との関係式を満足するためHv350
以下の硬さを示し、中間焼鈍を省略することが可能であ
る。これに対し、比較鋼のうちNo.16〜21は、本
発明の粒径とF値との関係式を満足しないため、いずれ
も硬さが高く、中間焼鈍が必要である。また、No.2
2および23は、CuあるいはSiおよびMnの含有量
が本発明の範囲を超えているため、熱間圧延で割れを生
じ、その後の試験に供することができなかった。
No. All of the steels of the present invention Nos. 1 to 15 satisfy the relational expression between the grain size and the F value of the present invention, and therefore Hv350
The following hardness is shown, and intermediate annealing can be omitted. On the other hand, the comparative steel No. Since Nos. 16 to 21 do not satisfy the relational expression between the grain size and the F value of the present invention, all of them have high hardness and require intermediate annealing. In addition, No. Two
In Nos. 2 and 23, the contents of Cu or Si and Mn exceeded the range of the present invention, so that cracking occurred during hot rolling and they could not be used for the subsequent tests.

【0031】上記供試鋼のF値と粒径とをプロットした
結果を図1にまとめて示す。すなわち、図1は横軸にF
値をとり縦軸に粒径をとって、これらの関係を示すグラ
フであり、加工性の良好である本発明鋼はいずれも本発
明の関係式を満たしていることが確認される。これに対
して、加工性が劣っている比較鋼は本発明の関係式を満
たしていないことが確認される。
FIG. 1 shows the results of plotting the F value and the grain size of the test steels. That is, in FIG. 1, the horizontal axis is F.
It is a graph showing these relationships by taking values and taking the particle size on the vertical axis, and it is confirmed that all the steels of the present invention having good workability satisfy the relational expression of the present invention. On the other hand, it is confirmed that the comparative steel having poor workability does not satisfy the relational expression of the present invention.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
化学組成と粒径とを同時に制御して、安定して加工性に
優れたオーステナイトステンレス鋼が提供される。本発
明により、成分の変動に関係なく同一水準の加工性を有
するオーステナイトステンレス鋼を安定して供給するこ
とができ、産業上、非常に有用である。
As described above, according to the present invention,
Provided is an austenitic stainless steel that is stable and has excellent workability by controlling the chemical composition and the grain size at the same time. INDUSTRIAL APPLICABILITY According to the present invention, it is possible to stably supply austenitic stainless steel having the same level of workability irrespective of changes in the components, which is very useful industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】オーステナイトステンレス鋼におけるF値と粒
径との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between F value and grain size in austenitic stainless steel.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.002〜0.03
%、Si:0.7%以下、Mn:0.5〜5.0%、C
r:15.0〜20.0%、Ni:7.0〜15.0
%、Cu:1.0〜3.0%、N:0.002〜0.0
7%を含有し、最終の結晶粒径d(μm)について以下
の関係が成り立つことを特徴とする、加工性に優れたオ
ーステナイトステンレス鋼。 11.18−0.149F≦logd≦0.0286F
+0.571 かつlogd≧0 ただし、 F=40×(C+N)+Si+Mn+3×Ni+5×C
u+1.5×(Cr+1.5×Mo)≦90
1. C: 0.002-0.03 by weight%.
%, Si: 0.7% or less, Mn: 0.5 to 5.0%, C
r: 15.0 to 20.0%, Ni: 7.0 to 15.0
%, Cu: 1.0 to 3.0%, N: 0.002 to 0.0
An austenitic stainless steel containing 7% and having excellent workability, characterized in that the following relationship is established with respect to the final crystal grain size d (μm). 11.18-0.149F ≦ logd ≦ 0.0286F
+0.571 and logd ≧ 0 However, F = 40 × (C + N) + Si + Mn + 3 × Ni + 5 × C
u + 1.5 × (Cr + 1.5 × Mo) ≦ 90
【請求項2】 重量%で、C:0.002〜0.03
%、Si:0.7%以下、Mn:0.5〜5.0%、C
r:15.0〜20.0%、Ni:7.0〜15.0
%、Cu:1.0〜3.0%、N:0.002〜0.0
7%を含有し、さらに、Mo:3.0%以下、Ti:
0.5%以下、Zr:0.5%以下、Nb:0.5%以
下、V:0.5%以下、Al:0.05%以下、RE
M:0.01%以下のうち1種または2種以上を含有
し、最終の結晶粒径d(μm)について以下の関係が成
り立つことを特徴とする、加工性に優れたオーステナイ
トステンレス鋼。 11.18−0.149F≦logd≦0.0286F
+0.571 かつlogd≧0 ただし、 F=40×(C+N)+Si+Mn+3×Ni+5×C
u+1.5×(Cr+1.5×Mo)≦90
2. C: 0.002-0.03 by weight%.
%, Si: 0.7% or less, Mn: 0.5 to 5.0%, C
r: 15.0 to 20.0%, Ni: 7.0 to 15.0
%, Cu: 1.0 to 3.0%, N: 0.002 to 0.0
7%, Mo: 3.0% or less, Ti:
0.5% or less, Zr: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less, Al: 0.05% or less, RE
M: Austenitic stainless steel excellent in workability, characterized by containing one or more of 0.01% or less and having the following relationship with respect to the final crystal grain size d (μm). 11.18-0.149F ≦ logd ≦ 0.0286F
+0.571 and logd ≧ 0 However, F = 40 × (C + N) + Si + Mn + 3 × Ni + 5 × C
u + 1.5 × (Cr + 1.5 × Mo) ≦ 90
JP8705095A 1995-04-12 1995-04-12 Austenitic stainless steel excellent in workability Pending JPH08283915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8705095A JPH08283915A (en) 1995-04-12 1995-04-12 Austenitic stainless steel excellent in workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8705095A JPH08283915A (en) 1995-04-12 1995-04-12 Austenitic stainless steel excellent in workability

Publications (1)

Publication Number Publication Date
JPH08283915A true JPH08283915A (en) 1996-10-29

Family

ID=13904123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8705095A Pending JPH08283915A (en) 1995-04-12 1995-04-12 Austenitic stainless steel excellent in workability

Country Status (1)

Country Link
JP (1) JPH08283915A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827876A1 (en) * 2001-07-27 2003-01-31 Usinor AUSTENITIC STAINLESS STEEL FOR COLD DEFORMATION THAT CAN BE FOLLOWED BY MACHINING
US7101446B2 (en) 2002-12-12 2006-09-05 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
WO2011053460A1 (en) * 2009-11-02 2011-05-05 Ati Properties, Inc. Lean austenitic stainless steel
US8313691B2 (en) 2007-11-29 2012-11-20 Ati Properties, Inc. Lean austenitic stainless steel
US8337748B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel containing stabilizing elements
US8877121B2 (en) 2007-12-20 2014-11-04 Ati Properties, Inc. Corrosion resistant lean austenitic stainless steel
CN104195458A (en) * 2014-08-05 2014-12-10 东北大学 Stainless steel hot rolled plate with low relative permeability and preparation method thereof
CN104388833A (en) * 2014-10-31 2015-03-04 山西太钢不锈钢股份有限公司 Method for improving grain size of TP347HFG wrought pipe billet
JP2017208336A (en) * 2016-05-13 2017-11-24 株式会社不二越 Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part
JP2019091665A (en) * 2017-11-17 2019-06-13 株式会社不二越 Separator for solid polymer type fuel cell and manufacturing method thereof
CN111247265A (en) * 2017-08-21 2020-06-05 株式会社Posco Austenitic stainless steel having excellent workability and season cracking resistance, and drawn product using same
EP3835450A4 (en) * 2018-09-13 2021-07-14 Posco Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
EP4177368A4 (en) * 2020-08-31 2024-04-17 Posco Co Ltd Austenitic stainless steel with improved deep drawability

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827876A1 (en) * 2001-07-27 2003-01-31 Usinor AUSTENITIC STAINLESS STEEL FOR COLD DEFORMATION THAT CAN BE FOLLOWED BY MACHINING
EP1281785A2 (en) * 2001-07-27 2003-02-05 Usinor Austenitic stainless steel for cold deformation which may be followed by machining
EP1281785A3 (en) * 2001-07-27 2003-05-14 Usinor Austenitic stainless steel for cold deformation which may be followed by machining
US7101446B2 (en) 2002-12-12 2006-09-05 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
US10370748B2 (en) 2007-11-29 2019-08-06 Ati Properties Llc Lean austenitic stainless steel
US9617628B2 (en) 2007-11-29 2017-04-11 Ati Properties Llc Lean austenitic stainless steel
US8313691B2 (en) 2007-11-29 2012-11-20 Ati Properties, Inc. Lean austenitic stainless steel
US8858872B2 (en) 2007-11-29 2014-10-14 Ati Properties, Inc. Lean austenitic stainless steel
US8337748B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel containing stabilizing elements
US8877121B2 (en) 2007-12-20 2014-11-04 Ati Properties, Inc. Corrosion resistant lean austenitic stainless steel
US9121089B2 (en) 2007-12-20 2015-09-01 Ati Properties, Inc. Lean austenitic stainless steel
US9133538B2 (en) 2007-12-20 2015-09-15 Ati Properties, Inc. Lean austenitic stainless steel containing stabilizing elements
US10323308B2 (en) 2007-12-20 2019-06-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
US9624564B2 (en) 2007-12-20 2017-04-18 Ati Properties Llc Corrosion resistant lean austenitic stainless steel
US9822435B2 (en) 2007-12-20 2017-11-21 Ati Properties Llc Lean austenitic stainless steel
US8337749B2 (en) 2007-12-20 2012-12-25 Ati Properties, Inc. Lean austenitic stainless steel
US9873932B2 (en) 2007-12-20 2018-01-23 Ati Properties Llc Lean austenitic stainless steel containing stabilizing elements
WO2011053460A1 (en) * 2009-11-02 2011-05-05 Ati Properties, Inc. Lean austenitic stainless steel
CN104195458A (en) * 2014-08-05 2014-12-10 东北大学 Stainless steel hot rolled plate with low relative permeability and preparation method thereof
CN104388833A (en) * 2014-10-31 2015-03-04 山西太钢不锈钢股份有限公司 Method for improving grain size of TP347HFG wrought pipe billet
JP2017208336A (en) * 2016-05-13 2017-11-24 株式会社不二越 Solid polymer type fuel cell separator part and method for manufacturing solid polymer type fuel cell separator part
CN111247265A (en) * 2017-08-21 2020-06-05 株式会社Posco Austenitic stainless steel having excellent workability and season cracking resistance, and drawn product using same
JP2020532645A (en) * 2017-08-21 2020-11-12 ポスコPosco Austenitic stainless steel with excellent workability and aging crack resistance and drawing processed products using this
JP2019091665A (en) * 2017-11-17 2019-06-13 株式会社不二越 Separator for solid polymer type fuel cell and manufacturing method thereof
EP3835450A4 (en) * 2018-09-13 2021-07-14 Posco Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
JP2022500553A (en) * 2018-09-13 2022-01-04 ポスコPosco Austenitic stainless steel with excellent tube expansion workability and aging crack resistance
US20220049333A1 (en) * 2018-09-13 2022-02-17 Posco Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
US11959159B2 (en) 2018-09-13 2024-04-16 Posco Co., Ltd Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
EP4177368A4 (en) * 2020-08-31 2024-04-17 Posco Co Ltd Austenitic stainless steel with improved deep drawability

Similar Documents

Publication Publication Date Title
JPH04259325A (en) Production of hot rolled high strength steel sheet excellent in workability
JPH08283915A (en) Austenitic stainless steel excellent in workability
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JPH05186848A (en) Steel for large heat input welding excellent in toughness in weld heat-affected zone
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPH05195054A (en) Production of high strength stainless steel material for structural use excellent in workability
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH0435551B2 (en)
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPH09310155A (en) Austenitic stainless steel excellent in surface characteristic after working
JPH0368100B2 (en)
JP2000234139A (en) High tensile strength steel for welding excellent in toughness of welding heat affected zone and its production
JPS6117885B2 (en)
JPH0211721A (en) Manufacture of steel for pressure vessel of low temperature use for liquid ammonia having excellent stress corrosion cracking resistance
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production
JP4483089B2 (en) Cr-containing heat-resistant and corrosion-resistant steel sheet excellent in both formability and workability in the heat affected zone and its manufacturing method
JP3511986B2 (en) Stainless steel for large structures with excellent weld toughness and corrosion resistance suitable for MAG welding using a shielding gas containing 50% or more of CO2
JP3160115B2 (en) Method for producing steel material for welded structures with good heat input weld toughness
JPH07110971B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening