JPS59166655A - High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof - Google Patents

High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof

Info

Publication number
JPS59166655A
JPS59166655A JP3788483A JP3788483A JPS59166655A JP S59166655 A JPS59166655 A JP S59166655A JP 3788483 A JP3788483 A JP 3788483A JP 3788483 A JP3788483 A JP 3788483A JP S59166655 A JPS59166655 A JP S59166655A
Authority
JP
Japan
Prior art keywords
less
cleanliness
corrosion resistance
steel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3788483A
Other languages
Japanese (ja)
Other versions
JPH0218379B2 (en
Inventor
Masanori Ueda
上田 全紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3788483A priority Critical patent/JPS59166655A/en
Publication of JPS59166655A publication Critical patent/JPS59166655A/en
Priority to JP23303089A priority patent/JPH02270942A/en
Publication of JPH0218379B2 publication Critical patent/JPH0218379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To prepare the titled stainless steel excellent in processability and low in cost, by casting or heat treating molten steel having a specific composition consisting of C, Si, Mn, Cr, N, P, S, Al, O and Fe and prescribed in cleanliness at a specific temp. CONSTITUTION:Molten steel which contains 0.01-0.1% C, 3% or less Si, 2% or less Mn, 14-26% Cr, 0.005-0.2% N, 0.02% or less P, below 0.001% S, 0.02- 0.2% Al, below 0.003% O and, if necessary, further contains one or more of elements selected from 3% or less Mo, 2% or less Cu, 2% or less Ni, 0.6% or less Ti, 0.02-0.5% V, 0.02-0.2% Nb and 0.01% or less B and comprises the remainder of substantially Fe and has cleanliness comprising the sum of oxide type impurities and sulfide type impurities of 0.02 or less is continuously cast at a temp. of DELTAT deg.C<=45 deg.C [DELTAT deg.C= (the temp. deg.C of molten steel in a tandish during continuous casting) - (the solidification temp. deg.C of molten steel)] to obtain a cast piece which is, in turn, heated to 1,230 deg.C or less or held thereto and the heated cast piece is hot rolled to obtain high purity and high cleanliness steel, excellent in gap corrosion resistance and anti-rust property.

Description

【発明の詳細な説明】 本発明はステンレス鋼の高純、高清浄精錬技術を活用し
て、耐食性がすぐれかつ製品の加工性がすぐれた安価な
フェライト系ステンレス鋼ヲ提供することを目的とする
もので、フェライト系ステンレス鋼の成分系と製造法に
関するものである。
[Detailed Description of the Invention] The object of the present invention is to provide an inexpensive ferritic stainless steel with excellent corrosion resistance and product workability by utilizing high-purity and high-cleanliness refining technology for stainless steel. It concerns the composition and manufacturing method of ferritic stainless steel.

17 Crを主とするフェライト系ステンレス鋼は安価
な利点を生かして、従来よシ主として薄板として広く使
用されて来たが、18Cr−8Ni系のオーステナイト
系ステンレス鋼に比較すると耐食性、加工性の点で相当
に劣っている。特に耐食性の点では大気中、あるいは自
然に存在する水、水道水、あるいは温水等の比較的ゆる
やかな条件下で使用されるが、溶接部や加工を受けた部
分では容易に発銹し、又母材部でも耐食性が劣っている
。将来の用途拡大のためには耐食性の大巾改善が切望さ
れている。また、加工性においても絞υ性、張シ出し性
の点で今−歩である。もちろんこれらの耐食性や加工性
の改善については従来よシ莫大な研究がなされた結果、
主として合金添加の方法で改善されて来た。耐食性に関
しては使用環境により、その要求度合いが異なシー律な
規準は決められない。したがって用途によってMo、C
u、Ni 、’rt、Nb等の選択添加がよく知られ、
実用化されている。一方加工性改善に対してはTi、B
、Atの添加、C,Nの低減、熱間圧延条件、熱処理条
件との組合せ等が検討されて来た。しかしこのようにし
て、合金添加を重視するとコストを高くシ、プロセスの
簡略化を阻害し、品質、コストの両面で今−歩の進歩が
望まれるところである。
17 Cr-based ferritic stainless steel has traditionally been widely used mainly as thin plates due to its low cost, but compared to 18Cr-8Ni-based austenitic stainless steel, it has poor corrosion resistance and workability. It is considerably inferior. In particular, in terms of corrosion resistance, it is used under relatively mild conditions such as in the atmosphere, naturally occurring water, tap water, or hot water, but it easily rusts in welded or processed parts. Corrosion resistance is also poor in the base metal. Significant improvements in corrosion resistance are strongly desired for future expansion of applications. In addition, in terms of processability, it is at the current level in terms of drawing properties and stretchability. Of course, as a result of extensive research into improving corrosion resistance and workability,
Improvements have been made mainly by adding alloys. Concerning corrosion resistance, there is no fixed standard that requires different degrees of corrosion resistance depending on the environment of use. Therefore, Mo, C
The selective addition of u, Ni, 'rt, Nb, etc. is well known,
It has been put into practical use. On the other hand, for improving workability, Ti, B
, addition of At, reduction of C and N, combinations with hot rolling conditions, heat treatment conditions, etc. have been studied. However, if emphasis is placed on alloy addition in this way, costs will be high and process simplification will be hindered, and further progress is desired in terms of both quality and cost.

このような現状に対して、本発明者等は、精錬技術、特
にs、p、o等の高純化精錬技術に注目し、合金化は極
力少量にして、耐食性の向上、加工性の向上、プロセス
の簡略化を実現することをねらいに多くの研究を実施し
て来た。その結果、ステンレス鋼中のs、o、pを低減
し、更に硫化物と酸化物系の介在物を極力低減する高純
化精錬技術がこのねらいに合致することを見出し、本発
明を完成させたものである。
In response to this current situation, the present inventors focused on refining technology, especially refining technology for high purification of S, P, O, etc., to minimize the amount of alloying, improve corrosion resistance, improve workability, Many studies have been conducted with the aim of simplifying the process. As a result, we discovered that high-purity refining technology that reduces S, O, and P in stainless steel and further reduces sulfide and oxide inclusions as much as possible meets this aim, and completed the present invention. It is something.

フェライト系の高級ステンレス鋼として不純物であるC
 、N’i低減する技術が進んでお、9、C+N量で0
.01%程度のステンレス鋼が実用化されているが、本
発明者等は、C,Nの役割シを十分解明した上で、これ
らは有効に活用する方向で検討したもので、この点は本
発明の特徴である。
C is an impurity in ferritic high-grade stainless steel.
, technology to reduce N'i is progressing, 9, C+N amount is 0.
.. 0.1% stainless steel has been put into practical use, but the inventors of the present invention fully clarified the roles of C and N and considered how to utilize them effectively. This is a feature of the invention.

このよりにして完成した本発明は、高純・高清浄度フェ
ライト系ステンレス鋼組成とその製造法に関するもので
その要旨は次の通シである。
The present invention, which was completed in this manner, relates to a composition of high-purity and high-cleanliness ferritic stainless steel and a method for producing the same, and its gist is as follows.

(1)重量係でC0,01〜0.1%、Si3%以下、
Mn2%以下、Cr14%〜26%、N O,005〜
0.2係、Po、02%以下、80.001%未満、A
t0102〜0.2係、00.003チ未満で、更に必
要に応じてMo3.%以下、Cu2%以下、、Ni2%
以下、T106%以下、Vo、02〜0.5%、Nb0
.02〜0.2%、Bo、01%以下の添加元素を1種
又は2種以上を含み酸化物系介在物と硫化物系介在物の
和よシ成る清浄度が0.02以下で、残部実質的にFe
から成ることを特徴とする耐隙間腐食性、耐誘性等の使
用性能がすぐれた高純、高清浄ステンレス鋼。
(1) Weight: C0.01~0.1%, Si3% or less,
Mn 2% or less, Cr 14% to 26%, NO, 005 to
0.2 section, Po, 02% or less, less than 80.001%, A
t0102 to 0.2, less than 00.003, and if necessary, Mo3. % or less, Cu2% or less, Ni2%
Below, T106% or less, Vo, 02-0.5%, Nb0
.. 02 to 0.2%, Bo, 01% or less of one or more additive elements, and the cleanliness consisting of the sum of oxide inclusions and sulfide inclusions is 0.02 or less, with the balance Substantially Fe
High-purity, high-cleanliness stainless steel with excellent usability such as crevice corrosion resistance and induction resistance.

(2)上記合金鋼を溶製後、ΔTく45℃の鋳造温度条
件下で連続鋳造し、得られた鋳片を1230℃を超えな
いように加熱あるいは保熱した後、熱間圧延することを
特徴とする製造法。
(2) After melting the above alloy steel, continuous casting is performed at a casting temperature of ΔT and 45°C, and the resulting slab is heated or kept at a temperature not exceeding 1230°C, and then hot rolled. A manufacturing method characterized by

ここでΔT℃−(連続鋳造時のタンディシュにおける溶
鋼温度℃)−(溶鋼の凝固温度℃) 以下本発明の詳細な説明する。
Hereinafter, the present invention will be described in detail.

高純化精錬技術はCaC2+CaF 2系のブラックス
等の吹込み等によシスチンレス鋼でも810 ppm以
下、P200ppm以下が低コストで可能なことが明ら
かになシ、更にC4’Nの低減もすでに工業的規模で実
現されている。
It is clear that high-purity refining technology can reduce C4'N to less than 810 ppm and P200 ppm at low cost even in cystine-less steel by injecting CaC2+CaF2-based blacks, etc. Furthermore, reduction of C4'N has already been achieved industrially. It has been realized on a scale of

本発明者らはこれらの高純化精錬技術に注目し、かつ製
造プロセスの検討を加味したわけであるが、17 Cr
系のフェライト系ステンレス鋼の耐食性、特に発銹性を
電気化学的に検討した結果、Ct−による不動態破壊特
性に対してPを低減することがきわめて有効なことがわ
かった。更にSを低減することは17 Cr系の不動態
化特性を大巾に改善し、更に上述の低Pとの相乗効果で
、C2−による不動態破壊特性全大巾に向上させること
がわかった。
The present inventors focused on these high-purity refining technologies and took into consideration the manufacturing process.
As a result of an electrochemical study of the corrosion resistance, particularly the rusting property, of ferritic stainless steels, it was found that reducing the P content is extremely effective against the passive breakdown characteristics caused by Ct. Furthermore, it was found that reducing S greatly improved the passivation properties of the 17Cr system, and further, due to the synergistic effect with the above-mentioned low P, the passivity destruction properties due to C2- were greatly improved. .

低S鋼では更に、該鋼をAt又はT1等によシ脱酸する
ことによシ硫化物や酸化物系介在物の浮上が容易になシ
、きわめて清浄度の高い鋼となし得ることから、耐食性
全般、隙間腐食性、更には曲げ性等が改善されることが
明らかになった。
Furthermore, in the case of low-S steel, deoxidizing the steel with At or T1 makes it easy for sulfides and oxide inclusions to float, and the steel can be made into an extremely clean steel. It was revealed that general corrosion resistance, crevice corrosion resistance, and even bendability were improved.

以上の知見を見出した実験事実を以下に述べる・17C
r系を中心に真空溶解炉にて低0、低P1低Sに注目し
た合金を溶製すると共に熱間圧延の加熱温度、熱間圧延
条件、熱延板焼鈍条件、冷間圧延条件、最終焼鈍条件等
を加味して耐食性、加工性について検討した。製品は0
.7rm厚とした。
The experimental facts that led to the above findings are described below.・17C
Mainly r-type alloys are melted in a vacuum melting furnace with a focus on low 0, low P1, low S, and the heating temperature of hot rolling, hot rolling conditions, hot rolled plate annealing conditions, cold rolling conditions, final Corrosion resistance and workability were investigated by taking into consideration annealing conditions, etc. Product is 0
.. The thickness was 7rm.

耐食性についてはこれらの製品で電気化学的測定はもと
よシ各種浸漬試験を行なった。耐食性に対してはプロセ
ス条件の影響は顕著ではなく、合金組成の影響が太きか
った。特にPを200 ppm以下、SilOppm未
満とすることでこの種の合金の不動態化特性及びCt−
等による不動態破壊抵抗を大巾に向上させ得ることを見
出した(第1図)。
Regarding corrosion resistance, these products were subjected to various immersion tests as well as electrochemical measurements. The effect of process conditions on corrosion resistance was not significant, and the effect of alloy composition was significant. In particular, the passivation properties and Ct-
It has been found that the passive breakdown resistance can be greatly improved due to the above (Fig. 1).

第1図において、 第1図(a):曲線■の鋼中、P50ppm 、 85
ppm曲線■の鋼中、P50ppm 、 89ppm曲
線■の鋼中、P50ppm 、 860ppm曲線■の
鋼中、P 50 ppm 、 8140ppm第1図(
b):曲線■の鋼中、P50ppm 、38ppm曲線
■の鋼中、Plooppm 、 88ppm曲線■の鋼
中、P150ppm 、 88ppm曲線■の鋼中、P
250ppm 、 88ppm曲線■の鋼中、P340
ppm 、 88ppmであシ、Sが10 ppm以上
の第1図(、)、曲線■。
In Fig. 1, Fig. 1(a): Curve ■ in steel, P50ppm, 85
In steel with ppm curve ■, P 50 ppm, 89 ppm in steel with curve ■, P 50 ppm, 860 ppm In steel with curve ■, P 50 ppm, 8140 ppm
b): P50ppm in steel with curve ■, Plooppm in steel with 38ppm curve ■, Plooppm in steel with 88ppm curve ■, P150ppm, P in steel with 88ppm curve ■
250ppm, 88ppm curve■ in steel, P340
ppm, 88 ppm, and S is 10 ppm or more in Figure 1 (, ), curve ■.

■、Pが200 ppm以上の第1図(b)、曲線■、
■の成力\らCt−による不動態破壊電位(ト)が負側
になっておシ、不動態化特性が劣ることがわかる。これ
らの結果は隙間腐食試験に顕著にあられれ、第2図の通
シ、810 ppm未満、P 200 ppm以下で顕
著な効果を示す。
■, P is 200 ppm or more, Figure 1 (b), curve ■,
It can be seen that the passivation breakdown potential (g) due to the formation force \raCt- of (2) is on the negative side, and the passivation properties are poor. These results are noticeable in the crevice corrosion test, and as shown in FIG. 2, a remarkable effect is shown at less than 810 ppm and less than P 200 ppm.

第2図は17Crステンレス鋼板間に発生する隙間腐食
試験に対する低S化、低P化の効果をみたもので、試験
条件として、600 ppmct−,10ppmCu 
” + 80℃x 14 日’i空気吹込で行い、隙間
内の深いところ5個所の平均深さを隙間腐食最大深さく
+II+I+)としてプロットした。Pが3o o p
pmでは、Sが10 ppm以下でも隙間腐食が深いこ
とがわかる。
Figure 2 shows the effect of low S and low P on the crevice corrosion test that occurs between 17Cr stainless steel plates.The test conditions were 600 ppmct-, 10ppmCu.
+ 80℃ x 14 days'i air blowing, and the average depth of the five deep points in the crevice was plotted as the maximum crevice corrosion depth + II + I +).P is 3 o o p
pm, it can be seen that crevice corrosion is deep even when S is 10 ppm or less.

Sを低減するにつれて、鋼中の非金属介在物は顕著に減
少し、Sが10 ppmを境にして熱間圧延鋼材中にA
系の介在物(硫化物系、硫化物+酸化物系介在物)は認
められなくなり、kl及び、或いはTi等の脱酸と組合
せることでB系、C系の介在物(いずれも酸化物系介在
物)も浮上しやすくなり、鋼中のOは低くなシ、非金属
介在物の顕著に少い、清浄度0.02以下の鋼材になる
。(清浄度測定はJIS法)この挙動に対応して3.5
%NthCL溶液中での孔食電位も大巾に貴となる。
As the S content decreases, nonmetallic inclusions in the steel decrease significantly, and when the S content reaches 10 ppm, A
B-type inclusions (sulfide-type, sulfide + oxide-type inclusions) are no longer recognized, and B-type and C-type inclusions (both oxide System inclusions) also float easily, resulting in a steel material with low O content, significantly less nonmetallic inclusions, and a cleanliness level of 0.02 or less. (Cleanliness measurement is JIS method) Corresponding to this behavior, 3.5
The pitting potential in the %NthCL solution also becomes significantly nobler.

以上の現象を図示したのが第3図であシ、17Cr系鋼
の低S化による介在物清浄度(下図)と孔食電位(上図
)の変化を示している。該下図は17 Cr鋼の50ゆ
鋼塊のSと介在物清浄度の関係を示しているが、A系介
在物(・印)とB、C系介在物(0印)の合計清浄度を
点線で表わしている。また、前記上図は17Cr製品板
を≠600研磨面で測定した孔食電位(V)とSとの関
係を示しておシ、810 ppm以下で大巾に貴になっ
ていることがわかる。
The above phenomenon is illustrated in FIG. 3, which shows changes in inclusion cleanliness (bottom diagram) and pitting corrosion potential (top diagram) due to low S content in 17Cr steel. The figure below shows the relationship between S and inclusion cleanliness of a 50Y ingot of 17Cr steel. It is represented by a dotted line. Furthermore, the above diagram shows the relationship between the pitting corrosion potential (V) and S measured on the ≠600 polished surface of a 17Cr product plate, and it can be seen that it becomes significantly nobler at 810 ppm or less.

第4図は17 Cr系ステンレス鋼の発銹抵抗に対する
S、P及び0の影響を示したものであるが、0が30 
ppm未満であると、P 200 ppm以下、S 1
092m未満で、清浄度を0.02以下にした場合、発
錆ランクが急激に上、昇することがわかる。
Figure 4 shows the effects of S, P, and 0 on the rusting resistance of 17Cr stainless steel.
If it is less than ppm, P 200 ppm or less, S 1
It can be seen that when the distance is less than 0.092 m and the cleanliness is set to 0.02 or less, the rusting rank increases rapidly.

即ち、か\る高純、高清浄度ステンレス鋼は、活性溶解
挙動や耐孔食性、耐隙間腐食性等々の基本的な耐食性が
向上し、大気中での発錆をシミレートした改良塩水テス
ト結果を向上させる。
In other words, the high-purity, high-cleanliness stainless steel has improved basic corrosion resistance such as active dissolution behavior, pitting corrosion resistance, and crevice corrosion resistance, and has improved salt water test results that simulate rusting in the atmosphere. improve.

なお、第4図はo、5 % Na CZ + O−2%
 H202ノ30 ℃溶液による改良型塩水噴霧テスト
の結果を示している。
In addition, Fig. 4 shows o, 5% Na CZ + O-2%
Figure 2 shows the results of a modified salt spray test with a 30 °C solution of H202.

耐食性の大巾な向上は上述の高純高清浄度化と、各種耐
食性に有効な少量の添加元素で一層確実なものとなる。
A drastic improvement in corrosion resistance can be further ensured by the above-mentioned high purity and high purity and by adding small amounts of various elements effective for improving corrosion resistance.

各種用途を想定し、Cr、Ni、Mo、Cu。Cr, Ni, Mo, Cu for various uses.

Ti、AA、Nb、St、V等々の添加効果を検討し、
更に、C,Nは、添加元素として有効活用の方向で検討
した。
Examining the effects of adding Ti, AA, Nb, St, V, etc.,
Furthermore, C and N were studied with a view to their effective use as additive elements.

中性に近い腐食環境中での加速テストとして4%NaC
A + 0.2%H20□、60℃の浸漬試験を実施し
た。
4% NaC as an accelerated test in a near-neutral corrosive environment
A + 0.2% H20□, 60°C immersion test was conducted.

これらの結果からCr量(第5図)、Mo、Cu、Ni
、V。
From these results, the amount of Cr (Fig. 5), Mo, Cu, Ni
,V.

Ti等の添加効果(第6図)が低S、低P、低0の合金
で一層顕著に現われることが判明した。こうして低P1
低S、低O等の高純化はそれ自体も耐食性に効果を示す
が、Mo 、 Cu 、Ni等の合金元素の効果を一層
顕著なものとし、高価なこれら合金元素の添加量を低減
し得名ことがはじめて明らかになった。
It has been found that the effect of addition of Ti, etc. (Fig. 6) is more pronounced in low S, low P, and low O alloys. Thus low P1
High purification such as low S and low O has an effect on corrosion resistance in itself, but it makes the effects of alloying elements such as Mo, Cu, and Ni even more pronounced, and can reduce the amount of these expensive alloying elements added. The name was revealed for the first time.

フェライト系ステンレス鋼製品の加工性の要請に関して
は、曲げ性更には冷間加工後の曲げ性等から、用途によ
っては深絞シ性ならびに絞り時のりジング特性について
検討した。
Regarding the workability requirements of ferritic stainless steel products, we investigated bendability and bendability after cold working, as well as deep drawing properties and writhing characteristics during drawing, depending on the application.

まず曲げ性については、プロセスの影響は小さく、合金
組成の影響が大きい。特に製品板に30チ程度の冷間加
工を与えた後、圧延方向に直角方向の密着曲げをする加
工0曲げテストで合金によって割れが発生した。明らか
に5O8001q6未満、00.003%未満でかつP
も0.02%以下の合金には密着曲げで割れは全く、発
生しなかった。
First, regarding bendability, the influence of the process is small, and the influence of the alloy composition is large. In particular, cracks occurred due to the alloy in a processing zero bending test in which the product sheet was subjected to about 30 inches of cold working and then closely bent in a direction perpendicular to the rolling direction. Clearly less than 5O8001q6, less than 00.003% and P
No cracking occurred at all during close bending in alloys containing 0.02% or less.

深絞シ特性は丁を求めて評価した。製品板よシ圧延方向
、圧延方向と直角方向、4ダ方向よシ規定の引張試験片
を採取し、r値を測定し、三を求めた。又圧延方向から
採取した引張試験片に20チの引張歪を与えた後、粗度
計にて発生したりジング高さを測定した。
The deep drawing characteristics were evaluated by determining the depth. Tensile test specimens were taken from the product sheet in the rolling direction, in the direction perpendicular to the rolling direction, and in the four directions, and the r value was measured. Further, after applying a tensile strain of 20 inches to a tensile test piece taken from the rolling direction, the height of jings generated was measured using a roughness meter.

フェライト系ステンレス鋼のりジング性、r値について
は合金組成はもとよシ熱間圧延条件の影響やその後の熱
処理の影響が大きいことはよく知られている。高純高清
浄度鋼についても特に熱延板焼鈍の影響は大きく、連続
焼鈍法による850〜1050℃の温度域に急速加熱す
る方式と従来のベル型焼鈍による方式、熱延板焼鈍を省
略した場合を検討した。その結果基本的には従来の知見
と同じ結果が得られC,Nは適量の活用が有効である。
It is well known that the gluability and r value of ferritic stainless steel are greatly influenced by not only the alloy composition but also hot rolling conditions and subsequent heat treatment. For high-purity, high-cleanliness steel, the influence of hot-rolled plate annealing is especially large, and there are two methods: continuous annealing, which rapidly heats the steel to a temperature range of 850 to 1050°C, and conventional bell-type annealing, which omit hot-rolled plate annealing. We considered the case. As a result, the results are basically the same as the conventional knowledge, and it is effective to use C and N in appropriate amounts.

こうして、高純高清浄度鋼においてもリジングやr値に
ついて従来知られた合金元素の効果、熱延法の効果、熱
延板焼鈍の効果を有することが判明し、深絞シ性鋼板等
の要請についてはT1やAtの添加や、熱延板焼鈍の効
果を活用すべきである。
In this way, it was found that even high-purity, high-cleanliness steel has the previously known effects of alloying elements, hot-rolling methods, and hot-rolled sheet annealing on ridging and r-value, and it has been found that high-purity, high-cleanliness steel has the effects of conventionally known alloying elements, hot-rolling methods, and hot-rolled plate annealing. Regarding the request, the addition of T1 and At and the effects of hot-rolled sheet annealing should be utilized.

ただ、高純合金では特に鋳造時の細粒化、熱延加熱温度
の適正化がりジング、r値に関して重要な管理ポイント
であることが判明した。この点は高純合金が粒成長しや
すく粗大化する傾向を有するだめである。
However, for high-purity alloys, it has been found that important control points are particularly regarding grain refinement during casting, appropriate hot rolling heating temperature, and r value. This is because high-purity alloys tend to grow grains easily and become coarse.

すなわち高純、高清浄度鋼では鋳造組織の微細化のため
に鋳造時の31℃(タンディツシュでの溶鋼温度−溶鋼
の凝固温度(計算値))を小さくし、ΔTt1.<45
℃が必要である。又熱延前の加熱温度も粗大化防止のた
め1230℃以下とする必要がある0 以上述べた通り、精錬技術の進歩、特に有害な不純物で
あるPとSをCaC2系の7ラツクスで従来よシ犬巾に
低減する方法をペースに更にOを低減し、高清浄度化さ
れたフェライト系ステンレス鋼において、不動態化能力
が向上し、耐食性がすぐれ、更にMo、Cu、Ni等々
の添加の有効性を一層大きなものとし、従来よシも少量
で大きな効果を発揮する。又きびしい曲げ加工性を低S
化、低O化は改善する。
That is, for high-purity, high-cleanliness steel, in order to refine the casting structure, the temperature of 31°C (molten steel temperature in tundish - solidification temperature of molten steel (calculated value)) during casting is reduced, and ΔTt1. <45
°C is required. In addition, the heating temperature before hot rolling must be kept at 1230°C or lower to prevent coarsening.As mentioned above, advances in refining technology have made it possible to eliminate P and S, which are particularly harmful impurities, by using CaC2-based 7 lux. In ferritic stainless steel, which has been made highly clean by further reducing O at the same pace as the method of reducing O to the extent possible, the passivation ability has been improved, corrosion resistance has been improved, and addition of Mo, Cu, Ni, etc. has been improved. It has even greater effectiveness and produces a greater effect with a smaller amount than conventional products. In addition, severe bending workability is reduced to low S.
and lower O.

更に薄板の加工性についても、低P1低S、低O合金に
おいてはTi、At等の作用効果が顕著でC2N量の適
量添加と合わせて少量の添加で大巾な改善効果が得られ
ることが判明した。
Furthermore, regarding the workability of thin plates, the effects of Ti, At, etc. are remarkable in low P1, low S, and low O alloys, and it is possible to obtain a large improvement effect by adding a small amount together with the addition of an appropriate amount of CN. found.

以上の知見はすぐれた品質のフェライト系ステンレス鋼
を安価に供給する目的に対して極めて画期的で大きな効
果を発揮するものである。
The above findings are extremely innovative and have a significant effect on the purpose of supplying ferritic stainless steel of excellent quality at low cost.

以下に本発明の成分の限定理由について述べる。The reasons for limiting the components of the present invention will be described below.

C:Cは低S1低P1低0鋼では耐食性、加工性釦有効
で、0.01〜0.1%の範囲で添加する。
C: C is effective for corrosion resistance and workability in low S1 low P1 low 0 steel, and is added in a range of 0.01 to 0.1%.

0、1 %を越えると耐食性を劣化し、0.01%未満
では加工性が劣化する。
If it exceeds 0.1%, corrosion resistance will deteriorate, and if it is less than 0.01%, workability will deteriorate.

st:siは低S1低P1低0鋼では耐食性を若干改善
し、加工性には変化がない。したがって3%以下とした
。3%をこえると硬化する。
st:si slightly improves corrosion resistance in low S1 low P1 low 0 steel, but there is no change in workability. Therefore, it was set at 3% or less. If it exceeds 3%, it will harden.

Mn : Mnは耐食性に対して低い方が望ましく、2
、 O俤以下とした。
Mn: It is desirable for Mn to be low in terms of corrosion resistance, and 2
, O or less.

P:Pはフェライト系ステンレス鋼の不動態特性、特に
Ct−による不動態破壊抵抗を害し、低ければ低い程望
ましく、0.02%以下とした。
P: P impairs the passive properties of ferritic stainless steel, particularly the passive breakdown resistance due to Ct-, and is preferably as low as 0.02% or less.

S:Sはフェライト系ステンレス鋼の不動態特性を害し
、低ければ低い程望ましく、0.001%を有し、Ct
−による不動態破壊抵抗を増し、耐誘性を改善し、又、
曲げ特性を改善する。
S: S impairs the passive properties of ferritic stainless steel, and the lower it is, the more desirable it is.
- increases passive breakdown resistance, improves induction resistance, and
Improve bending properties.

O:0はSO,001%未満では酸化物介在物として、
耐誘性、耐孔食性を劣化させる原因となるので低い方が
望ましい。80.001%未満では硫化物がなくなシ、
酸化物の浮上性がよ<、0.003チ未満とした。
O:0 is SO, less than 1% is oxide inclusion,
A lower value is preferable since it causes deterioration of induction resistance and pitting corrosion resistance. If it is less than 80.001%, there will be no sulfide;
The floating property of the oxide was set to be less than 0.003 inches.

Cr : Crはフェライト系ステンレス鋼に不可欠で
14チから26%まで耐食性を大巾に向上する。
Cr: Cr is essential for ferritic stainless steel and greatly improves corrosion resistance from 14% to 26%.

14チ未満では耐食性が不十分で、26%をこえると加
工性が劣化する。
If it is less than 14%, corrosion resistance is insufficient, and if it exceeds 26%, workability deteriorates.

At: Atは低S1低P1低0系フエライトステンレ
ス鋼で0.02〜0.2%において丁を大巾に改善し、
かつ清浄度を改善する。0.02%未満では効果が小さ
く、0.2%をこえるとりジング特性を劣化させる。
At: At is a low S1, low P1, low 0 series ferrite stainless steel, and at 0.02 to 0.2%, it greatly improves the sharpness.
and improve cleanliness. If it is less than 0.02%, the effect will be small, and if it exceeds 0.2%, the properties will deteriorate.

v:vは低S1低P1低0系フエライトステンレス鋼で
0.02%〜0.50%において耐食特性を改善する。
v:v improves the corrosion resistance properties in low S1 low P1 low 0 series ferrite stainless steel at 0.02% to 0.50%.

0.02%未満では効果が小さく、0.5チを超えると
効果が飽和し、用途によって選択添加する。
If it is less than 0.02%, the effect is small, and if it exceeds 0.5%, the effect is saturated, so it should be added selectively depending on the application.

N:Nは高Crの高純高清浄度鋼の耐食性を向上するが
、加工性には0.2チ以下が望ましい。したがって0.
005%〜0.2チとした。
N: N improves the corrosion resistance of high-Cr, high-purity, high-cleanliness steel, but is preferably 0.2 inches or less for workability. Therefore 0.
0.005% to 0.2 inch.

Mo : Moは特に低P1低S、低0ペースで少量添
加で耐食性を顕著に改善し、用途によって3%以下で選
択添加する。3チをこえるとコストが高くなるからであ
る。
Mo: Mo can significantly improve corrosion resistance when added in small amounts, especially at low P1, low S, and low 0 paces, and is selectively added at 3% or less depending on the application. This is because if the number exceeds 3, the cost will increase.

Cu : CLIは特に低p1低S1低Oペースで少量
添加で耐食性を顕著に改善し用途によって2%以下で選
択添加する。2%をこえると効果が飽和する。
Cu: CLI significantly improves corrosion resistance when added in a small amount, especially at a low P1, low S1, low O pace, and is selectively added at 2% or less depending on the application. When it exceeds 2%, the effect is saturated.

Ni:Niは低P1低S1低Oペースで少量添加で耐食
性を改善し、用途によって2%以下で選択添加する。2
%をとえる七効来が飽和する。
Ni: Ni improves corrosion resistance by adding a small amount at a low P1 low S1 low O pace, and is selectively added at 2% or less depending on the application. 2
% of the seven effects are saturated.

Ti : Tlは低P、低S1低0ペースで少量添加で
耐食性、加工性を改善し更に清浄度を向上させる。した
がって用途によって0.6%以内で選択添加する。0.
6チをこえると効果が飽和する。
Ti: Adding a small amount of Ti at a low P, low S1, low 0 pace improves corrosion resistance, workability, and further improves cleanliness. Therefore, it should be added selectively within 0.6% depending on the application. 0.
The effect saturates when it exceeds 6 inches.

B:Bは低P、低S1低Oペースで少量添加で加工性を
改善し、用途によって0.01%以内で選択添加する。
B: B improves processability by adding a small amount at a low P, low S1, low O pace, and is selectively added within 0.01% depending on the application.

0.0196eこえると耐食性を劣化させる。If it exceeds 0.0196e, corrosion resistance will deteriorate.

Nb : Nbは低S1低P1低O系フエライト系ステ
ンレス鋼で0.02%〜0.2%の添加でリソング特性
を改善し、耐食性を向上する。0.02%未満では効果
が小さく、0.2%を超えると効果が飽和し、用途によ
って選択添加する。
Nb: Adding 0.02% to 0.2% of Nb to low S1 low P1 low O ferritic stainless steel improves resonating properties and corrosion resistance. If it is less than 0.02%, the effect is small, and if it exceeds 0.2%, the effect is saturated, so it should be added selectively depending on the application.

清浄度:硫化物や酸化物系の非金属介在物は、孔食の起
点となシ又発銹を加速する。更に曲げ性全劣化させるの
で極力低い方が望ましい。低Sのフェライト系ステンレ
ス鋼を溶製後、AtやTt等の脱酸をし、浮上時間を取
ることによって、熱延板での清浄度e0.02以下とす
ることが望ましい。
Cleanliness: Nonmetallic inclusions such as sulfides and oxides accelerate rusting, which is the starting point of pitting corrosion. Furthermore, since it completely deteriorates the bendability, it is desirable that it be as low as possible. After melting low-S ferritic stainless steel, it is desirable to deoxidize At, Tt, etc., and to take time for floating, so that the cleanliness of the hot-rolled sheet is e0.02 or less.

ΔT:鋳造温度は低S、低S1低0ペースではΔT≦4
5℃が望ましい。ΔTが・45℃をこえると粗大化しや
すく、所期の加工性が得られない。同じく熱延の加熱温
度あるいは保熱温度は1230℃以下にしなければ粗大
化しやすく、所期の加工性が得られない。
ΔT: Casting temperature is low S, ΔT≦4 at low S1 low 0 pace
A temperature of 5°C is desirable. When ΔT exceeds ・45°C, it tends to become coarse and the desired workability cannot be obtained. Similarly, unless the hot rolling heating temperature or heat retention temperature is 1230° C. or lower, it tends to become coarse and the desired workability cannot be obtained.

以下に本発明の実施例について述べる。Examples of the present invention will be described below.

高純ステンレス合金の溶製は、溶銑予備処理された溶銑
を使用し、Fe −Cr合金を添加して150T転炉で
溶製し、Cレベルが0.2%程度で出鋼し、取鍋にてC
a C2系のフラックスを吹込み、Pを0.015%未
満、Se0.001%未満とした後、VOD炉で仕上脱
炭した。その後更に脱硫フラックスで脱硫した後、 A
7あるいはTiを吹き込み脱酸し、介在物を浮上させた
後、連続鋳造して200箇厚CCスラツとし、一部はイ
ンゴットとした。連続鋳造の場合、鋳造条件はΔT≦4
5℃を満たすように注入しスラブとした。インゴットは
分塊圧延しスラブとした。このスラブの熱延加熱温度は
1100℃とし、熱延条件は仕上圧延開始温度を900
℃以下に制御する低温圧延とし、3wIn厚のホットコ
イルとした。その後連続焼鈍で1000℃に急速加熱す
ることからなる熱延板焼鈍を施し、連続酸洗した。冷間
圧延はすべて1回冷延で0.7諭まで圧延し、850℃
の最終焼鈍をし、酸洗し、製品板を得た。比較材として
は通常条件で製造されているステンレス薄板を使用した
High-purity stainless steel alloys are melted using hot metal that has been pretreated, Fe-Cr alloy is added, melted in a 150T converter, tapped at a C level of about 0.2%, and ladled. At C
a C2-based flux was injected to reduce P to less than 0.015% and Se to less than 0.001%, and then final decarburization was performed in a VOD furnace. After that, after further desulfurization with desulfurization flux, A
After blowing in 7 or Ti to deoxidize and float the inclusions, continuous casting was performed to obtain a 200-piece thick CC slat, and a portion was made into an ingot. In the case of continuous casting, the casting conditions are ΔT≦4
It was poured to a temperature of 5°C to form a slab. The ingot was bloomed into a slab. The hot rolling heating temperature of this slab was 1100°C, and the hot rolling conditions were as follows: the finish rolling start temperature was 900°C.
A hot coil having a thickness of 3wIn was obtained by low-temperature rolling controlled at a temperature of 0.degree. C. or below. Thereafter, hot-rolled plate annealing consisting of rapid heating to 1000° C. was performed by continuous annealing, followed by continuous pickling. All cold rolling is done once to 0.7mm, and the temperature is 850℃.
A final annealing process was carried out, followed by pickling to obtain a product plate. As a comparison material, a thin stainless steel plate manufactured under normal conditions was used.

得られた製品の結果は表1の通りである。本発明鋼はC
a CZ系の高純化処理によシ、すべてS〈0.001
%、P≦0.02%、O(0,003チを満たしている
。更に熱延板で測定した介在物清浄度もきわめてすぐれ
ている。これらの製品の特性試験結果は表2の通シで耐
食特性、加工性を中心に、すぐれた使用性能が得られ、
本発明の効果が確認された。
The results of the obtained products are shown in Table 1. The steel of the present invention is C
a Due to CZ-based high purification treatment, all S<0.001
%, P≦0.02%, O (0,003%).Furthermore, the inclusion cleanliness measured with hot rolled sheets is also extremely excellent.The characteristic test results of these products are shown in Table 2. It provides excellent usability, especially in terms of corrosion resistance and processability.
The effects of the present invention were confirmed.

以上の如く、本発明鋼は基本特性である耐食性を主とし
だ使用特性に対する合金の高純化、高清浄度化の影響を
明らかにし、更に有効な少量の添加元素と組合わせた結
果得られたものであシ、更にその製造方法については連
続鋳造に際しての鋳造条件及び鋳片の加熱温度条件を規
制することを要件とするものであるが、本発明以外の製
造条件、例えば連続鋳造と熱間圧延を直結するCC−D
RfロセスあるいはCC−ホットチャージプロセスによ
シ製造されても、本発明鋼の基本特性は変らす所期の特
性を発揮しうろことは明らかである。又光輝焼鈍等の製
品においてもすぐれた特性を示す。
As described above, the steel of the present invention was obtained by clarifying the effects of high purification and high cleanliness of the alloy on the basic characteristics of the steel, mainly corrosion resistance, and its usage characteristics, and by combining it with a small amount of effective additive elements. Furthermore, the manufacturing method requires regulating the casting conditions and heating temperature conditions of the slab during continuous casting, but manufacturing conditions other than those of the present invention, such as continuous casting and hot CC-D that directly connects rolling
It is clear that the basic properties of the steel of the present invention will still exhibit the desired properties whether produced by the Rf process or the CC-hot charge process. It also shows excellent properties in products such as bright annealing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは17 Cr系ステンレス鋼のct−ヲ含
む液(3%NaC1+5%H2SO4,30℃、Ar脱
気)中での陽分極曲線に対するp1s量の影響を示す図
、第2図は17 Cr系ステンレス鋼板間に発生する隙
間腐食試験に対する低S化、低P化の効果を示す図、第
3図は17Cr系ステンレス鋼の低S化による介在物清
浄度及び孔食電位の変化を示す図、第4図は17 Cr
系ステンレス鋼の発銹抵抗に対するs、p、oの影響を
示す図、第5図はFe−Cr合金の4%NaC4+ 0
.2%H2O2,60℃中での耐食性に対するCr量及
び高純合金の効果を示す図、第6図は17Cr系ステン
レス鋼(C0,03%、NO,01%)での各種添加元
素の効果に対する実用合金と高純合金の腐食速度(4%
NaC1十0.2%H2O2,60℃中)の差を示す図
である。 第6図において、ロ=コ実用合金 (P O,03%、 S O,005チ、 OO,00
5%)凹コ]高純合金 (P O,014%、 S O,0007%、00.0
018係)霜付V (S、C,E)        e
AQ V (S、C,E)5  PP”  ppm 第5図
Figures 1a and b are diagrams showing the influence of the amount of p1s on the anodic polarization curve of 17Cr stainless steel in a solution containing ct-2 (3% NaCl + 5% H2SO4, 30°C, Ar degassing). Figure 3 shows the effect of low S and low P on the crevice corrosion test that occurs between 17Cr stainless steel plates. Figure 3 shows the changes in inclusion cleanliness and pitting potential due to low S in 17Cr stainless steel. Figure 4 shows 17 Cr
Figure 5 shows the effects of s, p, and o on the rusting resistance of stainless steels.
.. Figure 6 shows the effect of Cr content and high purity alloy on corrosion resistance at 2% H2O2 at 60°C. Figure 6 shows the effect of various additive elements on 17Cr stainless steel (C0.03%, NO.01%). Corrosion rate of practical alloys and high purity alloys (4%
FIG. In Figure 6, Ro-co practical alloys (PO,03%, SO,005CH, OO,00
5%) Concave] High purity alloy (PO, 014%, SO, 0007%, 00.0
Section 018) Frosting V (S, C, E) e
AQ V (S, C, E) 5 PP” ppm Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でC:0.01〜0.1%、Si:3チ以
下、Mn : 2%以下、Cr:14〜26チ、N:0
.005〜0.2係、P:0.02%以下、S:0.O
O1チ未満、At: 0.02〜0.2係、O:0.0
03%未満、酸化物系介在物と硫化物系介在物の和よシ
なる清浄度が0.02以下、残部実質的にFeから成る
ことを特徴とする耐隙間腐食性、耐誘性のすぐれた高純
、高清浄ステンレス鋼。
(1) C: 0.01 to 0.1% by weight, Si: 3 or less, Mn: 2% or less, Cr: 14 to 26, N: 0
.. 005-0.2 ratio, P: 0.02% or less, S: 0. O
O less than 1 inch, At: 0.02 to 0.2, O: 0.0
Excellent crevice corrosion resistance and induction resistance characterized by less than 0.03%, the sum of cleanliness of oxide and sulfide inclusions being 0.02 or less, and the remainder essentially consisting of Fe. Made of high purity, high cleanliness stainless steel.
(2)重量%でc:o、oi〜o、i%、Si:3チ以
下、Mn : 2 %以下、Cr:14〜26%、N:
0.005〜0.2チ、P:0.02チ以下、S:O,
OO1チ未満、At:0.02〜0.2係、O:0.0
03係未満、更に、MO: 3 %以下、Cu:2%以
下、Ni:2%以下、Ti:0.6%以下、V : 0
.02〜0.5 %、Nb:0.02〜02%、B:0
.01係以下の添加元素を1種又は2種以上を含み酸化
物系介在物と硫化物系介在物の和よシなる清浄度が0,
02以下でsb、残部実質的にFeから成ることを特徴
とする耐隙間腐食性、耐誘性のすぐれた高純、高清浄ス
テンレス鋼。
(2) C: o, oi to o, i% in weight%, Si: 3% or less, Mn: 2% or less, Cr: 14 to 26%, N:
0.005 to 0.2 inch, P: 0.02 inch or less, S: O,
OO less than 1 inch, At: 0.02 to 0.2, O: 0.0
Further, MO: 3% or less, Cu: 2% or less, Ni: 2% or less, Ti: 0.6% or less, V: 0
.. 02-0.5%, Nb: 0.02-02%, B: 0
.. Contains one or more additive elements of 01 or lower, and has a cleanliness of 0, which is the sum of oxide inclusions and sulfide inclusions.
A high-purity, high-cleanliness stainless steel with excellent crevice corrosion resistance and induction resistance, characterized by comprising 02 or less of sb and the remainder substantially of Fe.
(3)重量%でc:o、oi〜0.1%、Si:3%以
下、Mn : 2 %以下、Cr :14〜26%、N
 : 0.005〜0.2チ、P:0.02チ以下、S
:O,001%未満、At:0.02〜0.2%、O:
0.003チ未満、酸化物系介在物と硫化物系介在物の
和よシなる清浄度が0.02以下、残部実質的にFeか
ら成る溶鋼をΔT℃<45℃の鋳造温度条件下で連続鋳
造し、得られた鋳片を1230℃を超えないように加熱
あるいは保熱した後、熱間圧延することを特徴とする耐
隙間腐食性、耐誘性のすぐれた高純、高清浄ステンレス
鋼の製造方法。 ここでΔT℃−(連続鋳造時のタンプッシュにおける溶
鋼温度℃)−C溶鋼の凝固温度℃)
(3) C: o, oi ~ 0.1% by weight, Si: 3% or less, Mn: 2% or less, Cr: 14-26%, N
: 0.005 to 0.2 inch, P: 0.02 inch or less, S
: O, less than 001%, At: 0.02-0.2%, O:
Molten steel with a cleanliness of less than 0.003%, the sum of oxide inclusions and sulfide inclusions being 0.02 or less, and the remainder substantially consisting of Fe, is cast under a casting temperature condition of ΔT°C < 45°C. High-purity, high-clean stainless steel with excellent crevice corrosion resistance and induction resistance, characterized by continuous casting, heating or holding the resulting slab at a temperature not exceeding 1230°C, and then hot rolling. Method of manufacturing steel. Here, ΔT℃ - (molten steel temperature at tongue push during continuous casting (℃) - C solidification temperature of molten steel (℃))
(4)重量%でC:0.01〜0.1チ、Si:3%以
下、Mn : 2 %以下、Cr : 14〜26%、
N:0.O05〜0.2%、P:0.02%以下、S:
O,OO1チ未満、At:0.02〜0.2チ、O:0
.003チ未満、更に、Mo : 3%以下、Cu:2
%以下、Ni:2%以下、Ti:0.6%以下、V :
 0.02〜0.5 %、Nb:0.02〜0.2%、
B:0.01%以下の添加元素を1種又は2種以上を含
み酸化物系介在物と硫化物系介在物の和よシなる清浄度
が0.02以下であシ残部実質的にFeから成る溶鋼を
ΔT℃<:45℃の鋳造温度条件下で連続鋳造し、得ら
れた鋳片を1230℃を超えないように加熱あるいは保
熱した後、熱間圧延することを特徴とする耐隙間腐食性
、耐誘性のすぐれた高純、高清浄ステンレス鋼の製造方
法O ここでΔT℃=(連続鋳造時のタンプッシュにおける溶
鋼温度℃)−(溶鋼の縦1温度℃)
(4) C: 0.01 to 0.1% by weight, Si: 3% or less, Mn: 2% or less, Cr: 14 to 26%,
N:0. O05~0.2%, P: 0.02% or less, S:
O, OO less than 1 inch, At: 0.02 to 0.2 inch, O: 0
.. Less than 0.003%, furthermore, Mo: 3% or less, Cu: 2
% or less, Ni: 2% or less, Ti: 0.6% or less, V:
0.02-0.5%, Nb: 0.02-0.2%,
B: Contains one or more additive elements of 0.01% or less, and the cleanliness of the sum of oxide inclusions and sulfide inclusions is 0.02 or less, and the remainder is substantially Fe. Continuous casting of molten steel consisting of Manufacturing method of high-purity, high-cleanliness stainless steel with excellent crevice corrosion and induction resistance Here, ΔT°C = (molten steel temperature at tump push during continuous casting in °C) - (1 longitudinal temperature of molten steel in °C)
JP3788483A 1983-03-08 1983-03-08 High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof Granted JPS59166655A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3788483A JPS59166655A (en) 1983-03-08 1983-03-08 High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP23303089A JPH02270942A (en) 1983-03-08 1989-09-11 High-purity and high-cleanliness stainless steel excellent in crevice corrosion resistance and rust resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3788483A JPS59166655A (en) 1983-03-08 1983-03-08 High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP23303089A Division JPH02270942A (en) 1983-03-08 1989-09-11 High-purity and high-cleanliness stainless steel excellent in crevice corrosion resistance and rust resistance and its production

Publications (2)

Publication Number Publication Date
JPS59166655A true JPS59166655A (en) 1984-09-20
JPH0218379B2 JPH0218379B2 (en) 1990-04-25

Family

ID=12509964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3788483A Granted JPS59166655A (en) 1983-03-08 1983-03-08 High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof

Country Status (1)

Country Link
JP (1) JPS59166655A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174361A (en) * 1985-01-30 1986-08-06 Nippon Steel Corp Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPS6245457A (en) * 1985-08-20 1987-02-27 Nippon Stainless Steel Co Ltd Continuous casting method for titanium-containing steel
JP2005281833A (en) * 2004-03-31 2005-10-13 Jfe Steel Kk Production method of cold rolled stainless steel sheet having excellent bending workability
JP2016183400A (en) * 2015-03-26 2016-10-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in corrosion resistance of burring processing part end surface and manufacturing method therefor
CN108380835A (en) * 2018-04-17 2018-08-10 攀钢集团江油长城特殊钢有限公司 The low segregation air valve steel continuous casting billet of one kind and its manufacturing method
CN111254358A (en) * 2020-03-23 2020-06-09 江苏利淮钢铁有限公司 Production method of steel for track link of ultrahigh-purity crawler belt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383273C (en) * 2003-08-06 2008-04-23 日新制钢株式会社 Work-hardened material from stainless steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174361A (en) * 1985-01-30 1986-08-06 Nippon Steel Corp Low carbon martensitic stainless steel excelling in hardenability and rust resistance
JPH027390B2 (en) * 1985-01-30 1990-02-16 Nippon Steel Corp
JPS6245457A (en) * 1985-08-20 1987-02-27 Nippon Stainless Steel Co Ltd Continuous casting method for titanium-containing steel
JP2005281833A (en) * 2004-03-31 2005-10-13 Jfe Steel Kk Production method of cold rolled stainless steel sheet having excellent bending workability
JP4507666B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 Manufacturing method of stainless cold-rolled steel sheet with excellent bending workability
JP2016183400A (en) * 2015-03-26 2016-10-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in corrosion resistance of burring processing part end surface and manufacturing method therefor
CN108380835A (en) * 2018-04-17 2018-08-10 攀钢集团江油长城特殊钢有限公司 The low segregation air valve steel continuous casting billet of one kind and its manufacturing method
CN108380835B (en) * 2018-04-17 2020-03-27 攀钢集团江油长城特殊钢有限公司 Low-segregation gas valve steel continuous casting billet and manufacturing method thereof
CN111254358A (en) * 2020-03-23 2020-06-09 江苏利淮钢铁有限公司 Production method of steel for track link of ultrahigh-purity crawler belt

Also Published As

Publication number Publication date
JPH0218379B2 (en) 1990-04-25

Similar Documents

Publication Publication Date Title
KR870002190B1 (en) Corrosion resistant alloy
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP2001288544A (en) High purity ferritic stainless steel excellent in surface property and corrosion resistance and its production method
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JPH0820843A (en) Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production
JPH08283915A (en) Austenitic stainless steel excellent in workability
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP3502691B2 (en) Fitting material excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance and method for producing the same
JPS626730B2 (en)
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JPH1036911A (en) Production of ferritic stainless steel excellent in surface characteristic
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JPH0465141B2 (en)
JP2000178697A (en) Martensitic stainless steel excellent in corrosion resistance and weldability
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH02427B2 (en)
JP2705946B2 (en) Manufacturing method of high strength steel sheet with excellent SSC resistance
JPH0435551B2 (en)
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
JPH0247525B2 (en)
JPS63145711A (en) Production of high tension steel plate having excellent low temperature toughness
JPH0137454B2 (en)
JP4013515B2 (en) Structural stainless steel with excellent intergranular corrosion resistance
RU2002851C1 (en) Low-alloy steel
JP3887860B2 (en) Manufacturing method of steel sheet with excellent SCC resistance