JPH0435551B2 - - Google Patents

Info

Publication number
JPH0435551B2
JPH0435551B2 JP11950682A JP11950682A JPH0435551B2 JP H0435551 B2 JPH0435551 B2 JP H0435551B2 JP 11950682 A JP11950682 A JP 11950682A JP 11950682 A JP11950682 A JP 11950682A JP H0435551 B2 JPH0435551 B2 JP H0435551B2
Authority
JP
Japan
Prior art keywords
steel
stainless steel
corrosion resistance
workability
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11950682A
Other languages
Japanese (ja)
Other versions
JPS5913053A (en
Inventor
Masanori Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11950682A priority Critical patent/JPS5913053A/en
Publication of JPS5913053A publication Critical patent/JPS5913053A/en
Publication of JPH0435551B2 publication Critical patent/JPH0435551B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、耐食性、機械的性質及び溶接特性の
すぐれた安価なステンレス鋼に関するものであ
る。 (従来の技術) ステンレス鋼の用途が拡大するのに伴つて、耐
食性、機械的性質に優れ、鋼薄板としての加工性
にすぐれた安価なステンレス鋼を供給することが
望まれている。 従来、これら用途への材料としてSUS304鋼
(18%Cr−8%Ni鋼)やSUS430鋼(17%Cr鋼)
が知られているが、近来、さらに安価で、これら
ステンレス鋼に比し同等以上の特性を有するステ
ンレス鋼を提供することが要請されている。 (発明が解決しようとする課題) 本発明は、高価な合金元素を多量に添加するこ
となく、耐食性、機械的性質、及び溶接性に優れ
た安価なステンレス鋼を提供することを目的とす
る。 (課題を解決するための手段) 本発明の要旨とするところは、下記のとおりで
ある。 (1) 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15
%、Ni≦1%、Al≦0.2%、N≦0.05%、O≦
0.005%を含み、残部はFeおよび不可避的不純
物からなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+7Mn−11.5Cr−11.5Si−52Al
+189≧15% なる関係式を満足する成分組成を有することを
特徴とする耐食性、加工性及び溶接特性のすぐ
れたステンレス鋼。 (2) 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15
%、Ni≦1%、Al≦0.2%、N=≦0.05%、O
≦0.005%を含み、さらにMo≦1%、Cu≦0.5
%の1種または2種を含有し、残部はFe及び
不可避的不純物からなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを
特徴とする耐食性、加工性及び溶接特性のすぐ
れたステンレス鋼。 (3) 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15
%、Ni≦1%、Al≦0.2%、N≦0.05%、O≦
0.005%を含み、さらにMo≦1%、Cu≦0.5%
の1種または2種を含有し、さらにTi≦0.3%、
Nb≦0.3%、V≦0.7%の1種または2種以上を
含有し、残部はFe及び不可避的不純物からな
り、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを
特徴とする耐食性、加工性及び溶接特性のすぐ
れたステンレス鋼。 (4) 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15
%、Ni≦1%、Al≦0.2%、N≦0.05%、O≦
0.005%を含み、さらにMo≦1%、Cu≦0.5%
の1種または2種を含有し、さらにB≦0.01%
を含有し、残部はFe及び不可避的不純物から
なり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを
特徴とする耐食性、加工性及び溶接特性のすぐ
れたステンレス鋼。 (5) 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15
%、Ni≦1%、Al≦0.2%、N≦0.05%、O≦
0.005%を含み、さらにMo≦1%、Cu≦0.5%
の1種または2種を含有し、さらにTi≦0.3%、
Nb≦0.3%、V≦0.7%の1種または2種以上お
よびB≦0.01%を含有し、残部はFe及び不可避
的不純物からなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを
特徴とする耐食性、加工性及び溶接特性のすぐ
れたステンレス鋼。 以下、本発明を詳細に説明する。 本発明者等は、高価な合金元素を多量に添加す
ることなく、SUS304鋼等と同等以上の耐食性、
機械的性質、鋼薄板としての加工性、たとえばプ
レス成形性を有するステンレス鋼を得る手段につ
いて研究を重ねた結果、鋼を高純化することによ
つて、ステンレス鋼の耐食性を飛躍的に向上せし
め得ることを見出した。本発明者等は、この知見
に基づいて、低Cr鋼でありながらSUS430鋼(17
%Cr鋼)に匹敵する耐食性を有するステンレス
鋼の開発が可能であることを解明した。前記低
Cr鋼は軟質であるから、従来、ステンレス鋼の
冷間圧延に用いられている小径ワークロール多段
圧延機、たとえばセンジマー・ミルによつて圧延
することが必須ではなくなるから、生産性が格段
に高い普通鋼冷間圧延用のタンデム・ミルで容易
に圧延することができる。また、最終焼鈍もバツ
チ式の箱焼鈍ではなくて、生産性が格段に高い普
通鋼用の高速連続焼鈍ラインで処理することが可
能となる。而して、本発明鋼は、ステンレス鋼薄
板製造のための専用工程によらなくて、普通鋼製
造プロセスによつて製造することが可能となるか
ら、労働生産性、設備生産性を格段に高くするこ
とができ、製造コストを大幅に低減できる。 本発明者等はさらに、 (1) 耐食性や耐銹性が、SUS430鋼と同等以上で
あること、 (2) 鋼薄板としての加工性が、SUS430鋼と同等
以上であること、 (3) 溶接性や溶接部の耐食性等の特性が、
SUS430鋼と同等以上であること、 を目標特性とし、研究を進めた結果、本発明を完
成するに至つた。 以下に、本発明の要点を説明する。 本発明者等は、Cr含有量9%から19%程度ま
での広い範囲のCr合金について、ステンレス鋼
が具備すべき諸特性を検討した。その結果、上記
3つの条件を満たす合金は、Crが11.5〜15%で不
純物が極めて少ない高い純度の合金であることを
解明した。不純物の許容含有量は、C≦0.030%、
S≦0.002%、P≦0.020%、O≦0.005%である。
Sを20ppm以下、望ましくは10ppm以下に低減す
ると、低Cr鋼であつてもすぐれた耐食性や耐銹
性を発揮する。 第1図に、Cr含有量と鋼の発銹ランクの関係
を、S含有量水準別に示す。第1図から明らかな
ように、S含有量が20ppm以下(合金(2))になる
と、14%Cr鋼で17%Cr鋼に匹敵する耐銹性を発
揮する。 合金(3)は、S含有量を7ppmとし、C含有量を
0.01%としたものであり、Cr含有量が14%に達す
るまで極めてすぐれた耐銹性を発揮するが、Cr
含有量が15%を超えると、高温域での組織がフエ
ライト単相となり、Cの固溶度が減少し、粒界に
炭化物を析出して耐銹性が低下してくる。この点
で、合金(3)は、高温域でフエライト+オーステナ
イトの2相組織となる合金(1)、(2)とは挙動を異に
する。 Pは炭化物の析出を促進するから、Cと共に
Crとの間で次の関係を満足する範囲内に抑えら
れねばならない。 Cr+100(C+P)≦18 Oは50ppm以下でなければならない。これ以上
の含有量になると、酸化物系介在物が増加し、鋼
の耐銹性を劣化させる。 ステンレス鋼薄板の加工性および溶接性、溶接
部の耐食性に対しては、高温域での(α+γ)組
織でのγ量が大きな役割を果たしている。γ組織
がある量以上存在すると、変態が十分進み、薄板
のリジング性および深絞り性(r値)を良好なら
しめるとともに、溶接時の冷却中に、靭性や耐食
性にすぐれた低Cのマツシブマルテンサイトを形
成し、溶接部の機械的性質、耐食性を大幅に改善
する。このためには、C≦0.020%で、かつγP
15%である必要がある。そこで、γPはγポテンシ
ヤルであり、Castroによる以下の式によつて定
義される。 γP=420C+470N+23Ni+9Cu+7Mn−11.5 Cr−11.5Si−12Mo−23V−47Nb−49Ti−52Al+189 第2図に、低C、Fe−Cr合金(C≦0.002%、
N≦0.02%、Cr:9〜17%、Ni:0.1%)のγP
rとの関係を示す。 なお、Mo、V、Nb、Ti等は選択元素である。 上述のように、成分を制御することによつて、
ステンレス鋼に要求される特性上必要な要件は満
たされる。Crについては、その含有量が15%を
超えるとγPが低下し、粒界に炭化物が析出し、粒
界から発銹し易くなる。一方、Cr含有量が11.5%
未満では、ステンレス鋼の耐食性を発現すること
ができない。 以下に、本発明鋼の成分限定理由を説明する。 Cは低Crステンレス鋼において相変態を生ぜ
しめる。その含有量が0.03%を超えると、炭化物
として析出し、粒界腐食を招き易く、耐銹性を低
下させる。また、ステンレス鋼薄板の加工性の観
点からも、C含有量は可及的に少ない方が望まし
い。また、Cr、Pとの関連で、Cr+100(C+P)
≦18なる関係を満足しなければならない。炭化物
の析出が著しくなるからである。 Sは低Crステンレス鋼の耐銹性を損なう元素
である。従つて、その含有量は可及的に少ないほ
うがよく、多くとも0.0020%、望ましくは0.0010
%以下である。 Pは低Crステンレス鋼の耐銹性を損なう元素
である。従つて、その含有量は可及的に少ないほ
うがよく、多くとも0.020%である。また、Crと
Cとの関連で、Cr+100(C+P)≦18なる関係を
満足しなければならない。炭化物の析出を促進す
るからである。 Oは酸化物系介在物を生成し、ステンレス鋼の
耐銹性を劣化させる。特に、SやPの含有量を非
常に低くしたステンレス鋼において、その影響が
顕著となる。従つて、O含有量は0.0050%以下で
なければならない。 Crはステンレス鋼における必須の添加元素で
あつて、ステンレス鋼の耐食性を向上させる。
Cr含有量が11.5%未満では、耐食性が不十分とな
る。Cr含有量の上限は、多くの点から規制され
る。Cr含有量が15%を超えて多くなると、炭化
物を析出し易くなり、ステンレス鋼の耐銹性を劣
化させ、粒界腐食を生じ易くなる。また同じ理由
で、CおよびPとの関連において、Cr+100(C
+P)≦18なる関係を満足しなければならない。 また、ステンレス鋼薄板の加工性、溶接性の観
点から、高温で(α+γ)相を生ぜしめる必要が
あり、γP(γポテンシヤル)≧15%を満足しなけれ
ばならない。 ここで、γP=420C+470N+23Ni+9Cu+7Mn
−11.5Cr−11.5Si−12Mo−23V−47Nb−49Ti−
52Al+189で定義される。 而して、Cr含有量は、15%以下でかつ、Cr+
100(C+P)≦18およびγP(γポテンシヤル)≧15
%を満足しなければならない。 Siは脱酸剤として機能するほか、ステンレス鋼
の耐食性を向上せしめる。しかし、2%を超える
多量の添加は、ステンレス鋼を硬化させて好まし
くない。 Mnは脱酸剤として機能するほか、ステンレス
鋼の機械的性質を向上せしめるけれども、ステン
レス鋼の耐食性の面からは、その含有量は少ない
ほど好ましく、従つて、0.5%が上限となる。 Niはステンレス鋼の機械的性質や溶接特性を
向上させ、耐食性を向上させて好ましいけれど
も、1%を超えて添加すると、ステンレス鋼を硬
化させて好ましくない。 Nはステンレス鋼の機械的性質や耐食性に、さ
ほど影響しない。γPの制御をねらいとして、0.05
%以下の範囲内で添加する。0.05%を超えて添加
すると、ステンレス鋼を硬化させて好ましくな
い。 Alは脱酸剤として機能するほか、ステンレス
鋼の加工性を良好ならしめる。しかし、0.2%を
超えて添加しても効果が飽和する。 Mo、Cuはステンレス鋼の腐食速度そのものを
低下させて、耐食性を向上せしめる。かかる観点
から、Mo≦1%、Cu≦0.5%の範囲内でこれら
の1種または2種を選択的に添加する。 Ti、Nb、VはCrよりも炭化物を作り易く、
Cr23C6の生成を防止して粒界近傍での耐食性を向
上させる。 また、Ti、Nb、Vは強力な窒化物形成元素で
あり、Nを固定することによつて、ステンレス鋼
を軟質化させるとともに加工性を向上させる。し
かし、これらの元素を過度に添加すると、ステン
レス鋼を硬化させて好ましくない。従つて、Ti
≦0.3%、Nb≦0.3%、V≦0.7%の範囲内でこれ
らの1種または2種以上を選択的に添加する。 またBも鋼の脱酸が十分な条件下では、強力に
窒化物(BN)を形成し、Nを固定することによ
つてステンレス鋼を軟質化させるととも加工性を
向上させる。しかし、過度に添加するとステンレ
ス鋼を硬化させて好ましくない。従つて、B≦
0.01%の範囲内で添加する。 しかしながら、特にステンレス鋼の軟化と再結
晶を容易にし、高い生産性下での製造を狙いとす
る場合には、主要合金元素の添加量も規制する必
要があり、Cr/15+(Ni+Mo+Cu)+4(Ti+
Nb)≦3%を満足しなければならない。 (実施例) LD転炉で製鋼し、これをVACで処理して、第
1表に示す組成を有するステンレス鋼を溶製し
た。溶製に際しては、特に低C化、低S化、低P
化に留意し、取鍋において、脱硫用フラツクス、
脱燐用フラツクスのインジエクシヨンを実施し
た。また、溶製に際しては、Alによる脱酸を十
分に行つてOの低減を図つた。こうして得られた
溶鋼を連続鋳造してスラブとし、これを熱間圧延
して巻き取り、ストリツプコイルとした。 次いで、熱延板焼鈍を行うことなく酸洗し、第
1表に示す本発明鋼番(8)、(9)の熱延板について
は、センジマー・ミルによる冷間圧延→焼鈍・酸
洗を施した。 第1表に示す鋼番(1)〜(7)、(10)〜(18)の熱延板
については、普通鋼圧延用のタンデム・ミルによ
る冷間圧延→連続焼鈍ラインによる焼鈍を施し
た。この連続焼鈍ラインによる焼鈍の条件は、露
点:−40℃のHNXガス雰囲気中、800〜830℃×
3分間である。 こうして得られた製品の機械的性質を測定し
た。 なお、比較鋼は、低C−12Cr−Ti系鋼であつ
て、従来、タンデム・ミルによる冷間圧延→連続
焼鈍ラインによる焼鈍を施して製造されている鋼
種である比較鋼1と、SUS430鋼(比較鋼2、
3)を、ゼンジマー・ミルによる冷間圧延と箱焼
鈍・酸洗のステンレス鋼製造専用プロセスで処理
した。 製品の機械的性質の測定結果を、第2表に示
す。 第2表中の発銹ランクは、JIS Z2371の塩水噴
霧試験方法に準じた試験によつて24時間試験した
結果を示すものである。即ち、JIS Z2371の塩水
噴霧試験方法において規定される塩濃度5±0.5
%の塩水に、発銹を加速する目的で過酸化水素を
0.2重量%添加した溶液を試料に噴霧し、24時間
経過した後の表面状況を示すものである。この試
験方法は新日本製鐵株式会社の試験方法であり、
A〜Gのランクは下記の如く規定する。 A:発銹なし B:軽度のシミ状発銹 C:点状発銹 D:点状散在発銹 E:連続発銹 F:広範囲の発銹 G:全面発銹 上記ランクに基づき、A、C、E、Gに該当す
る標本を準備しておき、試料をこの標本と比較し
てA〜Gにランク付けしたものである。製品の耐
銹性については、30℃の0.5%NaCl+0.2%H2O2
液を製品に24時間噴霧したときの発銹程度によつ
て評価した。第2表から明らかなように、比較鋼
がG、Eランクであるのに比し、本発明鋼は低
Cr鋼であるにも拘わらずA〜Dランクの耐銹性
を示している。 ステンレス鋼薄板の加工性を、JIS5号引張試験
片を作成し、これによつて調査した。普通鋼の製
造プロセスによつて製造した本発明鋼の鋼番(1)〜
(7)および(10)〜(18)と、ステンレス鋼製造専用プ
ロセスで製造した本発明鋼の鋼番(8)、(9)とも、比
較鋼(2)、(3)として示すSUS430鋼の特性を上回つ
ている。また、冷間圧延後の再結晶焼鈍条件も、
鋼番(1)〜(7)、(10)〜(18)までが、830℃×1分間
以内の条件で再結晶を完了することを示してい
る。さらに、本発明鋼は、溶接部の耐銹性につい
ても比較鋼よりも優れた特性を示した。
(Industrial Application Field) The present invention relates to an inexpensive stainless steel with excellent corrosion resistance, mechanical properties, and welding properties. (Prior Art) As the uses of stainless steel expand, it is desired to supply inexpensive stainless steel that has excellent corrosion resistance, mechanical properties, and excellent workability as a thin steel plate. Conventionally, SUS304 steel (18% Cr-8% Ni steel) and SUS430 steel (17% Cr steel) have been used as materials for these applications.
However, in recent years, there has been a demand for a stainless steel that is cheaper and has properties equal to or better than those of these stainless steels. (Problems to be Solved by the Invention) An object of the present invention is to provide an inexpensive stainless steel with excellent corrosion resistance, mechanical properties, and weldability without adding large amounts of expensive alloying elements. (Means for Solving the Problems) The gist of the present invention is as follows. (1) By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15
%, Ni≦1%, Al≦0.2%, N≦0.05%, O≦
0.005%, the remainder consists of Fe and unavoidable impurities, Cr + 100 (C + P) ≦ 18% γ p = 420C + 470N + 23Ni + 7Mn - 11.5Cr - 11.5Si - 52Al
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression +189≧15%. (2) By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15
%, Ni≦1%, Al≦0.2%, N=≦0.05%, O
Contains ≦0.005%, further Mo≦1%, Cu≦0.5
%, and the remainder consists of Fe and unavoidable impurities, Cr + 100 (C + P) ≦ 18% γ p = 420C + 470N + 23Ni + 9Cu + 7Mn - 11.5Cr - 11.5Si - 12Mo - 23V - 47Nb - 49Ti - 52Al + 189 ≧ 15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %. (3) By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15
%, Ni≦1%, Al≦0.2%, N≦0.05%, O≦
Contains 0.005%, further Mo≦1%, Cu≦0.5%
Contains one or two of the following, and further contains Ti≦0.3%,
Contains one or more of Nb≦0.3% and V≦0.7%, the remainder consists of Fe and unavoidable impurities, Cr + 100 (C + P) ≦ 18% γ p = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5Cr -11.5Si-12Mo- 23V−47Nb−49Ti−52Al+189≧15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %. (4) By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15
%, Ni≦1%, Al≦0.2%, N≦0.05%, O≦
Contains 0.005%, further Mo≦1%, Cu≦0.5%
Contains one or two of the following, and further contains B≦0.01%
Cr+100 (C+P)≦18% γ p =420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %. (5) By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15
%, Ni≦1%, Al≦0.2%, N≦0.05%, O≦
Contains 0.005%, further Mo≦1%, Cu≦0.5%
Contains one or two of the following, and further contains Ti≦0.3%,
Contains one or more of Nb≦0.3%, V≦0.7%, and B≦0.01%, the remainder consists of Fe and inevitable impurities, Cr+100 (C+P)≦18% γ p = 420C + 470N + 23Ni + 9Cu + 7Mn−11.5Cr − 11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %. The present invention will be explained in detail below. The present inventors have achieved corrosion resistance equivalent to or higher than that of SUS304 steel without adding large amounts of expensive alloying elements.
As a result of repeated research on the means to obtain stainless steel with mechanical properties, workability as a thin steel plate, and press formability, we have found that the corrosion resistance of stainless steel can be dramatically improved by highly purifying the steel. I discovered that. Based on this knowledge, the present inventors have developed SUS430 steel (17
We found that it is possible to develop stainless steel with corrosion resistance comparable to that of steel (%Cr steel). The low
Since Cr steel is soft, it no longer needs to be rolled using a small-diameter work roll multi-roll mill, such as a Sendzimer mill, which is conventionally used for cold rolling stainless steel, making it much more productive. It can be easily rolled in a tandem mill for cold rolling ordinary steel. Further, the final annealing can be performed not by batch-type box annealing but by a high-speed continuous annealing line for common steel, which has much higher productivity. Therefore, the steel of the present invention can be manufactured using a normal steel manufacturing process without using a dedicated process for manufacturing thin stainless steel sheets, so labor productivity and equipment productivity are significantly increased. It is possible to significantly reduce manufacturing costs. The present inventors further specified that (1) the corrosion resistance and rust resistance should be equivalent to or higher than SUS430 steel, (2) the workability as a thin steel plate should be equal to or higher than that of SUS430 steel, and (3) welding. properties such as corrosion resistance and corrosion resistance of welded parts,
The target properties were to be equivalent to or better than SUS430 steel, and as a result of research, the present invention was completed. The main points of the present invention will be explained below. The present inventors studied various properties that stainless steel should have for a wide range of Cr alloys with a Cr content of about 9% to 19%. As a result, it was found that an alloy that satisfies the above three conditions is a high purity alloy with a Cr content of 11.5 to 15% and extremely few impurities. The permissible content of impurities is C≦0.030%,
S≦0.002%, P≦0.020%, and O≦0.005%.
When S is reduced to 20 ppm or less, preferably 10 ppm or less, even low Cr steel exhibits excellent corrosion resistance and rust resistance. Figure 1 shows the relationship between the Cr content and the rusting rank of steel by S content level. As is clear from Figure 1, when the S content is 20 ppm or less (alloy (2)), 14% Cr steel exhibits rust resistance comparable to 17% Cr steel. Alloy (3) has an S content of 7 ppm and a C content of
0.01%, and exhibits extremely excellent rust resistance until the Cr content reaches 14%.
When the content exceeds 15%, the structure at high temperatures becomes a single ferrite phase, the solid solubility of C decreases, carbides precipitate at grain boundaries, and rust resistance decreases. In this respect, alloy (3) behaves differently from alloys (1) and (2), which have a two-phase structure of ferrite and austenite in a high temperature range. Since P promotes the precipitation of carbides, it should be used together with C.
Cr must be kept within a range that satisfies the following relationship. Cr+100 (C+P)≦18 O must be less than 50 ppm. If the content exceeds this range, oxide inclusions will increase and the rust resistance of the steel will deteriorate. The amount of γ in the (α+γ) structure at high temperatures plays a major role in the workability and weldability of stainless steel thin plates and the corrosion resistance of welded parts. When a certain amount or more of γ structure is present, the transformation progresses sufficiently to improve the rigidity and deep drawability (r value) of the thin plate, and during cooling during welding, a low C material with excellent toughness and corrosion resistance is formed. Forms martensite, greatly improving the mechanical properties and corrosion resistance of welds. For this purpose, C≦0.020% and γ P
Must be 15%. Therefore, γ P is the γ potential and is defined by the following equation by Castro. γ P =420C+470N+23Ni+9Cu+7Mn-11.5 Cr-11.5Si-12Mo-23V-47Nb-49Ti-52Al+189 Figure 2 shows low C, Fe-Cr alloy (C≦0.002%,
The relationship between γ P and r for N≦0.02%, Cr: 9 to 17%, Ni: 0.1%) is shown. Note that Mo, V, Nb, Ti, etc. are selective elements. As mentioned above, by controlling the ingredients,
The necessary requirements for the properties required of stainless steel are met. As for Cr, if its content exceeds 15%, γ P decreases, carbides precipitate at grain boundaries, and rusting is likely to occur from grain boundaries. Meanwhile, Cr content is 11.5%
If it is less than that, the corrosion resistance of stainless steel cannot be exhibited. The reasons for limiting the composition of the steel of the present invention will be explained below. C causes a phase transformation in low Cr stainless steel. When its content exceeds 0.03%, it precipitates as carbide, tends to cause intergranular corrosion, and reduces rust resistance. Furthermore, from the viewpoint of workability of the stainless steel thin plate, it is desirable that the C content be as low as possible. Also, in relation to Cr and P, Cr+100 (C+P)
The relationship ≦18 must be satisfied. This is because carbide precipitation becomes significant. S is an element that impairs the rust resistance of low Cr stainless steel. Therefore, the content should be as low as possible, at most 0.0020%, preferably 0.0010%.
% or less. P is an element that impairs the rust resistance of low Cr stainless steel. Therefore, the content should be as low as possible, at most 0.020%. Further, in relation to Cr and C, the relationship Cr+100(C+P)≦18 must be satisfied. This is because it promotes precipitation of carbides. O generates oxide inclusions and deteriorates the rust resistance of stainless steel. This effect is particularly noticeable in stainless steel with extremely low S and P contents. Therefore, the O content must be 0.0050% or less. Cr is an essential additive element in stainless steel and improves the corrosion resistance of stainless steel.
If the Cr content is less than 11.5%, corrosion resistance will be insufficient. The upper limit of Cr content is regulated from many points of view. When the Cr content exceeds 15%, carbides tend to precipitate, deteriorating the rust resistance of stainless steel and causing intergranular corrosion. Also, for the same reason, in relation to C and P, Cr+100 (C
+P)≦18 must be satisfied. Furthermore, from the viewpoint of workability and weldability of stainless steel thin plates, it is necessary to generate an (α+γ) phase at high temperatures, and γ P (γ potential) ≧15% must be satisfied. Here, γ P = 420C + 470N + 23Ni + 9Cu + 7Mn
−11.5Cr−11.5Si−12Mo−23V−47Nb−49Ti−
Defined as 52Al+189. Therefore, the Cr content is 15% or less and Cr+
100(C+P)≦18 and γ P (γ potential)≧15
% must be satisfied. In addition to functioning as a deoxidizing agent, Si improves the corrosion resistance of stainless steel. However, addition of a large amount exceeding 2% is undesirable because it hardens stainless steel. Although Mn functions as a deoxidizing agent and improves the mechanical properties of stainless steel, from the viewpoint of corrosion resistance of stainless steel, the lower the content, the better, and therefore the upper limit is 0.5%. Ni is preferable because it improves the mechanical properties and welding properties of stainless steel, and improves corrosion resistance, but when added in an amount exceeding 1%, it hardens the stainless steel, which is not preferable. N does not significantly affect the mechanical properties and corrosion resistance of stainless steel. 0.05 with the aim of controlling γ P
% or less. Adding more than 0.05% is undesirable as it hardens stainless steel. In addition to functioning as a deoxidizing agent, Al also improves the workability of stainless steel. However, even if it is added in excess of 0.2%, the effect is saturated. Mo and Cu reduce the corrosion rate of stainless steel and improve its corrosion resistance. From this point of view, one or two of these types are selectively added within the ranges of Mo≦1% and Cu≦0.5%. Ti, Nb, and V form carbides more easily than Cr,
Prevents the formation of Cr 23 C 6 and improves corrosion resistance near grain boundaries. Furthermore, Ti, Nb, and V are strong nitride-forming elements, and by fixing N, they soften stainless steel and improve workability. However, excessive addition of these elements is undesirable as it hardens stainless steel. Therefore, Ti
One or more of these are selectively added within the ranges of ≦0.3%, Nb≦0.3%, and V≦0.7%. B also strongly forms nitrides (BN) under conditions where steel is sufficiently deoxidized, and by fixing N, it softens stainless steel and improves workability. However, adding too much will harden stainless steel, which is not preferable. Therefore, B≦
Add within the range of 0.01%. However, especially when aiming to facilitate the softening and recrystallization of stainless steel and manufacture it under high productivity, it is necessary to control the amount of main alloying elements added. Ti+
Nb) ≦3%. (Example) Steel was produced in an LD converter and treated with VAC to melt stainless steel having the composition shown in Table 1. When melting, especially low C, low S, low P
In the ladle, desulfurization flux,
Injection of flux for dephosphorization was carried out. In addition, during melting, sufficient deoxidation with Al was performed to reduce O content. The molten steel thus obtained was continuously cast into a slab, which was then hot rolled and wound to form a strip coil. Next, the hot-rolled sheets were pickled without annealing, and the hot-rolled sheets of the invention steel numbers (8) and (9) shown in Table 1 were cold-rolled with a Sendzimer mill → annealed and pickled. provided. Hot-rolled sheets of steel numbers (1) to (7) and (10) to (18) shown in Table 1 were cold rolled by a tandem mill for ordinary steel rolling and then annealed by a continuous annealing line. . The conditions for annealing using this continuous annealing line are: 800 to 830°C in an HNX gas atmosphere with a dew point of -40°C.
It is 3 minutes. The mechanical properties of the product thus obtained were measured. The comparative steels are Comparative Steel 1, which is a low C-12Cr-Ti steel, and is conventionally manufactured by cold rolling in a tandem mill and then annealing in a continuous annealing line, and SUS430 steel. (Comparative steel 2,
3) was processed using a special process for producing stainless steel, including cold rolling using a Sendzimer mill, box annealing, and pickling. The results of measuring the mechanical properties of the products are shown in Table 2. The rusting rank in Table 2 shows the results of a 24-hour test based on the salt spray test method of JIS Z2371. In other words, the salt concentration specified in the JIS Z2371 salt spray test method is 5 ± 0.5.
% of salt water, hydrogen peroxide is added for the purpose of accelerating rusting.
This figure shows the surface condition after 24 hours had elapsed after spraying a solution containing 0.2% by weight onto a sample. This test method is the test method of Nippon Steel Corporation.
The ranks of A to G are defined as follows. A: No rusting B: Mild spot-like rusting C: Spot-like rusting D: Spot-like scattered rusting E: Continuous rusting F: Wide-spread rusting G: Full-scale rusting Based on the above rank, A, C , E, and G are prepared in advance, and the samples are compared with these samples and ranked from A to G. For product rust resistance, 0.5% NaCl + 0.2 % H2O2 at 30℃
Evaluation was made based on the degree of rusting when the liquid was sprayed onto the product for 24 hours. As is clear from Table 2, compared to the comparative steels, which have G and E ranks, the steel of the present invention has a low rank.
Despite being made of Cr steel, it exhibits rust resistance of ranks A to D. The workability of stainless steel thin plates was investigated by preparing JIS No. 5 tensile test pieces. Steel numbers (1) ~ of the steel of the present invention manufactured by the manufacturing process of ordinary steel
(7) and (10) to (18), as well as the steel numbers (8) and (9) of the inventive steel manufactured using a dedicated stainless steel manufacturing process, are the same as those of SUS430 steel shown as comparative steels (2) and (3). It exceeds its characteristics. In addition, the recrystallization annealing conditions after cold rolling are
It is shown that steel numbers (1) to (7) and (10) to (18) complete recrystallization under conditions of 830° C. for 1 minute or less. Furthermore, the steel of the present invention also exhibited better rust resistance in welded areas than the comparative steel.

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明によれば、高価な合金元素を多量に添加
することなく、耐食性、機械的性質及び溶接部の
機械的性質、耐食性にすぐれたステンレス鋼を得
ることができるから、耐食性、機械的性質のすぐ
れたステンレス鋼を安価に供給できる。
[Table] (Effects of the invention) According to the present invention, stainless steel with excellent corrosion resistance, mechanical properties, mechanical properties of welded parts, and corrosion resistance can be obtained without adding large amounts of expensive alloying elements. Therefore, stainless steel with excellent corrosion resistance and mechanical properties can be supplied at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Cr含有量と発銹ランクの関係を、
C、S含有量水準別に示す図、第2図は、低C、
Fe−Cr合金におけるγP(γポテンシヤル)と製品
のr値の関係を示す図である。
Figure 1 shows the relationship between Cr content and rusting rank.
Figure 2, which shows the C and S content levels, shows low C,
FIG. 2 is a diagram showing the relationship between γ P (γ potential) and the r value of a product in a Fe-Cr alloy.

Claims (1)

【特許請求の範囲】 1 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15%、
Ni≦1%、Al≦0.2%、N≦0.05%、O≦0.005%
を含み、残部はFeおよび不可避的不純物からな
り、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+7Mn−11.5Cr−11.5Si−52Al+
189≧15% なる関係式を満足する成分組成を有することを特
徴とする耐食性、加工性及び溶接特性のすぐれた
ステンレス鋼。 2 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15%、
Ni≦1%、Al≦0.2%、N≦0.05%、O≦0.005%
を含み、さらにMo≦1%、Cu≦0.5%の1種ま
たは2種を含有し、残部はFe及び不可避的不純
物からなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを特
徴とする耐食性、加工性及び溶接特性のすぐれた
ステンレス鋼。 3 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15%、
Ni≦1%、Al≦0.2%、N≦0.05%、O≦0.005%
を含み、さらにMo≦1%、Cu≦0.5%の1種ま
たは2種を含有し、さらにTi≦0.3%、Nb≦0.3
%、V≦0.7%の1種または2種以上を含有し、
残部はFe及び不可避的不純物からなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを特
徴とする耐食性、加工性及び溶接特性のすぐれた
ステンレス鋼。 4 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15%、
Ni≦1%、Al≦0.2%、N≦0.05%、O≦0.005%
を含み、さらにMo≦1%、Cu≦0.5%の1種ま
たは2種を含有し、さらにB≦0.01%を含有し、
残部はFe及び不可避的不純物からなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧
15% なる関係式を満足する成分組成を有することを特
徴とする耐食性、加工性及び溶接特性のすぐれた
ステンレス鋼。 5 重量で、C≦0.030%、Si≦2.0%、Mn≦0.5
%、P≦0.020%、S≦0.002%、Cr:11.5〜15%、
Ni≦1%、Al≦0.2%、N≦0.05%、O≦0.005%
を含み、さらにMo≦1%、Cu≦0.5%の1種ま
たは2種を含有し、さらにTi≦0.3%、Nb≦0.3
%、V≦0.7%の1種または2種以上およびB≦
0.01%を含有し、残部はFe及び不可避的不純物か
らなり、 Cr+100(C+P)≦18% γp=420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
% なる関係式を満足する成分組成を有することを特
徴とする耐食性、加工性及び溶接特性のすぐれた
ステンレス鋼。
[Claims] 1. By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15%,
Ni≦1%, Al≦0.2%, N≦0.05%, O≦0.005%
Cr + 100 (C + P) ≦ 18% γ p = 420C + 470N + 23Ni + 7Mn - 11.5Cr - 11.5Si - 52Al +
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: 189≧15%. 2 By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15%,
Ni≦1%, Al≦0.2%, N≦0.05%, O≦0.005%
and further contains one or two of Mo≦1% and Cu≦0.5%, the remainder consisting of Fe and inevitable impurities, Cr+100 (C+P)≦18% γ p = 420C + 470N + 23Ni + 9Cu + 7Mn-11.5Cr -11.5Si −12Mo−23V−47Nb−49Ti−52Al+189≧15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %. 3 By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15%,
Ni≦1%, Al≦0.2%, N≦0.05%, O≦0.005%
Contains one or both of Mo≦1%, Cu≦0.5%, Ti≦0.3%, Nb≦0.3
%, containing one or more types of V≦0.7%,
The remainder consists of Fe and unavoidable impurities, Cr+100(C+P)≦18% γ p =420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %. 4 By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15%,
Ni≦1%, Al≦0.2%, N≦0.05%, O≦0.005%
, further contains one or two of Mo≦1%, Cu≦0.5%, and further contains B≦0.01%,
The remainder consists of Fe and unavoidable impurities, Cr+100 (C+P)≦18% γ p =420C+470N+23Ni+9Cu+7Mn−11.5Cr −11.5Si−12Mo−23V−47Nb−49Ti−52Al+189≧
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: 15%. 5 By weight, C≦0.030%, Si≦2.0%, Mn≦0.5
%, P≦0.020%, S≦0.002%, Cr: 11.5-15%,
Ni≦1%, Al≦0.2%, N≦0.05%, O≦0.005%
Contains one or both of Mo≦1%, Cu≦0.5%, Ti≦0.3%, Nb≦0.3
%, one or more types of V≦0.7% and B≦
0.01%, the remainder consists of Fe and unavoidable impurities, Cr + 100 (C + P) ≦ 18% γ p = 420C + 470N + 23Ni + 9Cu + 7Mn - 11.5Cr - 11.5Si - 12Mo - 23V - 47Nb - 49Ti - 52Al + 189 ≧ 15
A stainless steel with excellent corrosion resistance, workability, and welding properties, characterized by having a composition that satisfies the relational expression: %.
JP11950682A 1982-07-09 1982-07-09 Stainless steel with superior corrosion resistance, workability and weldability Granted JPS5913053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11950682A JPS5913053A (en) 1982-07-09 1982-07-09 Stainless steel with superior corrosion resistance, workability and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11950682A JPS5913053A (en) 1982-07-09 1982-07-09 Stainless steel with superior corrosion resistance, workability and weldability

Publications (2)

Publication Number Publication Date
JPS5913053A JPS5913053A (en) 1984-01-23
JPH0435551B2 true JPH0435551B2 (en) 1992-06-11

Family

ID=14762941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11950682A Granted JPS5913053A (en) 1982-07-09 1982-07-09 Stainless steel with superior corrosion resistance, workability and weldability

Country Status (1)

Country Link
JP (1) JPS5913053A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173864A (en) * 1984-09-17 1986-04-16 Kawasaki Steel Corp Martensitic stainless steel sheet having superior oxidation resistance and workability and its manufacture
JPS63213640A (en) * 1987-02-28 1988-09-06 Nippon Stainless Steel Co Ltd Stainless steel for heat transfer pipe-supporting plate in steam generator
JPH0826436B2 (en) * 1990-08-03 1996-03-13 日本鋼管株式会社 Ferritic stainless steel excellent in press formability and surface characteristics and method for producing the same
JP4624691B2 (en) * 2004-02-13 2011-02-02 新日鐵住金ステンレス株式会社 Method for producing ferritic stainless steel slab
JP5565365B2 (en) 2011-04-01 2014-08-06 株式会社デンソー Rotor for rotating electrical machine and method for manufacturing the same

Also Published As

Publication number Publication date
JPS5913053A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
US20090071575A1 (en) Hot rolled dual phase steel sheet, and method of making the same
KR20050094408A (en) A steel composition for the production of cold rolled multiphase steel products
EP0130220B1 (en) Corrosion-resistant alloy
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
KR20080061853A (en) High strength zn-coated steel sheet having excellent mechanical properites and surface quality and the method for manufacturing the same
US4256486A (en) Martensitic stainless steel having excellent weldability and workability for structural use
JPH08283915A (en) Austenitic stainless steel excellent in workability
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPS631369B2 (en)
JPH0435551B2 (en)
RU2551324C1 (en) Manufacturing method of strips of low-alloyed weld steel
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
RU2348703C2 (en) Method of candies production
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP2005187837A (en) High strength steel sheet for automobile fuel tank having excellent press moldability, corrosion resistance and secondary working properties, and its production method
JP4351465B2 (en) Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP2002167653A (en) Stainless steel having excellent workability and weldability
JP2864966B2 (en) Continuously annealed cold rolled steel sheet with excellent balance between deep drawability and deep draw resistance
JPH01201445A (en) Ferritic stainless steel having excellent workability and corrosion resistance
JPH02270942A (en) High-purity and high-cleanliness stainless steel excellent in crevice corrosion resistance and rust resistance and its production
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
JP3508698B2 (en) Stainless steel hot rolled steel strip for civil and building structures with excellent initial rust resistance
JP3567280B2 (en) Extremely soft austenitic stainless steel
CN109207857A (en) A kind of industrial robot anticorrosive wear-resistant material and its manufacturing method
JPH04333526A (en) Hot rolled high tensile strength steel plate having high ductility and its production