JP2002294408A - Iron-based vibration damping alloy and manufacturing method therefor - Google Patents

Iron-based vibration damping alloy and manufacturing method therefor

Info

Publication number
JP2002294408A
JP2002294408A JP2001100837A JP2001100837A JP2002294408A JP 2002294408 A JP2002294408 A JP 2002294408A JP 2001100837 A JP2001100837 A JP 2001100837A JP 2001100837 A JP2001100837 A JP 2001100837A JP 2002294408 A JP2002294408 A JP 2002294408A
Authority
JP
Japan
Prior art keywords
less
iron
alloy
damping alloy
vibration damping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001100837A
Other languages
Japanese (ja)
Inventor
Tatsuya Kumagai
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001100837A priority Critical patent/JP2002294408A/en
Publication of JP2002294408A publication Critical patent/JP2002294408A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferromagnetic iron-based vibration damping alloy having an extremely high loss-factor η of 0.05 or more, and a manufacturing method therefor. SOLUTION: The iron-based vibration damping alloy includes, by mass, 0.007% or less C, 1-3.5% Si, 0.4% or less Mn, 0.02% or less P, 0.01% or less S, 2-9% Cr, 1-20% Co, 0.2-5% Al, 0.007% or less N, and preferably, further 0.0005-0.01% B and/or 0.1-1% Cu, and the balance Fe and unavoidable impurities. In addition, preferably, the alloy has λ100 ×μmax of 0.25 or more, which is the product of magnetostriction constant of orientation (100) λ100 and maximum permeability μmax . The manufacturing method is characterized by heating the alloy to a temperature of Ac3 point or higher and 1200 or less, rolling it to a finishing temperature of Ar1 or higher with the reduction at a temperature of Ar3 +50 deg.C-Ar3 , of 45% or higher, and then heat treating it to keep it at 830 deg.C or higher for 90 minutes or longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い制振性を有す
る鉄系制振合金およびその製造方法に関わるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based damping alloy having high damping properties and a method for producing the same.

【0002】[0002]

【従来の技術】騒音・振動対策に対する社会的ニーズは
ますます高まっている。騒音・振動防止方法はその対象
によりさまざまであるが、ひとつの手段として、材料自
体の振動を抑制する方法がある。例えば、樹脂を鋼板に
サンドイッチした制振鋼板は、樹脂と鋼板とのずり変形
により振動を吸収するもので、多くの使用実績もある材
料であるが、溶接性や加工性が必ずしも良くないため、
構造材料としての適用には限界がある。
2. Description of the Related Art Social needs for noise and vibration countermeasures are increasing. Although there are various methods for preventing noise and vibration depending on the object, one method is to suppress the vibration of the material itself. For example, a vibration damping steel sheet in which resin is sandwiched between steel sheets absorbs vibrations due to shear deformation between the resin and the steel sheet, and is a material that has been used in many applications.
There is a limit to its application as a structural material.

【0003】一方、構造材料そのもののもつ減衰能によ
りこれらを抑制しようとする考え方があり、そのような
機能を持つ金属材料を制振合金という。その代表的なも
のには、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスを利用した、いわゆる強磁性
体型制振合金がある。強磁性体型制振合金には、例え
ば、特開平4−99148号公報、特開昭52−731
18号公報、特開平6−220583号公報、特開平6
−258982号公報など、Al、Si、Crなどを含
有する鉄系材料、特開平10−72643号公報のよう
に鋼材の(100)方位集合組織を強化することにより
制振性を高めた鉄系材料などがある。
[0003] On the other hand, there is a concept of suppressing these by the damping ability of the structural material itself, and a metal material having such a function is called a vibration damping alloy. A typical example is a so-called ferromagnetic damping alloy utilizing hysteresis by irreversible motion of domain wall motion under the action of alternating stress due to vibration. For example, Japanese Patent Application Laid-Open No. 4-99148 and Japanese Patent Application Laid-Open No.
No. 18, JP-A-6-220583, JP-A-6-220583
No. 2,589,982, etc., an iron-based material containing Al, Si, Cr and the like, and an iron-based material having enhanced vibration damping properties by strengthening the (100) orientation texture of a steel material as disclosed in JP-A-10-72643. There are materials.

【0004】これら既存の強磁性体型制振合金の制振性
能を示す指数である損失係数ηは、いずれも高々0.0
4程度である。樹脂を鋼板にサンドイッチした制振鋼板
の損失係数ηが概ね0.1以上であるのに比べると制振
性はやや劣るものであった。加えて、強磁性体型制振合
金では加工や溶接によって歪が不可された状態では制振
性が劣るという性質がある。構造材料として用いられる
際には加工や溶接が不可欠であって材料への歪の負荷は
避けられないことから、加工や溶接の後、歪を除去する
ための熱処理が実施できない場合には、実用的に十分な
制振性能が発揮されないことも多かった。そのため、鉄
系の制振合金は比較的安価な材料であるにもかかわら
ず、構造材料として広く使用されるには至っていない。
このようなことから、従来の鉄系制振合金よりも一層高
い制振性を有し、ある程度の歪が負荷された場合にも実
用上有効な制振性能を発揮できる鉄系制振合金材料が望
まれている。
The loss coefficient η, which is an index indicating the damping performance of these existing ferromagnetic damping alloys, is at most 0.0
It is about 4. The damping property of the damping steel sheet obtained by sandwiching the resin on the steel sheet was slightly inferior to that of the loss coefficient η of about 0.1 or more. In addition, the ferromagnetic material type damping alloy has a property that the vibration damping property is inferior when distortion is impossible by processing or welding. When used as a structural material, processing and welding are indispensable and load of strain on the material is unavoidable, so if heat treatment to remove the strain cannot be performed after processing or welding, practical use In many cases, sufficient vibration suppression performance was not exhibited. For this reason, the iron-based damping alloy is not widely used as a structural material even though it is a relatively inexpensive material.
For this reason, an iron-based damping alloy material that has higher damping properties than conventional iron-based damping alloys and can exhibit practically effective damping performance even when a certain amount of strain is applied Is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、0.05以
上の極めて高い損失係数ηを有し、かつ従来材並の加工
性や溶接性は維持していて構造材料として取り扱いやす
い強磁性体型鉄系制振合金およびその製造方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a ferromagnetic material which has an extremely high loss coefficient η of 0.05 or more, maintains the workability and weldability of the conventional material, and is easy to handle as a structural material. An object of the present invention is to provide an iron-based damping alloy and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は上記事情に鑑み
なされたもので、基本的には振動による交番応力作用下
での磁壁移動の非可逆運動によるヒステリシスに起因し
た制振効果を利用するものであり、磁壁移動に有害な介
在物や析出物を生成させる不純物などを極力低減した純
鉄系成分をベースとしている。本発明の主旨とするとこ
ろは、 (1)質量%で、C:0.007%以下、Si:1〜
3.5%、Mn:0.4%以下、P:0.02%以下、
S:0.01%以下、Cr:2〜9%、Co:1〜20
%、Al:0.2〜5%、N:0.007%以下を含有
し、残部Feおよび不可避的不純物からなることを特徴
とする鉄系制振合金。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and basically utilizes a vibration damping effect caused by hysteresis due to irreversible motion of domain wall motion under the action of alternating stress due to vibration. It is based on a pure iron-based component that has reduced as much as possible impurities and inclusions that are harmful to domain wall movement. The gist of the present invention is as follows: (1) In mass%, C: 0.007% or less, Si: 1 to
3.5%, Mn: 0.4% or less, P: 0.02% or less,
S: 0.01% or less, Cr: 2 to 9%, Co: 1 to 20
%, Al: 0.2 to 5%, and N: 0.007% or less, the balance being Fe and inevitable impurities.

【0007】(2)質量%で、B:0.0005〜0.
01%、Cu:0.1〜1%の1種または2種を、さら
に含有することを特徴とする前記(1)に記載の鉄系制
振合金。 (3)(100)方位磁歪定数λ100 と、最大透磁率μ
max との積 λ100 ×μ max が0.25以上であること
を特徴とする、前記(1)または(2)に記載の鉄系制
振合金。
(2) B: 0.0005 to 0.5% by mass.
01%, Cu: 0.1 to 1%, one or two
The iron-based system as described in (1) above,
Vibration alloy. (3) (100) azimuthal magnetostriction constant λ100And the maximum permeability μ
maxWith λ100× μ maxIs 0.25 or more
The iron-based system according to the above (1) or (2),
Vibration alloy.

【0008】(4)前記(1)乃至(3)のいずれかに
1項に記載の制振合金の製造において、Ac3 点以上1
200℃以下の温度に加熱し、Ar3 +50℃〜Ar3
温度での圧下率を45%以上とし、圧延仕上温度がAr
1 以上となるように熱間圧延を行い、圧延後830℃以
上で、90分以上保持する熱処理を行なうことを特徴と
する鉄系制振合金の製造方法にある。
(4) In the production of the vibration damping alloy according to any one of the above (1) to (3), three or more Ac points
Heating to a temperature of 200 ° C. or less, Ar 3 + 50 ° C. to Ar 3
The rolling reduction at temperature is 45% or more, and the rolling finish temperature is Ar
A method for producing an iron-based vibration damping alloy, characterized in that hot rolling is performed so as to be 1 or more, and heat treatment is performed at 830 ° C. or more after the rolling for 90 minutes or more.

【0009】[0009]

【発明の実施の形態】強磁性体が磁化すると長さが変化
し、この現象は磁歪と呼ばれている。逆に、強磁性体に
応力を加えると内部の磁区構造が変化する作用がある。
この磁区構造の変化、すなわち磁壁移動の非可逆運度が
振動の際にはヒステリシスを生じさせ、ヒステリシスエ
ネルギーに相当する分だけ振動を減衰させることにな
る。したがって、この磁歪の顕著な材料、すなわち磁歪
定数が大きな材料ほどヒステリシス損失は大きいことに
なる。しかしながら、必ずしも磁歪定数の大きな材料が
損失係数が大きくなるとは限らない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS When a ferromagnetic material is magnetized, its length changes, and this phenomenon is called magnetostriction. Conversely, when stress is applied to the ferromagnetic material, there is an effect that the internal magnetic domain structure changes.
This change in the magnetic domain structure, that is, the irreversible mobility of the domain wall motion causes hysteresis when vibrating, and attenuates the vibration by an amount corresponding to the hysteresis energy. Therefore, a material having a remarkable magnetostriction, that is, a material having a large magnetostriction constant, has a larger hysteresis loss. However, a material having a large magnetostriction constant does not always have a large loss coefficient.

【0010】発明者は、強磁性体の磁歪および各種物性
値と損失係数との関係を種々検討した結果、損失係数に
は磁歪定数とともに、材料の最大透磁率が非常に密接な
関係があり、損失係数ηと(100)方向の磁歪定数と
最大透磁率との積(λ100 ×μmax )との間に非常に良
い相関関係があることを見いだした。具体的には、図1
に示すように、λ100 ×μmax を0.25以上となるよ
うに、適切な合金成分および製造方法を選択することに
より、0.05以上の損失係数ηが得られる。
As a result of various studies on the relationship between the magnetostriction of the ferromagnetic material and various physical property values and the loss coefficient, the loss coefficient has a very close relationship between the magnetostriction constant and the maximum magnetic permeability of the material. It has been found that there is a very good correlation between the loss coefficient η and the product of the magnetostriction constant in the (100) direction and the maximum magnetic permeability (λ 100 × μ max ). Specifically, FIG.
As shown in the above, a loss coefficient η of 0.05 or more can be obtained by selecting an appropriate alloy component and a manufacturing method so that λ 100 × μ max is 0.25 or more.

【0011】磁歪定数λ100 は、材料の組織因子にも影
響されるが、概ね合金成分の影響が大きい。最大透磁率
μmax は、合金成分にも大きく影響されるが、組織因
子、すなわち結晶粒径、介在物や不純物の量によっても
大きく影響される。一般に、磁歪を大きくする元素は透
磁率を低下させる場合が多い。Crは磁歪を大きくする
が、一方で多量添加によって透磁率を低下させるため、
かえって制振性を低下させる場合がある。Si、Alは
透磁率向上に対しては有効な元素であるが、磁歪に対し
ては最適添加量があり、ある程度以上では磁歪は低下す
る。
Although the magnetostriction constant λ 100 is affected by the structural factor of the material, the effect of the alloy component is generally large. Although the maximum magnetic permeability μ max is greatly affected by the alloy components, it is also greatly affected by the structure factor, that is, the crystal grain size, the amount of inclusions and impurities. Generally, an element that increases magnetostriction often lowers magnetic permeability. Cr increases the magnetostriction, but on the other hand decreases the magnetic permeability by adding a large amount,
On the contrary, the damping performance may be reduced. Si and Al are effective elements for improving the magnetic permeability, but there is an optimum addition amount for the magnetostriction, and the magnetostriction is reduced at a certain level or more.

【0012】発明者らは、磁歪定数λ100 を大幅に向上
させ、かつ最大透磁率μmax はほとんど低下させない元
素として最も有効なのがCoであることを見いだした。
Coは本発明においては、0.05以上の損失係数ηを
得るための必須元素である。最大透磁率μmax は組織因
子、特に結晶粒径によって大きく影響される。すなわ
ち、磁壁の移動を阻害する結晶粒界を減少させる意味か
ら、結晶粒径はできるだけ粗大であることが望ましい。
したがって高い最大透磁率μmax を得るには、合金成分
だけでなく結晶粒径を均一に粗大化させるための製造方
法が重要となる。具体的には、比較的低温域で高い圧下
率をとる圧延を行って結晶粒成長の駆動力となる圧延歪
を十分導入し、さらに適当な高温域での焼鈍によって粗
大粒を得る。
The present inventors have found that Co is the most effective element that significantly improves the magnetostriction constant λ 100 and hardly lowers the maximum magnetic permeability μ max .
Co is an essential element for obtaining a loss coefficient η of 0.05 or more in the present invention. The maximum magnetic permeability μ max is greatly influenced by the structure factor, particularly the crystal grain size. That is, the crystal grain size is desirably as large as possible from the viewpoint of reducing the crystal grain boundaries that hinder the movement of the domain wall.
Therefore, in order to obtain a high maximum magnetic permeability μ max , a manufacturing method for uniformly increasing the crystal grain size as well as the alloy component is important. Specifically, rolling at a high rolling reduction is performed in a relatively low temperature range to sufficiently introduce a rolling strain which is a driving force for crystal grain growth, and coarse grains are obtained by annealing in a suitable high temperature range.

【0013】次に本発明の限定理由を説明する。なお、
%は質量%を意味する。Cは、それ自体あるいは、Cr
炭化物を形成して熱処理昇温過程での粒界析出によって
均一粒成長を著しく阻害する元素である。しかし、炭化
物は0.007%以下であれば800℃以上ではほとん
ど固溶するので、熱処理温度を800℃以上とすること
により均一粒成長が可能となる。そのため0.007%
以下に低減する。
Next, the reasons for limiting the present invention will be described. In addition,
% Means mass%. C is either itself or Cr
It is an element that forms carbides and significantly inhibits uniform grain growth due to grain boundary precipitation during the heat treatment temperature raising process. However, since carbides hardly form a solid solution at 800 ° C. or higher when the content is 0.007% or less, uniform grain growth can be achieved by setting the heat treatment temperature to 800 ° C. or more. Therefore 0.007%
Reduce to below.

【0014】Siは、1%以上の添加で磁歪を向上さ
せ、2%程度で最大になる。しかし、3.5%を超えて
添加するとかえって磁歪が低下する。また透磁率を高く
するのにも有効である。したがって、添加量は1%以
上、3.5%以下に限定する。Mnは、磁歪の向上効果
はさほど大きくなく、逆に透磁率低下の原因になる。そ
のため添加量を0.4%以下とする。PおよびSは、い
ずれも非金属介在物を生成して粒成長を阻害し、かつ靱
性も低下させるため、できるだけ低減することが必要で
ある。Pは0.02%以下、Sは0.01%以下とす
る。
Si improves magnetostriction when added at 1% or more, and becomes maximum at about 2%. However, if added in excess of 3.5%, the magnetostriction is rather reduced. It is also effective for increasing the magnetic permeability. Therefore, the addition amount is limited to 1% or more and 3.5% or less. Mn does not have a significant effect of improving magnetostriction, and on the contrary, causes a decrease in magnetic permeability. Therefore, the addition amount is set to 0.4% or less. Since both P and S generate nonmetallic inclusions to inhibit grain growth and also reduce toughness, it is necessary to reduce P and S as much as possible. P is 0.02% or less, and S is 0.01% or less.

【0015】Crは、磁歪を向上させる効果が顕著であ
る。しかし、3%超では第二相(パーライト)を生成さ
せ易く、添加量が増えるにつれて透磁率低下の原因にな
り、9%超では磁歪向上効果と相殺されかえって損失係
数を低下させる。したがって、添加量は2%以上、9%
以下、好ましくは3%以下の範囲とする。Coは、透磁
率にはほとんど影響を与えず磁歪を向上させる効果が顕
著であるが、1%未満の添加ではその効果が不十分であ
る。一方、20%を超える添加は、合金コストの増大を
招くので、添加は1%以上、20%以下とする。
Cr has a remarkable effect of improving magnetostriction. However, if it exceeds 3%, the second phase (pearlite) tends to be formed, and as the amount of addition increases, the magnetic permeability decreases. If it exceeds 9%, the effect of improving magnetostriction is offset and the loss coefficient decreases. Therefore, the addition amount is 2% or more, 9%
Or less, preferably 3% or less. Co has a remarkable effect of improving magnetostriction with almost no effect on magnetic permeability, but its effect is insufficient when added to less than 1%. On the other hand, if the addition exceeds 20%, the alloy cost increases, so the addition is set to 1% or more and 20% or less.

【0016】Alは、AlNを粗大にして粗粒化に有害
な微細AlN析出を避けるため、0.2%以上添加す
る。フェライトフォーマーとしても効果が大きい。しか
し、5%を超えて添加すると靭性が大きく低下すること
から、添加量は0.2%以上、5%以下とする。靱性が
重視される場合は1%を上限とすることが好ましい。N
は、固溶状態としても窒化物として析出しても磁気特性
を低下させるため、できるだけ低減することが望まし
く、0.007%以下とする。
Al is added in an amount of 0.2% or more to coarsen AlN and to prevent precipitation of fine AlN which is harmful to coarsening. It is also very effective as a ferrite former. However, if added in excess of 5%, the toughness will be significantly reduced, so the amount added should be between 0.2% and 5%. When toughness is important, the upper limit is preferably 1%. N
In order to reduce magnetic properties even in the solid solution state or when precipitated as a nitride, it is desirable to reduce as much as possible, and it is 0.007% or less.

【0017】Bは、強度を向上させる目的で添加するこ
とができるが、効果は0.0005%以上でほぼ一定で
ある。また、過剰添加は透磁率を低下させることがある
ので、添加する場合の上限は0.01%とする。Cu
も、強度を向上させる目的で添加することができる。添
加する場合0.1%以上添加しないと効果が得られな
い。一方、1%の添加でその効果はほぼ飽和し、過剰な
添加は透磁率を低下させるので、1%を上限として添加
する。
B can be added for the purpose of improving the strength, but the effect is almost constant at 0.0005% or more. Further, since excessive addition may lower the magnetic permeability, the upper limit in the case of adding is 0.01%. Cu
Can also be added for the purpose of improving the strength. When added, the effect cannot be obtained unless it is added in an amount of 0.1% or more. On the other hand, the effect is almost saturated with the addition of 1%, and excessive addition lowers the magnetic permeability.

【0018】次に製造方法について説明する。加熱温度
は、通常、鋼の厚板および熱延板の加熱であるAc3
上とし、かつ熱延前の結晶粒を粗大化させないために1
200℃以下とする。また、熱間圧延後の熱処理で、十
分に結晶粒を成長させるため、結晶粒径をある程度微細
均一に制御し、かつ結晶粒成長の駆動力としての十分な
圧延歪を導入させるため、Ar3 +50℃〜Ar3 温度
での圧下率が45%以上必要である。
Next, the manufacturing method will be described. The heating temperature is usually, for the Ac 3 than is the heating of thick plate and hot rolled plates of steel, and do not coarsen before hot rolling grain 1
200 ° C. or less. Further, the heat treatment after the hot rolling, to grow sufficiently grains, the grain size to some extent finely controlled uniformly, and for introducing a sufficient rolling strain as a driving force for grain growth, Ar 3 The rolling reduction at the temperature of + 50 ° C. to Ar 3 must be 45% or more.

【0019】圧延後の熱処理温度は、およそ200μm
以上の大きさの均一な結晶粒径を安得るために行い、こ
の目的のためには830℃以上に加熱する必要がある。
また920℃超では粒成長速度が速くなるために、まれ
に異常粒成長が生じるなど結晶粒径制御が不安定になる
ので、熱処理温度範囲は830℃〜920℃に限定す
る。本発明の制振合金は、鋼管の素材として用いた場合
でも、熱延板や厚板と同様に高い制振性能を発揮でき
る。
The heat treatment temperature after rolling is about 200 μm
It is performed in order to secure a uniform crystal grain size of the above size, and for this purpose, it is necessary to heat to 830 ° C. or more.
If the temperature exceeds 920 ° C., the grain growth rate is increased, and the control of the crystal grain size becomes unstable, such as in rare cases where abnormal grain growth occurs. The vibration damping alloy of the present invention can exhibit high vibration damping performance as well as a hot rolled plate or a thick plate even when used as a material for a steel pipe.

【0020】[0020]

【実施例】表1に示す成分組成の鋼片を作製し、表2に
示す製造条件で3〜50mm厚さの熱延板および厚板を
製造した。 (100)方向磁歪定数λ100 は、十分粗大化した厚板
から単結晶サンプルを採取し、歪ゲージにより測定し
た。最大透磁率μmax は元厚のリング状サンプルにより
直流磁化曲線を測定して求めた。さらに損失係数ηは、
元厚×40mm×400mm長さの板状試験片を加工
し、機械インピーダンス法により実測した。表中、下線
で示すものは特許範囲を逸脱しているところ、または各
特性の目標値に達していないところである。
EXAMPLES A steel slab having the composition shown in Table 1 was prepared, and a hot-rolled plate and a thick plate having a thickness of 3 to 50 mm were produced under the production conditions shown in Table 2. The (100) direction magnetostriction constant λ 100 was measured by using a strain gauge by collecting a single crystal sample from a sufficiently coarse thick plate. The maximum magnetic permeability μ max was determined by measuring a DC magnetization curve using a ring-shaped sample having the original thickness. Furthermore, the loss coefficient η is
A plate-shaped test piece having an original thickness of 40 mm x 400 mm in length was processed and measured by a mechanical impedance method. In the table, the underlined portions deviate from the patent range or do not reach the target values of the respective characteristics.

【0021】[0021]

【表1】 [Table 1]

【0022】表2に示す合金板のうち1−A〜7−Gは
本発明例であり、8−H〜23−Bは比較例である。こ
れらの鋼板について、表2に示す製造条件で製造したも
のの各種特性を表2に示す。鋼板1−A〜7−Gの実施
例は、いずれもλ100 ×μmax が0.25以上となって
おり、その結果、損失係数ηが0.05以上で非常に高
い制振性能を示す。これに対し、比較例8−HはCが高
いため結晶粒径が小さく、透磁率が低いため損失係数が
0.05に満たない。9−Iおよび10−JはSiが本
発明範囲を逸脱しているため、磁歪定数あるいは透磁率
が低く損失係数ηが0.05に満たない。
Of the alloy plates shown in Table 2, 1-A to 7-G are examples of the present invention, and 8-H to 23-B are comparative examples. Table 2 shows various characteristics of these steel sheets manufactured under the manufacturing conditions shown in Table 2. Examples of the steel plates 1-A to 7-G all have λ 100 × μ max of 0.25 or more, and as a result, exhibit a very high vibration damping performance with a loss coefficient η of 0.05 or more. . On the other hand, Comparative Example 8-H has a high C and a small crystal grain size, and a low magnetic permeability, so that the loss coefficient is less than 0.05. 9-I and 10-J have a low magnetostriction constant or magnetic permeability and a loss coefficient η of less than 0.05 because Si is out of the range of the present invention.

【0023】[0023]

【表2】 [Table 2]

【0024】また、11−KはMnが低いため、12−
LはPが高いため、13−MはSが高いため、14−N
はCuが高いため、16−PはCrが高いため、18−
RはAlが低いため、20−TはNが高いため、21−
Bは加熱温度が高いため、22−BはAr3 +50℃〜
Ar3 での圧下率が小さいため、23−Bは焼鈍温度が
低いため、それぞれ透磁率が低く、損失係数ηが0.0
5に満たない。15−OはCrが低く、17−QはCo
が低く磁歪が低いため、損失係数ηが0.05に満たな
い。
Further, since 11-K has a low Mn,
L is high in P, and 13-M is high in S, so 14-N
Is high in Cu, 16-P is high in Cr,
R is low in Al and 20-T is high in N, so 21-
Since B has a high heating temperature, 22-B is Ar 3 + 50 ° C.
Since the rolling reduction in Ar 3 is small, the annealing temperature of 23-B is low, so that the permeability is low and the loss coefficient η is 0.0
Less than 5. 15-O has low Cr and 17-Q has Co
And the magnetostriction is low, so that the loss coefficient η is less than 0.05.

【0025】[0025]

【発明の効果】本発明によれば、0.05以上の極めて
高い損失係数ηを有し、かつ従来材並の加工性や溶接性
は維持していて構造材料として取り扱いやすい強磁性体
型鉄系制振合金およびその製造方法が提供でき、その産
業上の価値は極めて高いといえる。
According to the present invention, a ferromagnetic iron-based material having an extremely high loss coefficient η of 0.05 or more, and maintaining the workability and weldability comparable to conventional materials and easy to handle as a structural material. It is possible to provide a vibration damping alloy and a method for producing the same, and it can be said that the industrial value thereof is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(100)方位磁歪定数と最大透磁率の積(λ
100 ×μmax )と損失係数ηとの関係を示した図であ
る。
FIG. 1 is the product of (100) azimuthal magnetostriction constant and maximum magnetic permeability (λ
FIG. 4 is a diagram showing a relationship between ( 100 × μ max ) and a loss coefficient η.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA01 AA02 AA04 AA10 AA12 AA14 AA16 AA21 AA27 AA29 AA32 BA01 CA02 CB01 CB02 CF03  ──────────────────────────────────────────────────の Continued on the front page F term (reference) 4K032 AA01 AA02 AA04 AA10 AA12 AA14 AA16 AA21 AA27 AA29 AA32 BA01 CA02 CB01 CB02 CF03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.007%以下、 Si:1〜3.5%、 Mn:0.4%以下、 P:0.02%以下、 S:0.01%以下、 Cr:2〜9%、 Co:1〜20%、 Al:0.2〜5%、 N:0.007%以下 を含有し、残部Feおよび不可避的不純物からなること
を特徴とする鉄系制振合金。
1. mass%, C: 0.007% or less, Si: 1 to 3.5%, Mn: 0.4% or less, P: 0.02% or less, S: 0.01% or less, Fe: 2 to 9%, Co: 1 to 20%, Al: 0.2 to 5%, N: 0.007% or less, with the balance being Fe and unavoidable impurities. Vibration alloy.
【請求項2】 質量%で、 B:0.0005〜0.01%、 Cu:0.1〜1%の1種または2種を、さらに含有す
ることを特徴とする請求項1に記載の鉄系制振合金。
2. The method according to claim 1, further comprising one or more of B: 0.0005 to 0.01%, and Cu: 0.1 to 1% by mass%. Iron-based damping alloy.
【請求項3】 (100)方位磁歪定数λ100 と、最大
透磁率μmax との積λ100 ×μmax が0.25以上であ
ることを特徴とする、請求項1または2に記載の鉄系制
振合金。
3. The iron according to claim 1, wherein a product of (100) azimuth magnetostriction constant λ 100 and maximum magnetic permeability μ max λ 100 × μ max is 0.25 or more. System damping alloy.
【請求項4】 請求項1乃至3のいずれかに1項に記載
の制振合金の製造において、Ac3 点以上1200℃以
下の温度に加熱し、Ar3 +50℃〜Ar3温度での圧
下率を45%以上とし、圧延仕上温度がAr1 以上とな
るように熱間圧延を行い、圧延後830℃以上で、90
分以上保持する熱処理を行なうことを特徴とする鉄系制
振合金の製造方法。
4. A preparation of damping alloy according to item 1 to any one of claims 1 to 3, and heated to a temperature of 1200 ° C. or more 3 points Ac, reduction in Ar 3 + 50 ° C. to Ar 3 temperature Hot rolling is performed so that the rolling finish temperature is Ar 1 or higher.
A method for producing an iron-based vibration damping alloy, comprising performing heat treatment for holding for at least one minute.
JP2001100837A 2001-03-30 2001-03-30 Iron-based vibration damping alloy and manufacturing method therefor Withdrawn JP2002294408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100837A JP2002294408A (en) 2001-03-30 2001-03-30 Iron-based vibration damping alloy and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100837A JP2002294408A (en) 2001-03-30 2001-03-30 Iron-based vibration damping alloy and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002294408A true JP2002294408A (en) 2002-10-09

Family

ID=18954237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100837A Withdrawn JP2002294408A (en) 2001-03-30 2001-03-30 Iron-based vibration damping alloy and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002294408A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024243A (en) * 2005-07-20 2007-02-01 Jtekt Corp Bearing device
JP2007093244A (en) * 2005-09-27 2007-04-12 Honda Motor Co Ltd Magnetostrictive torque sensor and electric steering device
WO2007097216A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
WO2007097217A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
GB2451219A (en) * 2007-07-27 2009-01-28 Vacuumschmelze Gmbh & Co Kg Soft magnetic iron-cobalt based alloy
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US7964043B2 (en) 2001-07-13 2011-06-21 Vacuumschmelze Gmbh & Co. Kg Method for producing nanocrystalline magnet cores, and device for carrying out said method
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
JP2012219344A (en) * 2011-04-11 2012-11-12 Toyota Industries Corp Method for producing damping material made of iron alloy, and damping material made of iron alloy
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
KR20180041219A (en) 2015-08-17 2018-04-23 닛신 세이코 가부시키가이샤 Highly Aluminum-containing Biodegradable Ferritic Stainless Steels and Manufacturing Method
KR20180043306A (en) 2015-08-17 2018-04-27 닛신 세이코 가부시키가이샤 Dissipative ferritic stainless steel material and manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964043B2 (en) 2001-07-13 2011-06-21 Vacuumschmelze Gmbh & Co. Kg Method for producing nanocrystalline magnet cores, and device for carrying out said method
JP2007024243A (en) * 2005-07-20 2007-02-01 Jtekt Corp Bearing device
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
JP4715354B2 (en) * 2005-07-20 2011-07-06 株式会社ジェイテクト Bearing device
JP2007093244A (en) * 2005-09-27 2007-04-12 Honda Motor Co Ltd Magnetostrictive torque sensor and electric steering device
KR101029229B1 (en) * 2006-02-21 2011-04-14 제이에프이 스틸 가부시키가이샤 Damping alloy sheet and process for producing the same
WO2007097217A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
WO2007097216A1 (en) * 2006-02-21 2007-08-30 Jfe Steel Corporation Damping alloy sheet and process for producing the same
KR101032007B1 (en) 2006-02-21 2011-05-02 제이에프이 스틸 가부시키가이샤 Damping alloy sheet and process for producing the same
JP2007224324A (en) * 2006-02-21 2007-09-06 Jfe Steel Kk Damping alloy thin sheet and producing method therefor
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
GB2451219B (en) * 2007-07-27 2009-09-23 Vacuumschmelze Gmbh & Co Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
GB2451219A (en) * 2007-07-27 2009-01-28 Vacuumschmelze Gmbh & Co Kg Soft magnetic iron-cobalt based alloy
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2012219344A (en) * 2011-04-11 2012-11-12 Toyota Industries Corp Method for producing damping material made of iron alloy, and damping material made of iron alloy
KR20180041219A (en) 2015-08-17 2018-04-23 닛신 세이코 가부시키가이샤 Highly Aluminum-containing Biodegradable Ferritic Stainless Steels and Manufacturing Method
KR20180043306A (en) 2015-08-17 2018-04-27 닛신 세이코 가부시키가이샤 Dissipative ferritic stainless steel material and manufacturing method
US10570979B2 (en) 2015-08-17 2020-02-25 Nippon Steel Nisshin Co., Ltd. High Al-content vibration-damping ferritic stainless steel material, and production method

Similar Documents

Publication Publication Date Title
JP2002294408A (en) Iron-based vibration damping alloy and manufacturing method therefor
JP5186753B2 (en) Damping alloy sheet and manufacturing method thereof
JP4998672B2 (en) Manufacturing method of damping alloy sheet
EP3731614B1 (en) Steel sheet for shielding magnetic field and method for manufacturing same
JP4209514B2 (en) High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JPH10140297A (en) Primary-recrystallization-annealed sheet for grain oriented silicon steel sheet with high magnetic flux density
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP4047502B2 (en) Steel plate for magnetic shield structure and manufacturing method thereof
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JP2004083972A (en) Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JPH03183741A (en) Steel having excellent vibration damping properties and its manufacture
JP3271790B2 (en) Manufacturing method of non-magnetic stainless steel thick plate
JPH1072643A (en) High damping alloy and its production
JPH08246108A (en) Nonoriented silicon steel sheet reduced in anisotropy and its production
JP2971709B2 (en) Manufacturing method of mechanical structural parts excellent in vibration damping characteristics and wear resistance
JPH09157794A (en) High damping alloy and its production
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel
JPH05271768A (en) Manufacture of non-magnetic stainless steel thick plate
JPH02282423A (en) Production of cold-rolled steel sheet excellent in magnetic characteristic and formability
JP2001107201A (en) Steel sheet for magnetic shield structure and its production method
JPH09227997A (en) High damping alloy and its production
JPH08157946A (en) Production of steel member having high vibration damping capacity and high surface hardness
CN118176314A (en) Ferritic stainless steel with improved magnetic properties and method for manufacturing same
JPH0598352A (en) Production of soft-magnetic ferritic stainless steel sheet excellent in workability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603