JPH09227997A - High damping alloy and its production - Google Patents

High damping alloy and its production

Info

Publication number
JPH09227997A
JPH09227997A JP3681396A JP3681396A JPH09227997A JP H09227997 A JPH09227997 A JP H09227997A JP 3681396 A JP3681396 A JP 3681396A JP 3681396 A JP3681396 A JP 3681396A JP H09227997 A JPH09227997 A JP H09227997A
Authority
JP
Japan
Prior art keywords
less
diffraction intensity
toughness
damping alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3681396A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3681396A priority Critical patent/JPH09227997A/en
Publication of JPH09227997A publication Critical patent/JPH09227997A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a material simultaneously excellent in toughness and damping capacity by specifying the componental compsn. of an alloy. SOLUTION: At first, for improving the damping capacity of the allay, suitable amounts of Ti, Nb, Zr and Ta are added. It is aimed to fix C, N and O in the steel drastically damaging the damping capacity as carbide, nitride and oxide, thereby reducing the contents of solid solution C, N and O. Moreover, as elements effective for increasing its strength, suitable amounts of Cu, Ni, Mo, V and B are added thereto. Furthermore, it has been found that, by increasing the (200) diffraction intensity, the magnetization facilitating direction is strengthened to a direction parallel to the surface of the steel sheet to improve its damping capacity. For this purpose, the (200) diffraction intensity ratio is regulated to >=2.5. Moreover, the grain size is preferably regulated to <=100μm for improving its toughness. Furthermore, prescribed rolling and heating are executed for obtaining the above diffraction intensity and grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用構造材料として高い制振性を有する制振合
金及び高靭性を有する制振合金に係わるものである。
TECHNICAL FIELD The present invention relates to a damping alloy having a high damping property and a damping alloy having a high toughness as a structural material for ships, bridges, industrial machines and constructions.

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物は
その材料には、構造材料の基本特性である強度、靭性に
加え高い制振性が同時に要求される傾向にある。すなわ
ち、たとえば、橋梁上の高速鉄道走行時や大規模土木、
建築作業時の騒音、振動を構造材料そのものの制振効果
で抑え、かつ、構造部材として十分な靭性を有するとい
う課題を解決しようとするものである。
2. Description of the Related Art Recently, materials for ships, bridges, industrial machines, and buildings tend to be required to have high vibration damping properties in addition to strength and toughness, which are basic characteristics of structural materials. That is, for example, when running on a high-speed railway on a bridge or in large-scale civil engineering,
The present invention aims to solve the problems of suppressing noise and vibration during construction work by the damping effect of the structural material itself and having sufficient toughness as a structural member.

【0003】樹脂サンドイッチ型制振鋼板に代わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振特性を得るため、フェ
ライトフォーマーを添加して組織をフェライト単相化す
ることをねらい、Al及びSiを添加した材料と、Cr
を積極的に添加した材料との2種類に分けられる。
[0003] Conventional iron-based materials used for members intended for damping performance in place of resin sandwich-type damping steel sheets have high hysteresis due to irreversible motion of domain wall motion under the action of alternating stress due to vibration. In order to obtain a vibration-damping property, a material to which Al and Si are added, and
And a material to which is positively added.

【0004】前者の例としては、特開平4−99148
号公報に記載されるようにAlを最高7.05%及びS
iを最高4.5%まで添加した強磁性型制振合金があ
り、後者の例としては、特開昭52−73118号公報
に記載されるようにCrを8〜30%添加した強磁性制
振合金などがある。
As an example of the former, Japanese Patent Laid-Open No. 4-99148
As described in Japanese Patent Publication, the Al content is up to 7.05% and S
There is a ferromagnetic damping alloy with i added up to 4.5%. An example of the latter is a ferromagnetic damping alloy with 8 to 30% of Cr as described in JP-A-52-73118. There are vibration alloys.

【0005】さらに、特開平6−220583号公報及
び特開平5−302148号公報で、Mnが0.1また
は0.2%以下で、Crを1〜5%を添加した強磁性制
振合金がある。また、発明者らは、特願平6−2589
82号でMnが0.2〜2.5%、Crを1〜5%を添
加した強磁性制振合金を提案した。
Further, in JP-A-6-220583 and JP-A-5-302148, there is disclosed a ferromagnetic damping alloy in which Mn is 0.1 or 0.2% or less and 1 to 5% of Cr is added. is there. In addition, the inventors of the present invention filed Japanese Patent Application No. 6-2589.
No. 82 proposed a ferromagnetic damping alloy in which Mn is added in an amount of 0.2 to 2.5% and Cr is added in an amount of 1 to 5%.

【0006】特開平7−298313号公報では、発明
者らは、Cが0.01%以下、Nが0.006%以下の
純鉄系制振合金を提案した。また、田中良平、制振材料
〈その機能と応用〉広済堂1992年3月発行p192
〜197に強磁性型合金として、外部応力が磁区壁の移
動を引き起こしそれによるヒステリシス損で振動エネル
ギーが吸収されることが記述されている。
In Japanese Unexamined Patent Publication No. 7-298313, the inventors have proposed a pure iron damping alloy having C of 0.01% or less and N of 0.006% or less. Also, Ryohei Tanaka, damping material (its function and application), published by Kousendo March 1992, p192.
No. 197, it is described that, as a ferromagnetic alloy, external stress causes the domain wall to move, and the vibration energy is absorbed by the resulting hysteresis loss.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の合金のうち特開平4−99148号公報記載の合金は
Al及びSi添加量の上限規制が不適当であるため、粗
大なAl系及びSi系介在物の生成をまねき、これが破
壊の発生点として作用するため靭性が低下する。また、
特開昭52−73118号公報記載の合金はCr添加が
過剰なため、上記同様Cr系介在物の靭性低下をまね
く。
However, among these alloys, the alloy described in Japanese Patent Application Laid-Open No. 4-99148 has an inappropriate upper limit regulation of Al and Si addition amounts. This leads to the formation of a product, which acts as the point of origin of fracture, resulting in a decrease in toughness. Also,
Since the alloy described in JP-A-52-73118 has excessive Cr addition, the toughness of Cr-based inclusions is reduced as in the above case.

【0008】さらに、特開平6−220583号公報及
び特開平5−302148号公報は、積極的な靭性向上
策がなされていないため、靭性が低い。また、特願平6
−258982号は靭性の確保優先で制振性については
不十分である。特開平7−298313号公報では、
C,N量などの規制が厳しいため、コストアップとなっ
ている。制振材料の文献では、制振合金の機構を書いた
もので、その向上策や具体的な成分系・製造方法あるい
は制振性に加えて靭性を同時に満足する方法に関する記
述はない。本発明は優れた制振性及び制振性と高靭性を
有する高強度な制振合金を提供することを目的とする。
Further, in JP-A-6-220583 and JP-A-5-302148, the toughness is low because no aggressive measures for improving the toughness are taken. In addition, Japanese Patent Application Hei 6
No. 258982 has insufficient toughness because it has priority on securing toughness. In Japanese Patent Laid-Open No. 7-298313,
Since the regulations on the amounts of C and N are strict, the cost is increased. The literature on damping materials describes the mechanism of damping alloys, and does not describe any measures for improving the damping alloys, specific component systems / manufacturing methods, or methods for simultaneously satisfying toughness in addition to damping properties. An object of the present invention is to provide a high-strength damping alloy having excellent damping properties and damping properties and high toughness.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)重量%で、C:0.20%以下、Si:0.01
%以上、3.5%以下、Mn:2.5%以下、P:0.
010%以下、S:0.005%以下、Cr:3.5%
以下、Al:0.002%以上、3.5%以下、N:
0.010%以下を含有し、更に、Ti:0.5%以
下、Nb:0.5%以下、Zr:0.5%以下、Ta:
0.5%以下の1種以上を含有し、残部Fe及び不可避
的不純物からなることを特徴とする制振合金。
The gist of the present invention is as follows. (1) Weight%, C: 0.20% or less, Si: 0.01
% Or more and 3.5% or less, Mn: 2.5% or less, P: 0.
010% or less, S: 0.005% or less, Cr: 3.5%
Hereinafter, Al: 0.002% or more, 3.5% or less, N:
0.010% or less is contained, Ti: 0.5% or less, Nb: 0.5% or less, Zr: 0.5% or less, Ta:
A damping alloy containing 0.5% or less of one or more kinds, and the balance being Fe and unavoidable impurities.

【0010】(2)重量%で、Cu:0.05〜2.5
%、Ni:0.05〜2.5%、Mo:0.05〜4.
5%、Nb:0.005〜0.2%、V:0.005〜
0.2%、Ti:0.005〜0.1%、B:0.00
03〜0.005%のうち少なくとも1種以上を含有す
ることを特徴とする(1)記載の制振合金。
(2) Cu: 0.05-2.5 by weight%
%, Ni: 0.05-2.5%, Mo: 0.05-4.
5%, Nb: 0.005 to 0.2%, V: 0.005 to
0.2%, Ti: 0.005 to 0.1%, B: 0.00
The vibration damping alloy according to (1), which contains at least one of 03 to 0.005%.

【0011】(3)重量%で、Ca:0.001〜0.
05%、REM:0.001〜0.1%のうち少なくと
も1種以上を含有することを特徴とする(1)または
(2)記載の制振合金。 (4)(200)回折強度比が2.5以上を有すること
を特徴とする(1)〜(3)のいずれかに記載の制振合
金。 (5)結晶粒径を100μ以下とすることにより高い靭
性を確保することを特徴とする(1)〜(4)のいずれ
かに記載の制振合金。
(3) Ca: 0.001 to 0.
The vibration damping alloy according to (1) or (2), which contains at least one of 0.05% and REM: 0.001 to 0.1%. (4) The vibration damping alloy according to any one of (1) to (3), which has a (200) diffraction intensity ratio of 2.5 or more. (5) The damping alloy according to any one of (1) to (4), which ensures high toughness by setting the crystal grain size to 100 μm or less.

【0012】(6)加熱温度が1000〜1250℃、
900℃以下の圧下率が30〜70%、圧延仕上温度が
800℃以下で熱間圧延後、室温まで冷却し、650〜
950℃で焼戻しまたは焼きなまし熱処理することを特
徴とする(1)〜(5)のいずれか記載の制振合金の製
造方法。 (7)圧延仕上温度の範囲を650〜800℃とする熱
間圧延を行うことを特徴とする(6)記載の制振合金の
製造方法。
(6) The heating temperature is 1000 to 1250 ° C.,
After hot rolling at a rolling reduction temperature of 900 ° C or lower at 30 to 70% and a rolling finishing temperature of 800 ° C or lower, it is cooled to room temperature,
The method for producing a vibration damping alloy according to any one of (1) to (5), characterized by performing a tempering or an annealing heat treatment at 950 ° C. (7) The method for producing a vibration-damping alloy according to (6), characterized in that hot rolling is performed so that the rolling finishing temperature is in the range of 650 to 800 ° C.

【0013】[0013]

【発明の実施の形態】本発明は上記事情に鑑みなされた
もので、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスに起因した高い制振特性を得
るために、磁壁移動に有害な各種元素や介在物、析出物
の生成を招き、磁壁移動を妨げ、制振性を大きく損なう
元素を低下した成分を基本としている。ただし、従来行
われていたように、C,N,O量を極限まで低下するこ
とは、大幅なコストアップ要因となる。
The present invention has been made in view of the above circumstances, and in order to obtain high damping characteristics due to hysteresis due to non-reciprocal motion of domain wall movement under the action of alternating stress due to vibration, It is based on components that have reduced the elements that cause the formation of various harmful elements, inclusions, and precipitates, impede domain wall movement, and greatly impair vibration damping. However, reducing the amount of C, N, and O to the limit, as has been conventionally done, causes a significant cost increase.

【0014】そこでこれらの鋼中に固溶している元素を
析出物の形で固定し、無害化する元素として、Ti,N
b,Zr及びTaを見いだした。これらの元素を適量添
加することで、制振性が大幅に向上する。つまり、T
i,Nb,Zr及びTaを添加することで、同等の制振
性に対しては、C,N,O量の規制が緩和されるため、
低コスト化がはかられ、また、同等のコスト、すなわ
ち、同等のC,N,O量の規制に対しては、C,N,O
の有害性が低減できるため、制振性が大幅に向上する。
Therefore, Ti, N are used as elements for fixing the elements dissolved in these steels in the form of precipitates and rendering them harmless.
b, Zr and Ta were found. By adding an appropriate amount of these elements, the vibration damping property is significantly improved. That is, T
By adding i, Nb, Zr, and Ta, the regulation of the amounts of C, N, and O is relaxed for the equivalent vibration damping property.
Cost reduction can be achieved, and C, N, O is required for the equal cost, that is, the regulation of the equal amount of C, N, O.
Since the harmfulness of can be reduced, the vibration damping property is greatly improved.

【0015】さらに、従来は結晶粒界が磁壁移動を阻害
するため、もっぱら粗粒化することで制振性を向上させ
ていたが、発明者らは種々検討した結果、粗粒化による
制振性向上の方法に替わる方法として、(200)回折
強度を高くすることで、大幅に制振性が向上することを
発見した。(200)回折強度を高くすることで、鋼板
表面に平行な方向の〈100〉方位が強化される。
Further, in the past, since the crystal grain boundary hinders the domain wall movement, the vibration damping property was improved only by coarsening the grain. However, as a result of various studies by the inventors, the vibration damping by the coarsening has been performed. As an alternative to the method for improving the vibration resistance, it has been found that the vibration damping property is significantly improved by increasing the (200) diffraction intensity. By increasing the (200) diffraction intensity, the <100> orientation parallel to the steel sheet surface is strengthened.

【0016】つまり、磁化容易方向が鋼板表面に平行な
方向に強化される。磁化容易方向を強化することで制振
性が向上することは新たな発見である。この(200)
回折強度比を2.5以上にすることで制振性が向上する
ことを見いだした。
That is, the easy magnetization direction is strengthened in the direction parallel to the steel plate surface. It is a new discovery that the damping property is improved by strengthening the easy magnetization direction. This (200)
It was found that the vibration damping property is improved by setting the diffraction intensity ratio to 2.5 or more.

【0017】(200)回折強度比が2.5以上にする
と、制振性の指標である損失係数は0.02以上確保で
きて良く、制振性能の観点のみから見ると、(200)
回折強度比は高いほど良いが、靭性など他の鋼材特性と
の兼ね合いから実用上(200)回折強度比は2.5か
ら12.0の範囲が好ましく、その結果として0.02
〜0.05の損失係数を確保するのが好ましい。
When the (200) diffraction intensity ratio is 2.5 or more, the loss coefficient, which is an index of vibration damping property, can be secured to be 0.02 or more. From the viewpoint of vibration damping performance, (200)
The higher the diffraction intensity ratio, the better, but practically (200) the diffraction intensity ratio is preferably in the range of 2.5 to 12.0 in consideration of other steel properties such as toughness, resulting in 0.02.
It is preferable to ensure a loss factor of ~ 0.05.

【0018】ここで、(200)回折強度比は、X線回
折により板厚方向4分の1厚み位置における(200)
回折強度を測定し、特定の方位を強化や制御していない
ランダムサンプル材の(200)回折強度に対する比を
求めた。今回、板表面、板厚方向1/2厚み及び1/4
厚みについて検討した結果では、(200)回折強度比
は最大値でも15程度であった。
Here, the (200) diffraction intensity ratio is (200) at a quarter thickness position in the plate thickness direction by X-ray diffraction.
The diffraction intensity was measured and the ratio to the (200) diffraction intensity of the random sample material in which the specific orientation was not strengthened or controlled was determined. This time, the plate surface, 1/2 thickness and 1/4 thickness direction
As a result of examining the thickness, the maximum value of the (200) diffraction intensity ratio was about 15.

【0019】この(200)回折強度比を高くするため
には、低温圧延を行うことが必要で、検討の結果、90
0℃以下の圧下率を30%以上にすることで達成でき
る。このため、圧延仕上温度は850℃以下となる。
In order to increase the (200) diffraction intensity ratio, it is necessary to carry out low temperature rolling.
This can be achieved by setting the rolling reduction at 0 ° C. or less to 30% or more. Therefore, the rolling finishing temperature is 850 ° C. or lower.

【0020】次に靭性向上のためには、結晶粒径を10
0μ以下にすることが必要である。上記の(200)回
折強度比を2.5以上にする製造方法のうち圧延仕上温
度が650℃未満では、結晶粒径が100μを超えるこ
とがあるため、圧延仕上温度は650℃以上とする。
Next, in order to improve the toughness, the crystal grain size is set to 10
It is necessary to make it 0 μm or less. When the rolling finishing temperature is lower than 650 ° C. in the manufacturing method for setting the (200) diffraction intensity ratio to 2.5 or higher, the crystal grain size may exceed 100 μ, so the rolling finishing temperature is set to 650 ° C. or higher.

【0021】熱間圧延後、(200)回折強度比を高く
し、圧延によって鋼板中に導入された歪を減少するため
に、焼戻しまたは焼きなまし熱処理が必要であるが、高
温で熱処理すると(200)回折強度比が低くなるた
め、上限温度は950℃である。
After hot rolling, tempering or annealing heat treatment is necessary in order to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. Since the diffraction intensity ratio becomes low, the upper limit temperature is 950 ° C.

【0022】次に、本発明の限定理由を説明する。Cは
固溶状態でも炭化物として析出しても磁壁移動の障害と
して作用して制振性を低下させるため低いほど好まし
く、上限を0.20%とする。
Next, the reasons for limitation of the present invention will be described. C acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a carbide, and lowers the vibration damping property.

【0023】Siは脱酸材として重要であるため、0.
01%以上添加する必要があるが、添加することでコス
トアップとなるため、特に高強度(例えば400MPa 以
上)を必要としない安価な汎用材としては、0.5%未
満に限定するのが好ましい。ただし、強度上昇のために
は有効な元素であり、コストは別として400MPa以上
の高強度を必要とする鋼材とするためには0.5%以上
添加しても良いが、Si添加量単独で強度を上昇させる
のではなく、他の強度上昇元素(Mn,Al,Cu)の
添加量との兼ね合いで調整するのが好ましい。この場合
も、3.5%を超えて添加すると制振性の低下が起こる
ので、Si量の上限は3.5%とする。
Since Si is important as a deoxidizing material,
It is necessary to add it in an amount of not less than 01%, but the cost increases by adding it, so it is preferable to limit it to less than 0.5% as an inexpensive general-purpose material that does not particularly require high strength (for example, 400 MPa or more). . However, it is an effective element for increasing the strength, and apart from the cost, 0.5% or more may be added to obtain a steel material requiring high strength of 400 MPa or more. It is preferable not to increase the strength but to adjust it in consideration of the addition amount of other strength increasing elements (Mn, Al, Cu). In this case as well, if the addition exceeds 3.5%, the vibration damping property deteriorates, so the upper limit of the Si content is made 3.5%.

【0024】Mnは固溶体強化元素であり、制振性及び
靭性向上に効果がなく、添加することでコストアップと
なるため、特に高強度を必要としない安価な汎用材の場
合は、0.2%未満に限定するのが最も好ましい。ただ
し、400MPa 以上の高強度を必要とする場合の強度上
昇のためには効果的な元素であり、この目的のため0.
2%以上添加しても良い。しかしながら2.5%を超え
て添加すると制振性の低下が起こるため、Mn量の上限
は2.5%とする。
Mn is a solid solution strengthening element, has no effect on improving vibration damping property and toughness, and increases the cost by adding it. Therefore, in the case of an inexpensive general-purpose material that does not require high strength, 0.2 Most preferably it is limited to less than%. However, it is an effective element for increasing the strength when a high strength of 400 MPa or more is required, and for this purpose, 0.
You may add 2% or more. However, if it is added in excess of 2.5%, the damping property will decrease, so the upper limit of the Mn content is 2.5%.

【0025】P,Sは鋼中において非金属介在物を形成
し、かつ、偏析することにより磁壁の移動を妨げる害を
及ぼし制振性を低下させるので少ないほどよい。このた
め、Pは0.010%以下、Sは0.005%以下とす
る。
P and S form non-metallic inclusions in the steel, and segregate to hinder the movement of the domain wall to reduce the vibration damping property. Therefore, P is set to 0.010% or less and S is set to 0.005% or less.

【0026】AlはSiやMnと同様に脱酸材として重
要であるほか、制振性と強度を向上させる重要な元素で
ある。最低0.002%を確保する必要があるが、添加
することでコストアップとなるため、特に高強度400
MPa 以上を必要としない安価な汎用制振鋼材の場合は、
0.1%未満に限定するのが最も好ましい。ただし、4
00MPa 以上の高強度を必要とする場合に強度上昇にす
るためには効果的な元素であり、この目的のため、0.
1%以上添加しても良い。
Similar to Si and Mn, Al is an important element as a deoxidizing material, and is an important element for improving vibration damping property and strength. It is necessary to secure at least 0.002%, but the addition of this will increase the cost, so especially high strength of 400
In the case of inexpensive general-purpose damping steel materials that do not require MPa or more,
Most preferably, it is limited to less than 0.1%. However, 4
It is an effective element for increasing the strength when a high strength of 00 MPa or more is required.
You may add 1% or more.

【0027】しかしながら、好ましくは必要な強度(最
終的な到達強度として、400MPa〜500MPa)に応じ
て、Si,Cr,Mnなど他の強度上昇元素の添加量と
の組み合わせにより調整するのが良い。この場合でも、
Si,Cr,Mnなど他の強度上昇元素の添加量に依ら
ず3.5%を超えて添加すると制振性の低下が起こるた
め、Al量の上限は3.5%とする。
However, it is preferable to adjust the strength according to the required strength (final ultimate strength of 400 MPa to 500 MPa) in combination with the addition amount of other strength increasing elements such as Si, Cr and Mn. Even in this case,
The upper limit of the amount of Al is 3.5% because if it exceeds 3.5% irrespective of the amount of addition of other strength-increasing elements such as Si, Cr, and Mn, the damping property decreases.

【0028】Crはフェライトフォーマーであり、添加
することにより結晶粒を粗大化する元素であり、制振性
を若干向上させるが、また高価な元素であるため極力添
加量を低減することが好ましいため、特に高強度400
MPa 以上を必要としない安価な汎用制振鋼材の場合は、
上限を0.5%未満に制限するのが最も好ましい。ただ
し、強度上昇のためには有効な元素であり、400MPa
以上の強度確保の目的のため、0.5%以上添加しても
良い。
Cr is a ferrite former, which is an element that coarsens the crystal grains when added, and slightly improves the vibration damping property, but it is an expensive element and it is preferable to reduce the added amount as much as possible. Therefore, especially high strength 400
In the case of inexpensive general-purpose damping steel materials that do not require MPa or more,
Most preferably, the upper limit is limited to less than 0.5%. However, it is an effective element for increasing strength, and 400 MPa
For the purpose of ensuring the above strength, 0.5% or more may be added.

【0029】しかしながら、Si,Al,Mnなどの他
の強度上昇元素の量との組み合わせにより、到達強度
(400MPa あるいは500MPa)に応じてCr添加量を
調整するのが好ましい。Si,Al,Mnなどの他の強
度上昇元素を添加しない場合でも、3.5%を超えて添
加すると制振性の低下が起こる。このためCr量の上限
は3.5%とする。
However, it is preferable to adjust the amount of Cr added according to the ultimate strength (400 MPa or 500 MPa) in combination with the amount of other strength increasing elements such as Si, Al and Mn. Even if other strength-increasing elements such as Si, Al, and Mn are not added, if they are added in excess of 3.5%, the damping property will decrease. Therefore, the upper limit of the Cr content is 3.5%.

【0030】Nは固溶状態でも窒化物として析出しても
磁壁移動の障害として作用して制振性を低下させるため
低いほど好ましく、上限を0.010%とする。
N, which acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or precipitates as a nitride, lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.010%.

【0031】本発明の最大のポイントであるTi,N
b,Zr及びTaは鋼中のC,N,Oを炭化物、窒化
物、酸化物として固定し、固溶C,N,O量を低減して
制振性を向上させるため、それぞれ0.005%以上添
加する必要があるが、0.5%を超えて含有すると、上
記作用による効果が飽和すると同時に靭性を損なうた
め、それぞれ上限を0.5%とする。
The greatest point of the present invention is Ti, N
b, Zr, and Ta fix C, N, and O in the steel as carbides, nitrides, and oxides, reduce the amount of solute C, N, and O and improve the vibration damping property. %, But if the content exceeds 0.5%, the effect due to the above-mentioned action saturates and at the same time, the toughness is impaired, so the upper limit is made 0.5%.

【0032】さらに、必要に応じて添加されるCu,N
i,Mo,V,Bは強度上昇に有効な元素であり、他の
Al,Si,Mn,Crなどとの組み合わせにより40
0MPa あるいは500MPa 以上の強度を得ることがで
き、その効果が不足しない範囲として前記の量を下限と
し、また制振性及び靭性が低下しない範囲として、前記
の量を上限とした。
Further, Cu, N added as necessary
i, Mo, V, and B are elements effective in increasing strength, and when combined with other Al, Si, Mn, Cr, etc., 40
The above amount was set as the lower limit as a range in which the strength of 0 MPa or 500 MPa or more could be obtained and the effect was not insufficient, and the above amount was set as the upper limit as the range in which the damping property and the toughness were not deteriorated.

【0033】さらに、必要に応じて添加されるCa,R
EMは靭性向上に有効な元素であり、その効果が不足し
ない範囲として前記の量を下限とし、また靭性、制振性
がむしろ低下しない範囲として、前記の量を上限とし
た。
Further, Ca, R added as necessary
EM is an element effective in improving toughness, and the above amount was set as the lower limit as a range in which the effect was not insufficient, and the above amount was set as the upper limit as a range in which the toughness and vibration damping were not deteriorated.

【0034】製造条件については、加熱温度は加熱オー
ステナイト粒を微細にし、(200)回折強度比を高く
するため、1250℃以下とし、さらに、加熱時の鋼板
内温度偏差をなくすため、1000℃以上とする。
Regarding the manufacturing conditions, the heating temperature is 1250 ° C. or lower in order to make the heated austenite grains fine and the (200) diffraction intensity ratio high, and further 1000 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating. And

【0035】圧延条件に関しては、(200)回折強度
比を高くするため900℃以下で30%以上の圧下率が
必要であるが、圧下率が70%を超えると、圧延機に対
する負荷が大きくなり、また、圧延時間が長くなりコス
トアップ要因となるため、上限を70%とする。
Regarding the rolling conditions, in order to raise the (200) diffraction intensity ratio, a reduction rate of 30% or more is required at 900 ° C. or lower, but if the reduction rate exceeds 70%, the load on the rolling mill becomes large. Also, the rolling time becomes long and this causes a cost increase, so the upper limit is made 70%.

【0036】圧延仕上温度は、900℃以下で30%以
上の圧延を行うため、800℃以下となるが650℃未
満ではフェライト域圧延となり結晶粒径が100μ超と
なることがあり靭性が低下するため、下限を650℃と
する。
Since the rolling finish temperature is 900 ° C. or lower and 30% or more of rolling is performed, the rolling finish temperature is 800 ° C. or lower, but if it is lower than 650 ° C., rolling in the ferrite region may occur and the grain size may exceed 100 μ, resulting in a decrease in toughness. Therefore, the lower limit is set to 650 ° C.

【0037】熱間圧延後室温まで冷却した後、(20
0)回折強度比をさらに向上させ、圧延によって鋼板中
に導入された歪を減少するために、焼戻しまたは焼きな
まし熱処理が必要であり、650℃以上の熱処理を行う
が、(200)回折強度比は高温で熱処理すると弱くな
るため、上限温度は950℃とする。
After hot rolling and cooling to room temperature, (20
0) In order to further improve the diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling, tempering or annealing heat treatment is required, and heat treatment at 650 ° C. or higher is performed, but the (200) diffraction intensity ratio is The upper limit temperature is set to 950 ° C., because heat treatment weakens it at high temperatures.

【0038】[0038]

【実施例】まず表1に示す成分範囲の供試合金を作製
し、これより元厚×40mm幅×400mm長さの板状試験
片を加工し、機械インピータンス法による制振性測定を
行った。表1に示す合金のうち鋼A〜Iは本発明の成分
範囲の合金であり、鋼J〜Rは本発明の成分範囲外の合
金である。これらの鋼について、表2に示す製造条件で
製造したものの各種特性を合わせて表に示す。なお、板
厚6mm以上の各鋼板は熱間圧延後室温まで冷却した後熱
処理した。板厚がそれ未満のものは熱間圧延後、巻取
り、その後熱処理した。
[Examples] First, a matchmaking alloy having the composition range shown in Table 1 was prepared, and a plate-shaped test piece having an original thickness of 40 mm width and a length of 400 mm was processed from this, and the vibration damping property was measured by a mechanical impedance method. It was Among the alloys shown in Table 1, Steels A to I are alloys within the composition range of the present invention, and Steels J to R are alloys outside the composition range of the present invention. The various properties of these steels produced under the production conditions shown in Table 2 are also shown in the table. Each steel sheet having a thickness of 6 mm or more was hot-rolled, cooled to room temperature, and then heat-treated. A sheet having a thickness less than that was hot-rolled, wound, and then heat-treated.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】例1〜10は本発明例であり、例11〜2
2は比較例である。例1〜7,11〜18は板厚25m
m、例8は板厚2.5mm、例9,10は板厚50mm、例
19〜22は板厚40mmである。
Examples 1 to 10 are examples of the present invention, and Examples 11 and 2
2 is a comparative example. Examples 1-7 and 11-18 have a plate thickness of 25 m
m, Example 8 has a plate thickness of 2.5 mm, Examples 9 and 10 have a plate thickness of 50 mm, and Examples 19 to 22 have a plate thickness of 40 mm.

【0043】例1の本発明例は(200)回折強度比が
2.5以上で、高強度(≧400MPa)で、高い制振性能
(η≧0.02)を有する。例2〜10はさらに圧延仕
上温度が650℃以上で、(200)回折強度比が2.
5以上で、結晶粒径が100μ以下であり、高強度(≧
400MPa)で、高い制振性能(η≧0.02)と高靭性
(≧50J)を有する。
The inventive example of Example 1 has a (200) diffraction intensity ratio of 2.5 or more, high intensity (≧ 400 MPa), and high vibration damping performance (η ≧ 0.02). In Examples 2 to 10, the rolling finishing temperature was 650 ° C or higher and the (200) diffraction intensity ratio was 2.
5 or more, the crystal grain size is 100 μ or less, and high strength (≧
It has high vibration damping performance (η ≧ 0.02) and high toughness (≧ 50J) at 400 MPa.

【0044】例3〜8は、強度上昇に有効な選択元素を
含有するため、さらに高強度(≧500MPa)で、例9,
10は靭性上昇に有効な選択元素を含有するため、さら
に高靭性(≧80J)である。
Since Examples 3 to 8 contain the selective element effective for increasing the strength, the strength is higher (≧ 500 MPa), and
No. 10 has a higher toughness (≧ 80 J) because it contains a selective element effective for increasing the toughness.

【0045】比較例11は(200)回折強度比が2.
5以上だが、結晶粒径が100μ超で、Cが高く、制振
性能と靭性が低い。例12は(200)回折強度比が
2.5以上で、結晶粒径が100μ以下であるが、Si
が高く、制振性能が低い。例13は(200)回折強度
比が2.5以上で、結晶粒径が100μ以下であるが、
Mnが高く、制振性能が低い。
Comparative Example 11 had a (200) diffraction intensity ratio of 2.
Although it is 5 or more, the crystal grain size is more than 100 μ, the C is high, and the vibration damping performance and the toughness are low. Example 12 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 100 μm or less,
Is high and the damping performance is low. Example 13 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 100 μ or less,
High Mn and low vibration damping performance.

【0046】例14,15は(200)回折強度比が
2.5以上で、結晶粒径が100μ以下であるが、例1
4はPが高く、例15はSが高く、制振性能が低い。例
16は(200)回折強度比が2.5以上で、結晶粒径
が100μ以下であるが、Crが高く、靭性が低い。例
17は(200)回折強度比が2.5以上で、結晶粒径
が100μ以下であるが、Alが高く、靭性が低い。
In Examples 14 and 15, the (200) diffraction intensity ratio was 2.5 or more and the crystal grain size was 100 μ or less.
No. 4 has a high P and Example 15 has a high S, and the vibration damping performance is low. In Example 16, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μ or less, but Cr is high and the toughness is low. In Example 17, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μ or less, but Al is high and the toughness is low.

【0047】例18は(200)回折強度比が2.5以
上で、結晶粒径が100μ以下であるが、Nが高く、制
振性能が低い。例19はC,N,Oを固定する元素を含
有しないため、制振性能が低い。例20は900℃以下
の圧下率が低く、(200)回折強度比が低く、結晶粒
径が100μ超で、制振性能と靭性が低い。
In Example 18, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μ or less, but N is high and the vibration damping performance is low. Since Example 19 does not contain an element that fixes C, N and O, the vibration damping performance is low. Example 20 has a low rolling reduction of 900 ° C. or lower, a low (200) diffraction intensity ratio, a crystal grain size of more than 100 μ, and low vibration damping performance and toughness.

【0048】例21は熱処理温度が低く、(200)回
折強度比が低く、結晶粒径が100μ以下であるが、制
振性能が低い。例22は熱処理温度が高く、(200)
回折強度比が低く、結晶粒径が100μ以下であるが、
制振性能が低い。
In Example 21, the heat treatment temperature is low, the (200) diffraction intensity ratio is low, and the crystal grain size is 100 μm or less, but the vibration damping performance is low. Example 22 had a high heat treatment temperature, (200)
The diffraction intensity ratio is low and the crystal grain size is 100 μm or less,
Vibration control performance is low.

【0049】[0049]

【発明の効果】本発明により、制振性能、及び、高靭性
と制振性能が同時に要求される船舶、橋梁、産業機械、
建設用構造材料の供給が可能となり、工業界に与える効
果は極めて大きい。
According to the present invention, ships, bridges, industrial machines,
Supply of structural materials for construction becomes possible, and the effect on the industrial world is extremely large.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.20%以下、 Si:0.01%以上、3.5%以下、 Mn:2.5%以下、 P :0.010%以下、 S :0.005%以下、 Cr:3.5%以下、 Al:0.002%以上、3.5%以下、 N :0.010%以下 を含有し、更に、 Ti:0.005〜0.5%、 Nb:0.005〜0.5%、 Zr:0.005〜0.5%、 Ta:0.005〜0.5% の1種以上を含有し、残部Fe及び不可避的不純物から
なることを特徴とする制振合金。
1. By weight%, C: 0.20% or less, Si: 0.01% or more, 3.5% or less, Mn: 2.5% or less, P: 0.010% or less, S: 0 0.005% or less, Cr: 3.5% or less, Al: 0.002% or more, 3.5% or less, N: 0.010% or less, and further Ti: 0.005-0.5% , Nb: 0.005-0.5%, Zr: 0.005-0.5%, Ta: 0.005-0.5%, and at least one of Fe and unavoidable impurities. Damping alloy characterized by.
【請求項2】 重量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 V :0.005〜0.2%、 B :0.0003〜0.005% のうち少なくとも1種以上を含有することを特徴とする
請求項1記載の制振合金。
2. By weight%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, V: 0.005 to 0. 2%, B: 0.0003-0.005% At least 1 sort (s) or more are contained, The damping alloy of Claim 1 characterized by the above-mentioned.
【請求項3】 重量%で、 Ca:0.001〜0.05%、 REM:0.001〜0.1% のうち少なくとも1種以上を含有することを特徴とする
請求項1または2記載の制振合金。
3. At least one of Ca: 0.001 to 0.05% and REM: 0.001 to 0.1% by weight is contained. Damping alloy.
【請求項4】 (200)回折強度比が2.5以上を有
することを特徴とする請求項1〜3のいずれかに記載の
制振合金。
4. The vibration damping alloy according to claim 1, wherein the (200) diffraction intensity ratio is 2.5 or more.
【請求項5】 結晶粒径を100μ以下とすることによ
り高い靭性を確保することを特徴とする請求項1〜4の
いずれかに記載の制振合金。
5. The damping alloy according to claim 1, wherein a high toughness is ensured by setting the crystal grain size to 100 μm or less.
【請求項6】 加熱温度が1000〜1250℃、90
0℃以下の圧下率が30〜70%、圧延仕上温度が80
0℃以下で熱間圧延後、室温まで冷却し、650〜95
0℃で焼戻しまたは焼きなまし熱処理することを特徴と
する請求項1〜5のいずれか記載の制振合金の製造方
法。
6. A heating temperature of 1000 to 1250 ° C., 90
The rolling reduction at 0 ° C or lower is 30 to 70%, and the rolling finishing temperature is 80.
After hot rolling at 0 ° C or lower, it is cooled to room temperature and then 650-95.
The method for producing a vibration damping alloy according to claim 1, wherein tempering or annealing heat treatment is performed at 0 ° C.
【請求項7】 圧延仕上温度の範囲を650〜800℃
とする熱間圧延を行うことを特徴とする請求項6記載の
制振合金の製造方法。
7. A rolling finishing temperature range of 650 to 800 ° C.
The method for producing a vibration-damping alloy according to claim 6, wherein hot rolling is performed.
JP3681396A 1996-02-23 1996-02-23 High damping alloy and its production Withdrawn JPH09227997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3681396A JPH09227997A (en) 1996-02-23 1996-02-23 High damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3681396A JPH09227997A (en) 1996-02-23 1996-02-23 High damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH09227997A true JPH09227997A (en) 1997-09-02

Family

ID=12480219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3681396A Withdrawn JPH09227997A (en) 1996-02-23 1996-02-23 High damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH09227997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443740A (en) * 2010-10-14 2012-05-09 宝山钢铁股份有限公司 Alloy steel nitride and manufacture method thereof
EP2993245A4 (en) * 2013-05-01 2016-12-14 Nippon Steel & Sumitomo Metal Corp High-strength, low-specific gravity steel plate having excellent spot welding properties
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443740A (en) * 2010-10-14 2012-05-09 宝山钢铁股份有限公司 Alloy steel nitride and manufacture method thereof
EP2993245A4 (en) * 2013-05-01 2016-12-14 Nippon Steel & Sumitomo Metal Corp High-strength, low-specific gravity steel plate having excellent spot welding properties
US10294551B2 (en) 2013-05-01 2019-05-21 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific-gravity steel sheet having superior spot weldability
US10336037B2 (en) 2013-05-01 2019-07-02 Nippon Steel & Sumitomo Metal Corporation Galvanized steel sheet and method for producing the same

Similar Documents

Publication Publication Date Title
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
JP5186753B2 (en) Damping alloy sheet and manufacturing method thereof
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JPH09227997A (en) High damping alloy and its production
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
JPH09157794A (en) High damping alloy and its production
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JPH08260106A (en) Chromium steel sheet excellent in formability
JPH09104950A (en) High damping alloy and its production
JPH09143624A (en) Damping alloy and its production
KR102207723B1 (en) Lihgt-weight stainless steel with excellent mechanical properties and method of manufacturing the same
JP7332692B2 (en) High-strength structural steel and its manufacturing method
JPH09143622A (en) Damping alloy and its production
JPH09143623A (en) Damping alloy and its production
JPH09176780A (en) High strength steel excellent in damping characteristic and its production
JP2987735B2 (en) High fatigue strength thick steel plate
JPH09170049A (en) Damping alloy and its production
JPH06145797A (en) Production of thick silicon steel plate for magnetic shielding structure
JPH09157792A (en) High damping alloy and its production
JPH09157793A (en) High damping alloy and its production
JPH0313544A (en) High-mn nonmagnetic reinforcing steel bar and its production
JPH08319539A (en) High damping alloy with high strength and high toughness and its production
JP2859698B2 (en) Hot-rolled steel with excellent high-temperature strength properties and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506