JPH09176780A - High strength steel excellent in damping characteristic and its production - Google Patents

High strength steel excellent in damping characteristic and its production

Info

Publication number
JPH09176780A
JPH09176780A JP29831395A JP29831395A JPH09176780A JP H09176780 A JPH09176780 A JP H09176780A JP 29831395 A JP29831395 A JP 29831395A JP 29831395 A JP29831395 A JP 29831395A JP H09176780 A JPH09176780 A JP H09176780A
Authority
JP
Japan
Prior art keywords
less
vibration damping
strength steel
diffraction intensity
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29831395A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29831395A priority Critical patent/JPH09176780A/en
Publication of JPH09176780A publication Critical patent/JPH09176780A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high damping alloy for structural use material, excellent in damping characteristic as well as in toughness. SOLUTION: This steel has a composition consisting of, by weight, <=0.02% C, 0.01-<0.5% Si, 0.2-2.5% Mn, <=0.010% P, <=0.005% S, <0.5% Cr, 0.002-0.060% Al, <=0.006% N, and the balance Fe with inevitable impurities and also has >=2.5 (200) diffraction intensity ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用構造材料として高い制振性を有する高強度
な制振合金及び高靭性を有する高強度な制振合金に係わ
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength damping alloy having a high damping property and a high-strength damping alloy having a high toughness as a structural material for ships, bridges, industrial machines and buildings. is there.

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物は
その材料には、構造材料の基本特性である強度、靭性に
加え高い制振性が同時に要求される傾向にある。すなわ
ち、たとえば、橋梁上の高速鉄道走行時や大規模土木、
建築作業時の騒音、振動を構造材料そのものの制振効果
で抑え、かつ、構造部材として十分な靭性を有するとい
う課題を解決しようとするものである。
2. Description of the Related Art Recently, materials for ships, bridges, industrial machines, and buildings tend to be required to have high vibration damping properties in addition to strength and toughness, which are basic characteristics of structural materials. That is, for example, when running on a high-speed railway on a bridge or in large-scale civil engineering,
The present invention aims to solve the problems of suppressing noise and vibration during construction work by the damping effect of the structural material itself and having sufficient toughness as a structural member.

【0003】樹脂サンドイッチ型制振鋼板に代わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振特性を得るため、フェ
ライトフォーマーを添加して組織をフェライト単相化す
ることをねらい、Al及びSiを添加した材料と、Cr
を積極的に添加した材料との2種類に分けられる。
[0003] Conventional iron-based materials used for members intended for damping performance in place of resin sandwich-type damping steel sheets have high hysteresis due to irreversible motion of domain wall motion under the action of alternating stress due to vibration. In order to obtain a vibration-damping property, a material to which Al and Si are added, and
And a material to which is positively added.

【0004】前者の例としては、特開平4−99148
号公報に記載されるようにAlを最高7.05%及びS
iを最高4.5%まで添加した強磁性型制振合金があ
り、後者の例としては、特開昭52−73118号公報
に記載されるようにCrを8〜30%添加した強磁性制
振合金などがある。さらに、特開平6−220583号
公報及び特開平5−302148号公報で、Mnが0.
1または0.2%以下で、Crを1〜5%を添加した強
磁性制振合金がある。また、発明者らは、先にMnが
0.2〜2.5%、Crを1〜5%を添加した強磁性制
振合金を提案した。
As an example of the former, Japanese Patent Laid-Open No. 4-99148
As described in Japanese Patent Publication, the Al content is up to 7.05% and S
There is a ferromagnetic damping alloy with i added up to 4.5%. An example of the latter is a ferromagnetic damping alloy with 8 to 30% of Cr as described in JP-A-52-73118. There are vibration alloys. Further, in JP-A-6-220583 and JP-A-5-302148, Mn is 0.
There is a ferromagnetic damping alloy containing 1 to 0.2% or less and 1 to 5% of Cr. Further, the inventors have previously proposed a ferromagnetic damping alloy to which 0.2 to 2.5% of Mn and 1 to 5% of Cr are added.

【0005】また、田中良平、制振材料〈その機能と応
用〉広済堂1992年3月発行p192〜197に強磁
性型合金として、外部応力が磁区壁の移動を引き起こし
それによるヒステリシス損で振動エネルギーが吸収され
ることが記述されている。
Also, Ryohei Tanaka, damping material (its function and application), as a ferromagnetic alloy in p192 to 197 issued by Kousendo in March 1992, external stress causes movement of magnetic domain walls, which causes hysteresis energy to cause vibration energy. Described to be absorbed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の合金のうち特開平4−99148号公報記載の合金は
Al及びSi添加量が多いため、粗大なAl系及びSi
系介在物の生成を招き、これが破壊の発生点として作用
するため靭性が低下する。
However, among these alloys, the alloy described in Japanese Patent Application Laid-Open No. 4-99148 contains a large amount of Al and Si.
This leads to the formation of system inclusions, which act as fracture initiation points, resulting in a decrease in toughness.

【0007】また、特開昭52−73118号公報記載
の合金はCr添加が過剰なため、上記同様Cr系介在物
の生成による靭性低下を招く。さらに、特開平6−22
0583号公報及び特開平5−302148号公報記載
の鋼材は、靭性劣化防止の観点がなく、靭性が低い。ま
た、発明者らが先に提案した鋼材においては、改善され
るものの制振性においてさらに改善が望まれた。
Further, the alloy described in Japanese Patent Laid-Open No. 52-73118 has an excessive addition of Cr, so that similarly to the above, the toughness is lowered due to the formation of Cr-based inclusions. Furthermore, JP-A-6-22
The steel materials described in Japanese Patent No. 0583 and Japanese Patent Application Laid-Open No. 5-302148 do not have a viewpoint of preventing deterioration of toughness and have low toughness. In addition, although the steel materials proposed by the inventors have been improved, further improvement in vibration damping property has been desired.

【0008】制振材料の文献では、制振合金の機構を書
いたもので、その向上策や具体的な成分系・製造方法あ
るいは制振性に加えて靭性を同時に満足する方法に関す
る記述はない。本発明は優れた制振性及び制振性と高靭
性を有する高強度な制振合金を提供することを目的とす
る。
In the literature of damping materials, the mechanism of damping alloys is written, and there is no description about the improvement measures, specific component systems, manufacturing methods, or methods for simultaneously satisfying toughness in addition to damping properties. . An object of the present invention is to provide a high-strength damping alloy having excellent damping properties and damping properties and high toughness.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)重量%で、C:0.02%以下、Si:0.01
以上、0.5%未満、Mn:0.2〜2.5%、P:
0.010%以下、S:0.005%以下、Cr:0.
5%未満、Al:0.002〜0.060%、N:0.
006%以下を含有し、残部Fe及び不可避的不純物か
らなり、かつ(200)回折強度比が2.5以上である
ことを特徴とする制振性に優れた高強度鋼。
The gist of the present invention is as follows. (1)% by weight, C: 0.02% or less, Si: 0.01
Above, less than 0.5%, Mn: 0.2 to 2.5%, P:
0.010% or less, S: 0.005% or less, Cr: 0.
Less than 5%, Al: 0.002 to 0.060%, N: 0.
A high-strength steel excellent in vibration damping property, containing 006% or less, consisting of balance Fe and unavoidable impurities, and having a (200) diffraction intensity ratio of 2.5 or more.

【0010】(2)重量%で、Cu:0.05〜2.5
%、Ni:0.05〜2.5%、Mo:0.05〜4.
5%、Nb:0.005〜0.2%、V:0.005〜
0.2%、Ti:0.005〜0.1%、B:0.00
03〜0.005%のうち少なくとも1種以上を含有す
ることを特徴とする前記(1)記載の制振性に優れた高
強度鋼。
(2) Cu: 0.05-2.5 by weight%
%, Ni: 0.05-2.5%, Mo: 0.05-4.
5%, Nb: 0.005 to 0.2%, V: 0.005 to
0.2%, Ti: 0.005 to 0.1%, B: 0.00
The high-strength steel excellent in vibration damping property according to (1) above, which contains at least one of 03 to 0.005%.

【0011】(3)重量%で、Ca:0.001〜0.
05%、REM:0.001〜0.10%のうち少なく
とも1種以上を含有することを特徴とする前記(1)ま
たは(2)のいずれかに記載の制振性に優れた高強度
鋼。 (4)結晶粒径を100μ以下とすることにより高い靭
性を確保したことを特徴とする前記(1)〜(3)のい
ずれかに記載の制振性に優れた高強度鋼。
(3) Ca: 0.001 to 0.
05%, REM: 0.001 to 0.10%, and at least one or more of them are contained. The high-strength steel excellent in vibration damping property according to the above (1) or (2). . (4) The high-strength steel excellent in vibration damping property according to any one of the above (1) to (3), characterized in that high toughness is ensured by setting the crystal grain size to 100 μm or less.

【0012】(5)加熱温度が1000〜1150℃、
かつ850℃以下の圧下率が30〜70%であり、さら
に圧延仕上温度が750℃以下で熱間圧延した後室温ま
で冷却し、600〜900℃の温度範囲で焼戻しまたは
焼きなまし熱処理することを特徴とする前記(1)〜
(4)のいずれかに記載の制振性に優れた高強度鋼の製
造方法。
(5) The heating temperature is 1000 to 1150 ° C.,
And a reduction ratio of 850 ° C. or lower is 30 to 70%, and further, hot rolling is performed at a rolling finishing temperature of 750 ° C. or lower, followed by cooling to room temperature, and tempering or annealing heat treatment in a temperature range of 600 to 900 ° C. The above (1)-
The method for producing a high-strength steel excellent in vibration damping property according to any one of (4).

【0013】(6)圧延仕上温度の範囲を600〜75
0℃とする熱間圧延を行うことを特徴とする前記(5)
記載の制振性に優れた高強度鋼の製造方法。 (7)圧延仕上温度の範囲をAr1 −20℃〜Ar1
50℃とする熱間圧延を行うことを特徴とする前記
(5)または(6)のいずれかに記載の制振性に優れた
高強度鋼の製造方法。
(6) Rolling finishing temperature range is 600 to 75
The above (5) characterized in that hot rolling is performed at 0 ° C.
A method for producing a high-strength steel having excellent vibration damping properties as described. (7) Roll finishing temperature range is Ar 1 -20 ° C to Ar 1 +
The method for producing high-strength steel excellent in vibration damping property according to (5) or (6) above, characterized in that hot rolling is performed at 50 ° C.

【0014】[0014]

【発明の実施の形態】本発明は上記事情に鑑みなされた
もので、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスに起因した高い制振特性を得
るために、磁壁移動に有害な各種元素や介在物、析出物
の生成を招き、磁壁移動を妨げ、制振性を大きく損なう
元素を極力低下した純鉄系成分を基本としている。
The present invention has been made in view of the above circumstances, and in order to obtain high damping characteristics due to hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration, the It is based on pure iron-based components in which the elements that cause harmful harmful elements, inclusions, and precipitates, interfere with domain wall movement, and greatly impair vibration damping are minimized.

【0015】さらに、従来は結晶粒界が磁壁移動を阻害
するため、もっぱら粗粒化することで制振性を向上させ
ていたが、発明者らは種々検討した結果、粗粒化による
制振性向上の方法に替わる方法として、(200)回折
強度を高くすることで、大幅に制振性が向上することを
発見した。(200)回折強度を高くすることで、鋼板
表面に平行な方向の〈100〉方位が強化される。つま
り、磁化容易方向が鋼板表面に平行な方向に強化され
る。磁化容易方向を強化することで制振性が向上するこ
とは新たな発見である。この(200)回折強度比を
2.5以上にすることで制振性が向上することを見い出
した。
Further, in the past, since the crystal grain boundary hinders the domain wall movement, the vibration damping property was improved only by coarsening the grain. However, as a result of various studies by the inventors, the vibration damping by the coarsening has been performed. As an alternative to the method for improving the vibration resistance, it has been found that the vibration damping property is significantly improved by increasing the (200) diffraction intensity. By increasing the (200) diffraction intensity, the <100> orientation parallel to the steel sheet surface is strengthened. That is, the direction of easy magnetization is strengthened in a direction parallel to the steel sheet surface. It is a new discovery that the damping property is improved by strengthening the easy magnetization direction. It was found that the damping property is improved by setting the (200) diffraction intensity ratio to 2.5 or more.

【0016】(200)回折強度比を2.5以上にする
と、制振性の指標である損失係数を0.015以上確保
できるため、制振性能の観点のみから見れば(200)
回折強度比は高いほど良いが、靭性など他の鋼材特性と
の兼ね合いから、実用上の(200)回折強度比は2.
5から12.0の範囲が好ましく、その結果として損失
係数は0.015〜0.05を確保するのが好ましい。
If the (200) diffraction intensity ratio is 2.5 or more, a loss coefficient of 0.015 or more, which is an index of the vibration damping property, can be secured. Therefore, from the viewpoint of vibration damping performance only (200)
The higher the diffraction intensity ratio, the better, but in consideration of other steel properties such as toughness, the practical (200) diffraction intensity ratio is 2.
The range of 5 to 12.0 is preferable, and as a result, it is preferable to secure the loss factor of 0.015 to 0.05.

【0017】ここで、(200)回折強度比は、X線で
板厚方向の(200)回折強度を測定し、ランダムサン
プル材の(200)回折強度に対する比を求めた。今回
板表面、板厚方向1/2厚み及び1/4厚みについて検
討した結果では、(200)回折強度比は最大値でも1
5程度であった。
Here, the (200) diffraction intensity ratio was obtained by measuring the (200) diffraction intensity in the plate thickness direction with X-rays and determining the ratio to the (200) diffraction intensity of the random sample material. As a result of studying the plate surface, 1/2 thickness and 1/4 thickness in the plate thickness direction, the (200) diffraction intensity ratio is 1 even at the maximum value.
It was about 5.

【0018】この(200)回折強度比を高くするため
には、低温圧延を行うことが必要で、検討の結果、85
0℃以下の圧下率を30%以上にすることで達成でき
る。このため、圧延仕上温度は通常750℃以下とな
る。さらに、制振性向上のため詳細に検討した結果、圧
延仕上温度をAr1 −20℃〜Ar1 +50℃にするこ
とで(200)回折強度比がさらに向上し制振性が一層
向上することを見い出した。
In order to increase the (200) diffraction intensity ratio, it is necessary to carry out low-temperature rolling.
This can be achieved by setting the rolling reduction at 0 ° C. or less to 30% or more. Therefore, the rolling finishing temperature is usually 750 ° C. or lower. Further, as a result of a detailed study for improving the vibration damping property, it was found that by setting the rolling finishing temperature to Ar 1 −20 ° C. to Ar 1 + 50 ° C., the (200) diffraction intensity ratio was further improved and the vibration damping property was further improved. Found out.

【0019】さらに、制振性、靭性を損なわずに強度を
大幅に上昇させることのできる元素としてMnを見い出
した。Mnを0.2%以上添加することで、制振性と強
度の両立、あるいは、制振性、強度と靭性全て向上させ
ることが可能である。
Further, Mn was found as an element capable of significantly increasing the strength without impairing the vibration damping property and the toughness. By adding Mn in an amount of 0.2% or more, it is possible to achieve both the vibration damping property and the strength, or to improve all of the vibration damping property, the strength and the toughness.

【0020】また、靭性向上のために、結晶粒径を10
0μ以下にすることが好ましい。このためには上記の
(200)回折強度比を2.5以上にする製造方法にお
いて、圧延仕上温度が600℃未満では、結晶粒径が1
00μを超えることがあるため、圧延仕上温度は600
℃以上とする。
In order to improve the toughness, the crystal grain size is 10
It is preferably 0 μ or less. To this end, in the above-described manufacturing method in which the (200) diffraction intensity ratio is 2.5 or more, when the rolling finishing temperature is less than 600 ° C., the crystal grain size is 1
The rolling finishing temperature is 600 because it may exceed 00μ.
C or higher.

【0021】熱間圧延後、(200)回折強度比を高く
し、圧延によって鋼板中に導入された歪を減少するため
に、焼戻しまたは焼きなまし熱処理が必要であるが、高
温で熱処理すると(200)回折強度比が低くなるた
め、上限温度は950℃であるが、確実に(200)回
折強度比を確保するためには900℃以下がより好まし
い。
After hot rolling, tempering or annealing heat treatment is necessary in order to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. Since the diffraction intensity ratio becomes low, the upper limit temperature is 950 ° C., but 900 ° C. or less is more preferable to ensure the (200) diffraction intensity ratio.

【0022】次に、本発明の限定理由を説明する。Cは
固溶状態でも炭化物として析出しても磁壁移動の障害と
して作用して制振性を低下させるため低いほど好まし
く、上限を0.02%とする。Siは脱酸材として重要
であるため、0.01%以上添加する必要があるが、
0.5を超えて添加すると固溶状態で磁壁移動の障害と
して作用して制振性、靭性を低下させるため、上限を
0.50%とする。
Next, the reasons for limitation of the present invention will be described. Since C acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a carbide and reduces the vibration damping property, the lower the C is, the more preferable the upper limit is 0.02%. Si is important as a deoxidizer, so 0.01% or more must be added.
If added in excess of 0.5, it acts as an obstacle to domain wall movement in a solid solution state and reduces vibration damping and toughness, so the upper limit is made 0.50%.

【0023】Mnは脱酸及びSを固定して粒界脆化を抑
制すると同時に固溶体強化元素で強度確保のため不可欠
の元素で、最低0.2%を添加する必要があるが、2.
5%以上の添加では制振性の低下が起こる。このためM
n量は0.2〜2.5%とする。P,Sは鋼中において
非金属介在物を形成し、かつ、偏析することにより磁壁
の移動を妨げる害を及ぼし制振性を低下させるので少な
いほどよい。このため、Pは0.010%以下、Sは
0.005%以下とする。
Mn is a solid solution strengthening element that fixes deoxidation and S to fix grain boundary embrittlement, and is an essential element for securing strength. It is necessary to add at least 0.2%.
If it is added in an amount of 5% or more, the damping property is lowered. Therefore M
The amount of n is 0.2 to 2.5%. P and S form non-metallic inclusions in the steel and segregate to impede the movement of the magnetic domain wall to lower the vibration damping property. Therefore, P is set to 0.010% or less and S is set to 0.005% or less.

【0024】AlはSiやMnと同様に脱酸材として重
要である他、制振性と強度を向上させる重要な元素であ
る。最低0.002%を確保する必要があるが、過剰添
加によりAl2 3 などの介在物の他、Nと化合してA
lNなどの析出物を生成し、制振性、靭性の低下を招く
ため上限を0.060%に制限する。
Al is an important element as a deoxidizing material like Si and Mn, and is an important element for improving the vibration damping property and the strength. It is necessary to secure at least 0.002%, but by excessive addition, it is possible to combine with inclusions such as Al 2 O 3 and N to form A.
The upper limit is limited to 0.060% because precipitates such as 1N are generated and the vibration damping property and toughness are deteriorated.

【0025】Crはフェライトフォーマーであり、添加
することにより結晶粒を粗大化する元素であり、制振性
を若干向上させるが、同時に靭性の低下を招き、また高
価な元素であるため極力添加量を低減することが好まし
いため、上限を0.5%未満に制限する。Nは固溶状態
でも窒化物として析出しても磁壁移動の障害として作用
して制振性を低下させるため低いほど好ましく、上限を
0.006%とする。
Cr is a ferrite former, which is an element that coarsens the crystal grains by adding it and slightly improves the vibration damping property, but at the same time causes a decrease in toughness and is an expensive element, so it is added as much as possible. Since it is preferable to reduce the amount, the upper limit is limited to less than 0.5%. N is a solid solution state or precipitates as a nitride and acts as an obstacle to the movement of the domain wall to lower the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.006%.

【0026】さらに、必要に応じて添加されるCu,N
i,Mo,Nb,V,Ti,Bは強度上昇に有効な元素
であるが、過剰に添加すると制振性能および靭性が劣化
してしまう。各元素の添加量を種々変化させた試験片を
使った実験により、強度の下限値(引張強度≧350MP
a)を確保するために必要な最少添加量をそれぞれの添加
量の下限とした。
Further, Cu, N added as necessary
Although i, Mo, Nb, V, Ti, and B are effective elements for increasing the strength, if added in excess, the vibration damping performance and toughness will deteriorate. The lower limit of strength (tensile strength ≧ 350MP)
The minimum amount of addition required to secure a) was set as the lower limit of each addition amount.

【0027】一方、制振性能(損失係数η≧0.02)
及び靭性(0℃のVノッチシャルピー衝撃試験による吸
収エネルギー≧100J)の下限値以上を満足するため
の最大許容量を調査して、それぞれの添加量上限とし
た。
On the other hand, damping performance (loss coefficient η ≧ 0.02)
And the maximum allowable amount for satisfying the lower limit value of the toughness (absorbed energy by V-notch Charpy impact test at 0 ° C. ≧ 100 J) or more was investigated and set as the upper limit of each addition amount.

【0028】さらに、必要に応じて添加されるCa,R
EMは靭性向上に有効な元素であり、0℃の吸収エネル
ギー≧100Jの靭性下限値以上を満足するための最少
添加量を調査して下限とし、また制振性能(損失係数η
≧0.02)を確保するために必要な範囲として上限を
決めた。
In addition, Ca, R added as necessary
EM is an element effective in improving toughness, and the minimum addition amount for satisfying the toughness lower limit value of absorbed energy at 0 ° C ≥ 100 J or more is investigated and set as the lower limit, and the vibration damping performance (loss coefficient η
The upper limit was set as the range necessary to secure ≧ 0.02).

【0029】製造条件については、加熱温度は加熱オー
ステナイト粒を微細にし、(200)回折強度比を高く
するため、1150℃以下とし、さらに、加熱時の鋼板
内温度偏差をなくすため、1000℃以上とする。
Regarding the manufacturing conditions, the heating temperature is 1150 ° C. or lower in order to make the heated austenite grains fine and the (200) diffraction intensity ratio high, and further 1000 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating. And

【0030】圧延条件に関しては、(200)回折強度
比を高くするため850℃以下で30%以上の圧延が必
要であるが、圧下率が70%を超えると、圧延機に対す
る負荷が大きくなり、また、圧延時間が長くなりコスト
アップ要因となるため、上限を70%とする。
Regarding the rolling conditions, in order to increase the (200) diffraction intensity ratio, it is necessary to roll at 30% or more at 850 ° C. or lower, but if the rolling reduction exceeds 70%, the load on the rolling mill increases, Further, the rolling time becomes long, which causes a cost increase, so the upper limit is set to 70%.

【0031】圧延仕上温度は、850℃以下で30%以
上の圧延を行うため、750℃以下となるが、600℃
未満ではフェライト域圧延となり結晶粒径が100μ超
となることがあり靭性が低下するため、下限を600℃
とする。さらに、圧延仕上温度をAr1 −20℃〜Ar
1 +50℃にすることで(200)回折強度比がさらに
向上し制振性が一層向上する。
The rolling finishing temperature is 750 ° C. or lower because the rolling temperature is 850 ° C. or lower and 30% or more is rolled, but 600 ° C.
If the temperature is less than 100 μm, the ferrite region may be rolled and the crystal grain size may exceed 100 μm, resulting in a decrease in toughness.
And Furthermore, the finish rolling temperature Ar 1 -20 ° C. to Ar
By setting the temperature to 1 + 50 ° C, the (200) diffraction intensity ratio is further improved and the vibration damping property is further improved.

【0032】熱間圧延後室温まで冷却した後、(20
0)回折強度比をさらに向上させ、圧延によって鋼板中
に導入された歪を減少するために、焼戻しまたは焼きな
まし熱処理が必要であり、600℃以上の熱処理を行う
が、(200)回折強度比は高温で熱処理すると弱くな
るため、上限温度は900℃とする。
After hot rolling and cooling to room temperature, (20
0) In order to further improve the diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling, tempering or annealing heat treatment is required, and heat treatment at 600 ° C. or higher is performed, but the (200) diffraction intensity ratio is The upper limit temperature is set to 900 ° C., because heat treatment weakens it at high temperatures.

【0033】[0033]

【実施例】まず表1に示す成分範囲の供試合金を作製
し、これより元厚×40mm幅×400mm長さの板状試験
片を加工し、機械インピータンス法による制振性測定を
行った。表1に示す合金のうち鋼A〜Eは本発明の成分
範囲の合金であり、鋼F〜Nは本発明の成分範囲外の合
金である。これらの鋼について、表2に示す製造条件で
製造したものの各種特性を合わせて表に示す。なお、板
厚6mm以上の各鋼板は熱間圧延後室温まで冷却した後熱
処理した。板厚がそれ未満のものは熱間圧延機、巻取
り、その後熱処理した。
[Examples] First, a matchmaking alloy having the composition range shown in Table 1 was prepared, and a plate-shaped test piece having an original thickness of 40 mm width and a length of 400 mm was processed from this, and the vibration damping property was measured by a mechanical impedance method. It was Among the alloys shown in Table 1, steels A to E are alloys within the composition range of the present invention, and steels F to N are alloys outside the composition range of the present invention. The various properties of these steels produced under the production conditions shown in Table 2 are also shown in the table. Each steel sheet having a thickness of 6 mm or more was hot-rolled, cooled to room temperature, and then heat-treated. Those having a plate thickness less than that were hot-rolled, wound, and then heat-treated.

【0034】例1〜6は本発明例であり、例7〜19は
比較例である。例1,2,3,7〜13は板厚25mm、
例4は板厚2.5mm、例5,6は板厚50mm、例14〜
19は板厚40mmである。例1の本発明例は(200)
回折強度比が2.5以上で、高強度(≧350MPa)で、
高い制振性能(η≧0.015)を有する。
Examples 1 to 6 are examples of the present invention, and Examples 7 to 19 are comparative examples. Examples 1, 2, 3, 7 to 13 have a plate thickness of 25 mm,
Example 4 has a plate thickness of 2.5 mm, Examples 5 and 6 have a plate thickness of 50 mm, and Examples 14 to
19 has a plate thickness of 40 mm. The invention example of Example 1 is (200)
Diffraction intensity ratio is 2.5 or more, high intensity (≧ 350MPa),
It has high vibration damping performance (η ≧ 0.015).

【0035】例2〜6はさらに圧延仕上温度が600℃
以上で、(200)回折強度比が2.5以上で、結晶粒
径が100μ以下であり、高強度(≧350MPa)で、高
い制振性能(η≧0.015)と高靭性(≧100J)
を有する。例3,4は、強度上昇に有効な選択元素を含
有するため、さらに高強度(≧380MPa)で、例5,6
は靭性上昇に有効な選択元素を含有するため、さらに高
靭性(≧120J)である。
In Examples 2 to 6, the rolling finishing temperature was 600 ° C.
As described above, the (200) diffraction intensity ratio is 2.5 or more, the crystal grain size is 100 μ or less, high strength (≧ 350 MPa), high vibration damping performance (η ≧ 0.015) and high toughness (≧ 100 J). )
Having. Since Examples 3 and 4 contain a selective element effective for increasing strength, Examples 5 and 6 have higher strength (≧ 380 MPa).
Has a higher toughness (≧ 120 J) because it contains a selective element effective for increasing the toughness.

【0036】比較例7は(200)回折強度比が2.5
以上だが、結晶粒径が100μ超で、Cが高く、制振性
能と靭性が低い。例8は(200)回折強度比が2.5
以上で、結晶粒径が100μ以下であるが、Siが高
く、制振性能が低い。例9は(200)回折強度比が
2.5以上で、結晶粒径が100μ以下であるが、Mn
が低く、強度が低い。例10は(200)回折強度比が
2.5以上で、結晶粒径が100μ以下であるが、Mn
が高く、制振性能が低い。
Comparative Example 7 has a (200) diffraction intensity ratio of 2.5.
However, the crystal grain size exceeds 100 μ, the C content is high, and the vibration damping performance and toughness are low. Example 8 has a (200) diffraction intensity ratio of 2.5.
As described above, although the crystal grain size is 100 μ or less, Si is high and the vibration damping performance is low. In Example 9, the (200) diffraction intensity ratio is 2.5 or more, and the crystal grain size is 100 μm or less.
Is low and strength is low. Example 10 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 100 μm or less,
Is high and the damping performance is low.

【0037】例11,12は(200)回折強度比が
2.5以上で、結晶粒径が100μ以下であるが、例1
1はPが高く、例12はSが高く、制振性能が低い。例
13は(200)回折強度比が2.5以上で、結晶粒径
が100μ以下であるが、Crが高く、靭性が低い。例
14は(200)回折強度比が2.5以上で、結晶粒径
が100μ以下であるが、Alが高く、靭性が低い。例
15は(200)回折強度比が2.5以上で、結晶粒径
が100μ以下であるが、Nが高く、制振性能が低い。
In Examples 11 and 12, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μ or less.
1 has a high P and Example 12 has a high S, and the vibration damping performance is low. In Example 13, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μm or less, but Cr is high and the toughness is low. In Example 14, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μ or less, but Al is high and the toughness is low. In Example 15, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 100 μ or less, but N is high and the vibration damping performance is low.

【0038】例16は加熱温度が高く、例17は850
℃以下の圧下率が低く、(200)回折強度比が低く、
結晶粒径が100μ超で、制振性能と靭性が低い。例1
8は熱処理温度が低く、(200)回折強度比が低く、
結晶粒径は100μ以下であるが、制振性能が低い。例
19は熱処理温度が高く、(200)回折強度比が低
く、結晶粒径が100μ以下であるが、制振性能が低
い。
The heating temperature is high in Example 16 and 850 in Example 17.
Low rolling reduction below ℃, low (200) diffraction intensity ratio,
If the crystal grain size exceeds 100μ, vibration damping performance and toughness are low. Example 1
No. 8 has a low heat treatment temperature and a low (200) diffraction intensity ratio,
The crystal grain size is 100 μ or less, but the vibration damping performance is low. In Example 19, the heat treatment temperature is high, the (200) diffraction intensity ratio is low, and the crystal grain size is 100 μm or less, but the vibration damping performance is low.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】次に、表3に示す本発明の成分範囲の合金
の鋼P,Q,Rについて表4に示す本発明の製造条件で
製造したものの各種特性を合わせて示す。例1,2,3
は圧延仕上温度がさらに望ましい範囲にある例である。
板厚は全て20mmである。鋼P,Q,RのAr1 はそれ
ぞれ645℃,650℃,640℃である。
Next, various characteristics of the steels P, Q and R of the alloys in the composition range of the present invention shown in Table 3 are shown together with those produced under the production conditions of the present invention shown in Table 4. Examples 1, 2, 3
Is an example in which the rolling finishing temperature is in a more desirable range.
The plate thickness is all 20 mm. Ar 1 of the steels P, Q and R are 645 ° C., 650 ° C. and 640 ° C., respectively.

【0043】例1,2,3は圧延仕上温度がAr1 +5
0℃〜Ar1 −20℃の範囲内にあり、(200)回折
強度比が3.5以上で、さらに良好な制振性能(η≧
0.025)を有し、圧延仕上温度がAr1 +50℃〜
Ar1 −20℃の範囲にない例4〜6に比べより良好な
制振性能を有している。
In Examples 1, 2, and 3, the rolling finishing temperature was Ar 1 +5.
Within the range of 0 ° C. to Ar 1 -20 ° C., the (200) diffraction intensity ratio is 3.5 or more, and further excellent vibration damping performance (η ≧
0.025) and the rolling finishing temperature is Ar 1 + 50 ° C.
It has better vibration damping performance than Examples 4 to 6 in which Ar 1 is not in the range of -20 ° C.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【発明の効果】本発明により、制振性能、及び、高靭性
と制振性能が同時に要求される船舶、橋梁、産業機械、
建設用構造材料の供給が可能となり、工業界に与える効
果は極めて大きい。
According to the present invention, ships, bridges, industrial machines,
Supply of structural materials for construction becomes possible, and the effect on the industrial world is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16F 15/02 8312−3J F16F 15/02 Q ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display area F16F 15/02 8312-3J F16F 15/02 Q

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02%以下、 Si:0.01以上、0.5%未満、 Mn:0.2〜2.5%、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%未満、 Al:0.002〜0.060%、 N :0.006%以下 を含有し、残部Fe及び不可避的不純物からなり、かつ
(200)回折強度比が2.5以上であることを特徴と
する制振性に優れた高強度鋼。
1. By weight%, C: 0.02% or less, Si: 0.01 or more and less than 0.5%, Mn: 0.2 to 2.5%, P: 0.010% or less, S : 0.005% or less, Cr: less than 0.5%, Al: 0.002 to 0.060%, N: 0.006% or less, and the balance Fe and unavoidable impurities, and (200) High-strength steel with excellent vibration damping properties, characterized by a diffraction intensity ratio of 2.5 or more.
【請求項2】 重量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ti:0.005〜0.1%、 B :0.0003〜0.005% のうち少なくとも1種以上を含有することを特徴とする
請求項1記載の制振性に優れた高強度鋼。
2. By weight%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005 to 0. 2%, V: 0.005 to 0.2%, Ti: 0.005 to 0.1%, B: 0.0003 to 0.005%, at least one or more types being contained. A high-strength steel excellent in vibration damping property according to Item 1.
【請求項3】 重量%で、 Ca:0.001〜0.05%、 REM:0.001〜0.10% のうち少なくとも1種以上を含有することを特徴とする
請求項1または2のいずれかに記載の制振性に優れた高
強度鋼。
3. At least one of Ca: 0.001 to 0.05% and REM: 0.001 to 0.10% by weight is contained. High-strength steel with excellent vibration-damping properties.
【請求項4】 結晶粒径を100μ以下とすることによ
り高い靭性を確保したことを特徴とする請求項1〜3の
いずれかに記載の制振性に優れた高強度鋼。
4. The high-strength steel excellent in vibration damping property according to claim 1, wherein a high toughness is ensured by controlling a crystal grain size to 100 μm or less.
【請求項5】 加熱温度が1000〜1150℃、かつ
850℃以下の圧下率が30〜70%であり、さらに圧
延仕上温度が750℃以下で熱間圧延した後室温まで冷
却し、600〜900℃の温度範囲で焼戻しまたは焼き
なまし熱処理することを特徴とする請求項1〜4のいず
れかに記載の制振性に優れた高強度鋼の製造方法。
5. A heating temperature of 1000 to 1150 ° C., a rolling reduction of 850 ° C. or less of 30 to 70%, hot rolling at a rolling finishing temperature of 750 ° C. or less, and then cooling to room temperature, 600 to 900. The method for producing a high-strength steel excellent in vibration damping property according to any one of claims 1 to 4, characterized by performing tempering or annealing heat treatment in a temperature range of ° C.
【請求項6】 圧延仕上温度の範囲を600〜750℃
とする熱間圧延を行うことを特徴とする請求項5記載の
制振性に優れた高強度鋼の製造方法。
6. A rolling finishing temperature range of 600 to 750 ° C.
The method for producing high-strength steel excellent in vibration damping property according to claim 5, wherein hot rolling is performed.
【請求項7】 圧延仕上温度の範囲をAr1 −20℃〜
Ar1 +50℃とする熱間圧延を行うことを特徴とする
請求項5または6のいずれかに記載の制振性に優れた高
強度鋼の製造方法。
7. A rolling finishing temperature in a range of Ar 1 -20 ° C.
The method for producing a high-strength steel excellent in vibration damping property according to claim 5, wherein hot rolling at Ar 1 + 50 ° C. is performed.
JP29831395A 1995-10-26 1995-11-16 High strength steel excellent in damping characteristic and its production Withdrawn JPH09176780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29831395A JPH09176780A (en) 1995-10-26 1995-11-16 High strength steel excellent in damping characteristic and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27924695 1995-10-26
JP7-279246 1995-10-26
JP29831395A JPH09176780A (en) 1995-10-26 1995-11-16 High strength steel excellent in damping characteristic and its production

Publications (1)

Publication Number Publication Date
JPH09176780A true JPH09176780A (en) 1997-07-08

Family

ID=26553237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29831395A Withdrawn JPH09176780A (en) 1995-10-26 1995-11-16 High strength steel excellent in damping characteristic and its production

Country Status (1)

Country Link
JP (1) JPH09176780A (en)

Similar Documents

Publication Publication Date Title
US6632295B2 (en) High tensile strength hot-rolled steel sheet and method for manufacturing the same
JP4410741B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
KR20080085068A (en) Damping alloy sheet and process for producing the same
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
WO2022054898A1 (en) Thick steel sheet and manufacturing method for same
JPH09256037A (en) Production of thick high tensile strength steel plate for stress relieving annealing treatment
JP3214281B2 (en) Low-temperature building steel
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH07109544A (en) Low yield ratio thick steel plate good in toughness
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JPH09176780A (en) High strength steel excellent in damping characteristic and its production
KR100368553B1 (en) Manufacturing method of resistive complex ratio hot rolled steel sheet with excellent high temperature strength
JPH09157794A (en) High damping alloy and its production
JPH09227997A (en) High damping alloy and its production
JPH09143624A (en) Damping alloy and its production
JP2718550B2 (en) Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties
JP2987735B2 (en) High fatigue strength thick steel plate
JPH09104950A (en) High damping alloy and its production
JPH09143623A (en) Damping alloy and its production
JPH09143622A (en) Damping alloy and its production
JPH09157792A (en) High damping alloy and its production
JPH08319539A (en) High damping alloy with high strength and high toughness and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204