JPH09143622A - Damping alloy and its production - Google Patents

Damping alloy and its production

Info

Publication number
JPH09143622A
JPH09143622A JP30783595A JP30783595A JPH09143622A JP H09143622 A JPH09143622 A JP H09143622A JP 30783595 A JP30783595 A JP 30783595A JP 30783595 A JP30783595 A JP 30783595A JP H09143622 A JPH09143622 A JP H09143622A
Authority
JP
Japan
Prior art keywords
less
diffraction intensity
vibration damping
rolling
damping alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30783595A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Hidesato Mabuchi
秀里 間渕
Tatsuyuki Suyama
竜之 壽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30783595A priority Critical patent/JPH09143622A/en
Publication of JPH09143622A publication Critical patent/JPH09143622A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a damping alloy for a structural material simultaneously excellent in toughness and damping capacity by specifying the componental compsn. of an alloy and producing conditions therefor and increasing the (200) diffraction intensity. SOLUTION: This damping alloy has a compsn. contg., by weight, <=0.02% C, 0.5 to 3.5% Si, <0.2% or 0.2 to 2.5% Mn, <=0.010% P, <=0.005% S, 0.5 to 3.5% Cr, >0.060 to 3.5% Al and <=0.006% N, and the balance Fe, and in which the (200) diffraction intensity ratio is regulated to >=3.5 and the grain size to <=120μm. By increasing the (200) diffraction intensity, the <100> orientation in the direction parallel to the surface of the steel plate is strengthened to improve its damping capacity. For obtaining the alloy, a slab is heated at 1000 to 1200 deg.C heating temp., is subjected to hot rolling in such a manner that the rolling ratio at <=970 deg.C is regulated to >=70% and the rolling finishing temp. is regulated to <=870 deg.C (720 to 870 deg.C), and furthermore, subjects to hot rolling in a range from the Ar1 +50 deg.C to the Ar1 +100 deg.C, is subsequently cooled to room temp. and is subjected to tempering or annealing heat treatment at 660 to 960 deg.C. Moreover, the above compsn. may be incorporated with prescribed amounts of Cu, Ni, Mo, Nb, V, Ti, B, Ca and rare earth metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用構造材料として高い制振性を有する制振合
金及び高靭性を有する制振合金に係わるものである。
TECHNICAL FIELD The present invention relates to a damping alloy having a high damping property and a damping alloy having a high toughness as a structural material for ships, bridges, industrial machines and constructions.

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物の
材料には、構造材料の基本特性である強度、靭性に加え
高い制振性が同時に要求される傾向にある。即ち、例え
ば橋梁上の高速鉄道走行時や大規模土木、建築作業時の
騒音、振動を構造材料そのものの制振効果で抑え、かつ
構造部材として十分な靭性を有するという課題を解決し
ようとするものである。
2. Description of the Related Art Recently, materials for ships, bridges, industrial machines and buildings tend to be required at the same time to have high vibration damping properties in addition to the basic characteristics of structural materials such as strength and toughness. That is, for example, the problem of suppressing noise and vibration during high-speed railway running on a bridge, large-scale civil engineering, and construction work by the damping effect of the structural material itself and having sufficient toughness as a structural member Is.

【0003】樹脂サンドイッチ型制振鋼板に代わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振特性を得るため、フェ
ライトフォーマーを添加して組織をフェライト単相化す
ることを狙い、Al及びSiを添加した材料と、Crを
積極的に添加した材料との2種類に分けられる。前者の
例としては、特開平4−99148号公報記載のように
Alを最高7.05%及びSiを最高4.5%まで添加
した強磁性型合金があり、後者の例としては、特開昭5
2−73118号公報記載のようにCrを8〜30%添
加した強磁性制振合金などがある。
Conventional iron-based materials used as members for the purpose of damping property instead of resin sandwich type damping steel plate are high in hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration. In order to obtain damping characteristics, it is divided into two types: a material to which Al and Si are added and a material to which Cr is positively added, with the aim of adding a ferrite former to make the structure into a ferrite single phase. An example of the former is a ferromagnetic alloy in which Al is added up to 7.05% and Si is added up to 4.5% as described in JP-A-4-99148. Sho 5
There is a ferromagnetic damping alloy in which 8 to 30% of Cr is added, as described in Japanese Patent Laid-Open No. 2-73118.

【0004】更に、特開平6−220583号公報及び
特開平5−302148号公報で、Mnが0.1または
0.2%以下で、Crを1〜5%添加した強磁性制振合
金がある。また本発明者らは、特願平6−258982
号でMnが0.2〜2.5%、Crを1〜5%添加した
強磁性制振合金を提案した。また、田中良平、制振材料
「その機能と応用」広済堂、1992年3月発行、P. 1
92〜197 に強磁性型合金として、外部応力が磁区壁の移
動を引き起こし、それによるヒステリシス損で振動エネ
ルギーが吸収されることが記述されている。
Further, there is a ferromagnetic damping alloy containing Mn of 0.1 or 0.2% or less and Cr of 1 to 5% in JP-A-6-220583 and JP-A-5-302148. . In addition, the present inventors have filed Japanese Patent Application No. 6-258982.
Proposed a ferromagnetic damping alloy containing 0.2 to 2.5% of Mn and 1 to 5% of Cr. In addition, Ryohei Tanaka, Vibration damping material "its function and application", Kosaido, March 1992, P. 1
It is described in 92 to 197 that, as a ferromagnetic alloy, external stress causes the domain wall to move, and the resulting hysteresis loss absorbs vibration energy.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の合金のうち特開平4−99148号公報記載の合金は
Al及びSi添加量の上限規制が不適当であるため、粗
大なAl系及びSi系介在物の生成を招き、これが破壊
の発生点として作用するため靭性が低下する。また、特
開昭52−73118号公報記載の合金はCr添加が過
剰なため、上記と同様にCr系介在物による靭性低下を
招く。
However, among these alloys, the alloy described in Japanese Patent Application Laid-Open No. 4-99148 has an inappropriate upper limit regulation of Al and Si addition amounts. This leads to the formation of a substance, which acts as a point of fracture occurrence, resulting in a decrease in toughness. Further, since the alloy described in JP-A-52-73118 is excessively Cr-added, the toughness is lowered by the Cr-based inclusions similarly to the above.

【0006】更に、特開平6−220583号公報及び
特開平5−302148号公報は、積極的な靭性向上策
がなされていないため、靭性が低い。また、特願平6−
258982号は靭性の確保優先で制振性については不
十分である。また制振材料の文献では、制振合金の機構
を書いたもので、その向上策や具体的な成分系・製造方
法あるいは制振性に加えて靭性を同時に満足する方法に
関する記述はない。本発明は、優れた制振性及び制振性
と高靭性を有する制振合金を提供することを目的とす
る。
Further, in JP-A-6-220583 and JP-A-5-302148, the toughness is low because no aggressive measures for improving the toughness are taken. In addition, Japanese Patent Application No. 6-
No. 258982 is insufficient in terms of vibration damping because it prioritizes securing toughness. Further, in the literature of damping materials, the mechanism of damping alloy is written, and there is no description about the improvement measures, specific component systems / manufacturing methods, or methods for simultaneously satisfying toughness in addition to damping properties. An object of the present invention is to provide a damping alloy having excellent damping properties and damping properties and high toughness.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1) 重量%で、C:0.02%以下、Si:0.5
%以上、3.5%以下、Mn:0.2%未満、P:0.
010%以下、S:0.005%以下、Cr:0.5%
以上、3.5%以下、Al:0.060%超、3.5%
以下、N:0.006%以下を含有し、残部Fe及び不
可避的不純物からなり、(200)回折強度比が3.5
以上であることを特徴とする制振合金。
The gist of the present invention is as follows. (1) C: 0.02% or less by weight%, Si: 0.5
% Or more and 3.5% or less, Mn: less than 0.2%, P: 0.
010% or less, S: 0.005% or less, Cr: 0.5%
Above, 3.5% or less, Al: over 0.060%, 3.5%
Hereafter, N: 0.006% or less is contained, the balance is Fe and unavoidable impurities, and the (200) diffraction intensity ratio is 3.5.
The above is a damping alloy characterized by the above.

【0008】(2) 重量%で、C:0.02%以下、
Si:0.5%以上、3.5%以下、Mn:0.2%以
上、2.5%以下、P:0.010%以下、S:0.0
05%以下、Cr:0.5%以上、3.5%以下、A
l:0.060%超、3.5%以下、N:0.006%
以下を含有し、残部Fe及び不可避的不純物からなり、
(200)回折強度比が3.5以上であることを特徴と
する制振合金。
(2) C: 0.02% or less by weight%,
Si: 0.5% or more, 3.5% or less, Mn: 0.2% or more, 2.5% or less, P: 0.010% or less, S: 0.0
05% or less, Cr: 0.5% or more, 3.5% or less, A
1: more than 0.060%, 3.5% or less, N: 0.006%
Contains the following, with the balance Fe and unavoidable impurities,
(200) A vibration damping alloy having a diffraction intensity ratio of 3.5 or more.

【0009】(3) 重量%で、Cu:0.05〜2.
5%、Ni:0.05〜2.5%、Mo:0.05〜
4.5%、Nb:0.005〜0.2%、V:0.00
5〜0.2%、Ti:0.005〜0.1%、B:0.
0003〜0.005%を1種または2種以上含有する
ことを特徴とする(1)または(2)のいずれかに記載
の制振合金。
(3) Cu: 0.05-2.
5%, Ni: 0.05 to 2.5%, Mo: 0.05 to
4.5%, Nb: 0.005-0.2%, V: 0.00
5 to 0.2%, Ti: 0.005 to 0.1%, B: 0.
The vibration damping alloy according to (1) or (2), characterized in that it contains 0003 to 0.005% by one kind or two or more kinds.

【0010】(4) 重量%で、Ca:0.001〜
0.05%、REM:0.001〜0.1%を1種また
は2種含有することを特徴とする(1)〜(3)のいず
れかに記載の制振合金。 (5) 結晶粒径を120μ以下にすることにより高い
靭性を確保したことを特徴とする(1)〜(4)のいず
れかに記載の制振合金。
(4) Ca: 0.001 to 1% by weight
0.05% and REM: 0.001-0.1% are contained 1 type or 2 types, The damping alloy in any one of (1)-(3) characterized by the above-mentioned. (5) The damping alloy according to any one of (1) to (4), characterized in that high toughness is ensured by setting the crystal grain size to 120 μm or less.

【0011】(6) 加熱温度が1000〜1200
℃、970℃以下の圧下率が70%以上、圧延仕上温度
が870℃以下で熱間圧延後、室温まで冷却し、660
〜960℃で焼戻しまたは焼きなまし熱処理することを
特徴とする(1)〜(5)のいずれかに記載の制振合金
の製造方法。 (7) 圧延仕上温度の範囲を720〜870℃とする
熱間圧延を行うことを特徴とする(6)記載の制振合金
の製造方法。 (8) 圧延仕上温度の範囲をAr1 +50℃〜Ar1
+100℃とする熱間圧延を行うことを特徴とする
(6)または(7)のいずれかに記載の制振合金の製造
方法。
(6) The heating temperature is 1000 to 1200.
670 ° C., 970 ° C. or lower, 70% or more, rolling finishing temperature: 870 ° C. or less, hot rolling, then cooling to room temperature, 660
The method for producing a vibration-damping alloy according to any one of (1) to (5), which comprises performing a tempering or an annealing heat treatment at ˜960 ° C. (7) The method for producing a vibration-damping alloy according to (6), characterized in that hot rolling is performed with a rolling finishing temperature range of 720 to 870 ° C. (8) Rolling finishing temperature range is Ar 1 + 50 ° C. to Ar 1
The method for producing a vibration damping alloy according to (6) or (7), characterized in that hot rolling at + 100 ° C. is performed.

【0012】[0012]

【発明の実施の形態】本発明は上記事情に鑑みなされた
もので、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスに起因した高い制振特性を得
るために、磁壁移動に有害な各種元素や介在物、析出物
の生成を招き、磁壁移動を妨げ、制振性を大きく損なう
元素を極力低下した純鉄系成分を基本としている。
The present invention has been made in view of the above circumstances, and in order to obtain high damping characteristics due to hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration, the It is based on pure iron-based components in which the elements that cause harmful harmful elements, inclusions, and precipitates, interfere with domain wall movement, and greatly impair vibration damping are minimized.

【0013】更に、従来は結晶粒界が磁壁移動を阻害す
るため、もっぱら粗粒化することで制振性を向上させて
いたが、発明者らは種々検討した結果、粗粒化による制
振性向上の方法に替わる方法として、(200)回折強
度を高くすることで、大幅に制振性が向上することを発
見した。(200)回折強度を高くすることで、鋼板表
面に平行な方向の〈100〉方位が強化される。つま
り、磁化容易方向が鋼板表面に平行な方向に強化され
る。磁化容易方向を強化することで制振性が向上するこ
とは新たな発見である。
Further, in the past, since the crystal grain boundary hinders the domain wall movement, the vibration damping property was improved only by coarsening the grain, but as a result of various studies by the inventors, the vibration damping by the coarsening has been performed. As an alternative to the method for improving the vibration resistance, it has been found that the vibration damping property is significantly improved by increasing the (200) diffraction intensity. By increasing the (200) diffraction intensity, the <100> orientation parallel to the steel sheet surface is strengthened. That is, the direction of easy magnetization is strengthened in a direction parallel to the steel sheet surface. It is a new discovery that the damping property is improved by strengthening the easy magnetization direction.

【0014】そして、この(200)回折強度比を3.
5以上にすることで制振性が向上することを見い出し
た。(200)回折強度比を3.5以上にすると、制振
性の指標である損失係数は0.035以上確保できて良
く、制振性能の観点から見ると、(200)回折強度比
は高いほど良いが、靭性など他の鋼材特性との兼ね合い
から、実用上(200)回折強度比は3.5から13.
0の範囲が好ましく、その結果として0.035〜0.
06の損失係数を確保するのが好ましい。
Then, this (200) diffraction intensity ratio is set to 3.
It was found that the vibration damping property is improved by setting it to 5 or more. When the (200) diffraction intensity ratio is 3.5 or more, the loss coefficient, which is an index of vibration damping property, can be secured at 0.035 or more. From the viewpoint of vibration damping performance, the (200) diffraction intensity ratio is high. Moderately good, but in consideration of other steel properties such as toughness, the practical (200) diffraction intensity ratio is 3.5 to 13.
0 range is preferred, resulting in 0.035-0.
It is preferable to ensure a loss factor of 06.

【0015】ここで、(200)回折強度比は、X線回
折により板厚方向4分の1厚み位置における(200)
回折強度を測定し、特定の方位を強化や制御していない
ランダムサンプル材の(200)回折強度に対する比を
求めた。今回検討した結果では、(200)回折強度比
は最大値でも15程度であった。
Here, the (200) diffraction intensity ratio is (200) at a quarter thickness position in the plate thickness direction by X-ray diffraction.
The diffraction intensity was measured and the ratio to the (200) diffraction intensity of the random sample material in which the specific orientation was not strengthened or controlled was determined. As a result of this study, the maximum value of the (200) diffraction intensity ratio was about 15.

【0016】この(200)回折強度比を高くするため
には低温圧延を行うことが必要で、検討の結果、970
℃以下の圧下率を70%以上にすることで達成できる。
このため、圧延仕上温度は870℃以下となる。更に、
制振性向上のため詳細に検討した結果、圧延仕上温度を
Ar1 +50℃〜Ar1 +100℃にすることで、(2
00)回折強度比が更に向上し制振性が一層向上するこ
とを見い出した。
In order to increase the (200) diffraction intensity ratio, it is necessary to carry out low temperature rolling, and as a result of examination, 970
It can be achieved by setting the rolling reduction at 70 ° C or lower to 70% or higher.
Therefore, the rolling finishing temperature is 870 ° C. or lower. Furthermore,
As a result of a detailed study for improving the vibration damping property, by setting the rolling finishing temperature to Ar 1 + 50 ° C. to Ar 1 + 100 ° C., (2
It has been found that the 00) diffraction intensity ratio is further improved and the vibration damping property is further improved.

【0017】更に、420MPa以上の高強度を要求さ
れる場合には、制振性及び靭性を損なうことなく、強度
を大幅に上昇させることのできる元素としてMnを見い
出した。Mnを0.2%以上添加することにより、損失
係数(=η)0.035以上の制振性と420MPa以
上の強度の両立、あるいは損失係数(=η)0.035
以上の制振性と420MPa以上の強度並びにVノッチ
シャルピー衝撃試験の0℃の吸収エネルギーが80J以
上の高靭性の全てを満足させることが可能である。
Further, when a high strength of 420 MPa or more is required, Mn was found as an element capable of significantly increasing the strength without impairing the vibration damping property and the toughness. By adding 0.2% or more of Mn, both the vibration damping property of loss factor (= η) of 0.035 or more and the strength of 420 MPa or more, or the loss factor (= η) of 0.035.
It is possible to satisfy all of the above vibration damping properties, the strength of 420 MPa or more, and the high toughness of the absorbed energy at 0 ° C. in the V notch Charpy impact test of 80 J or more.

【0018】次に靭性向上のためには、結晶粒径を12
0μ以下にすることが必要である。上記の(200)回
折強度比を3.5以上にする製造方法のうち、圧延仕上
温度が720℃未満では結晶粒径が120μを超えるこ
とがあるため、圧延仕上温度は720℃以上とする。熱
間圧延後、(200)回折強度比を高くし、圧延によっ
て鋼板中に導入された歪を減少するために、焼戻しまた
は焼きなまし熱処理が必要であるが、高温で熱処理する
と(200)回折強度比が低くなるため、上限温度は9
60℃である。
Next, in order to improve the toughness, the crystal grain size is set to 12
It is necessary to make it 0 μm or less. In the manufacturing method for setting the (200) diffraction intensity ratio to 3.5 or more, if the rolling finishing temperature is lower than 720 ° C., the crystal grain size may exceed 120 μ, so the rolling finishing temperature is set to 720 ° C. or higher. After hot rolling, tempering or annealing heat treatment is necessary in order to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. Is lower, the upper limit temperature is 9
60 ° C.

【0019】このように、細粒組織でも集合組織を導入
することで制振性が向上するが、更に一層の制振性向上
の検討を行った。その結果、フェライトフォーマーであ
るSi,Al,Crを添加することで、熱間圧延後の歪
取り熱処理の過程で若干の粗粒が達成され、制振性が更
に向上することを見い出した。Si,Al,Crの添加
で強度も上昇する。
As described above, the damping property is improved by introducing the texture even in the fine grain structure, and further improvement of the damping property was examined. As a result, it was found that by adding the ferrite formers Si, Al, and Cr, some coarse grains were achieved in the process of strain relief heat treatment after hot rolling, and the vibration damping property was further improved. The strength is also increased by adding Si, Al and Cr.

【0020】次に、本発明の限定理由を説明する。C
は、固溶状態でも炭化物として析出しても磁壁移動の障
害として作用し、制振性を低下させるため好ましくな
く、上限を0.02%とする。
Next, the reasons for limitation of the present invention will be described. C
Is not preferable because it acts as an obstacle to domain wall movement even if it is in a solid solution state or is precipitated as a carbide, and reduces the vibration damping property. Therefore, the upper limit is 0.02%.

【0021】Siは、脱酸材として重要である以外に、
重要なフェライトフォーマーかつ固溶体強化元素である
ため制振性向上に不可欠であり、0.5%以上の添加が
必要である。一方、3.5%を超えて添加するとSiO
2 などの介在物の生成を招き、破壊の発生点として作用
するため靭性を著しく低下させる。従ってSiの添加範
囲は0.5%以上、3.5%以下とする。
Si is important as a deoxidizing material,
Since it is an important ferrite former and solid solution strengthening element, it is indispensable for improving the vibration damping property, and 0.5% or more must be added. On the other hand, if added over 3.5%, SiO
It induces the formation of inclusions such as 2 and acts as the point of fracture occurrence, which significantly reduces toughness. Therefore, the addition range of Si is 0.5% or more and 3.5% or less.

【0022】Mnは、固溶体強化元素であり、制振性及
び靭性向上に効果がなく、添加することでコストアップ
となるため、特に420MPa以上の高強度が必要でな
い場合は、0.2%未満に限定するのが良い。ただし、
特に420MPa以上の高強度が必要な場合は、Mnは
強度確保のためには必須の元素であり、この目的のため
には0.2%以上添加する必要があるが、2.5%を超
えて添加すると制振性の低下が起こるため、Mn量の上
限は2.5%とする。
Mn is a solid solution strengthening element, has no effect on improving vibration damping property and toughness, and increases the cost by adding it. Therefore, Mn is less than 0.2% unless high strength of 420 MPa or more is required. It is good to limit to However,
Especially when a high strength of 420 MPa or more is required, Mn is an essential element for ensuring the strength, and for this purpose, it is necessary to add 0.2% or more, but more than 2.5%. Since the vibration damping property will be deteriorated when added as Mn, the upper limit of the amount of Mn is 2.5%.

【0023】P,Sは、鋼中において非金属介在物を形
成し、かつ、偏析することにより磁壁の移動を妨げる害
を及ぼし、制振性を低下させるので少ないほど良い。こ
のため、Pは0.010%以下、Sは0.005%以下
とする。
P and S form non-metallic inclusions in the steel, and segregate to impede the movement of the magnetic domain wall, which lowers the vibration damping property. Therefore, P is set to 0.010% or less and S is set to 0.005% or less.

【0024】Alは、脱酸材として重要である以外に、
重要なフェライトフォーマーであるため制振性向上に不
可欠であり、0.060%超の添加が必要である。一
方、3.5%を超えて添加するとAl2 3 などの介在
物の生成を招き、破壊の発生点として作用するため靭性
を著しく低下させる。従ってAlの添加範囲は0.06
0%超、3.5%以下とする。
Al is important as a deoxidizing material,
Since it is an important ferrite former, it is indispensable for improving the vibration damping property, and it is necessary to add more than 0.060%. On the other hand, if it is added in excess of 3.5%, inclusions such as Al 2 O 3 are generated, which acts as a point of occurrence of fracture, resulting in a significant decrease in toughness. Therefore, the addition range of Al is 0.06
It is more than 0% and 3.5% or less.

【0025】Crは、フェライトフォーマーであり、添
加することにより結晶粒を若干粗大化する元素であり、
制振性を向上させるため0.50%以上添加するが、同
時に靭性の低下を招き、また高価な元素であるため極力
添加量を低減することが好ましいため、上限を3.5%
以下に制限する。Nは、固溶状態でも窒化物として析出
しても磁壁移動の障害として作用し、制振性を低下させ
るため低いほど好ましく、上限を0.006%とする。
Cr is a ferrite former, and is an element that causes the crystal grains to become slightly coarse when added.
0.50% or more is added to improve the vibration damping property, but at the same time, toughness is reduced, and it is preferable to reduce the added amount as much as possible because it is an expensive element. Therefore, the upper limit is 3.5%.
Restrict to the following. N acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a nitride, and lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.006%.

【0026】更に、必要に応じて添加されるCu,N
i,Mo,Nb,V,Ti,Bは、強度上昇に有効な元
素であり、その効果が不足しない範囲として前記の量を
下限とし、また制振性及び靭性が低下しない範囲とし
て、前記の量を上限とした。更に、必要に応じて添加さ
れるCa,REMは、靭性向上に有効な元素であり、そ
の効果が不足しない範囲として前記の量を下限とし、ま
た靭性がむしろ低下し制振性が低下しない範囲として、
前記の量を上限とした。
Further, Cu, N added as necessary
i, Mo, Nb, V, Ti, and B are elements effective for increasing strength, and the above amount is set as the lower limit as a range in which the effect is not insufficient, and as a range in which vibration damping and toughness are not deteriorated. The upper limit was the amount. Further, Ca and REM added as necessary are elements effective for improving the toughness, and the above amount is set as the lower limit as a range in which the effect is not insufficient, and a range in which the toughness rather decreases and the vibration damping property does not decrease. As
The above amount was made the upper limit.

【0027】製造条件については、加熱温度は加熱オー
ステナイト粒を微細にし、(200)回折強度比を高く
するため、1200℃以下とし、更に、加熱時の鋼板内
温度偏差をなくすため、1000℃以上とする。圧延条
件に関しては、(200)回折強度比を高くするため、
970℃以下で70%以上の圧延が必要である。
Regarding the manufacturing conditions, the heating temperature is 1200 ° C. or lower in order to make the heated austenite grains fine and the (200) diffraction intensity ratio high, and further 1000 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating. And Regarding the rolling conditions, in order to increase the (200) diffraction intensity ratio,
70% or more rolling is required at 970 ° C or less.

【0028】圧延仕上温度は、970℃以下で70%以
上の圧延を行うため、870℃以下となるが、720℃
未満ではフェライト域圧延となり結晶粒径が120μ超
となることがあり靭性が低下するため、下限を720℃
とする。更に、圧延仕上温度をAr1 +50℃〜Ar1
+100℃にすることで、(200)回折強度比が更に
向上し制振特性が一層向上する。
The rolling finishing temperature is 870 ° C. or lower because the rolling finish temperature is 970 ° C. or lower and 70% or more of rolling is performed.
If it is less than 2,000, the ferrite region is rolled, and the crystal grain size may exceed 120 μ, and the toughness decreases, so the lower limit is 720 ° C.
And Furthermore, the rolling finishing temperature is Ar 1 + 50 ° C. to Ar 1
By setting the temperature to + 100 ° C., the (200) diffraction intensity ratio is further improved and the vibration damping characteristics are further improved.

【0029】熱間圧延後室温まで冷却した後、(20
0)回折強度比を更に向上させ、圧延によって鋼板中に
導入された歪を減少するために、焼戻しまたは焼きなま
し熱処理が必要であり、660℃以上の熱処理を行う
が、(200)回折強度比は高温で熱処理すると弱くな
るため、上限温度は960℃とする。
After hot rolling and cooling to room temperature, (20
0) In order to further improve the diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling, tempering or annealing heat treatment is required, and heat treatment at 660 ° C. or higher is performed, but the (200) diffraction intensity ratio is The upper limit temperature is set to 960 ° C., because heat treatment weakens it at high temperature.

【0030】[0030]

【実施例】先ず表1に示す成分範囲の供試合金を作製
し、これから元厚×40mm幅×400mm長さの板状試験
片を加工し、機械インピーダンス法による制振性測定を
行った。表1に示す合金のうち、鋼 No.A〜Fは本発明
の成分範囲の合金であり、鋼 No.G〜Pは本発明の成分
範囲外の合金である。これらの鋼について、表2に示す
製造条件で製造したものの各種特性を合わせて表2に示
す。なお、板厚6mm以上の各鋼板は熱間圧延後室温まで
冷却した後に熱処理した。板厚がそれ未満のものは熱間
圧延後、巻取り、その後熱処理した。
Example First, a matchmaking alloy having the composition range shown in Table 1 was prepared, and a plate-like test piece having an original thickness of 40 mm width and a length of 400 mm was processed from this, and the vibration damping property was measured by the mechanical impedance method. Among the alloys shown in Table 1, Steel Nos. A to F are alloys within the composition range of the present invention, and Steels Nos. G to P are alloys outside the composition range of the present invention. Table 2 also shows various characteristics of these steels manufactured under the manufacturing conditions shown in Table 2. Each steel sheet having a thickness of 6 mm or more was heat-rolled, then cooled to room temperature and then heat-treated. A sheet having a thickness less than that was hot-rolled, wound, and then heat-treated.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】例1〜7は本発明例であり、例8〜21は
比較例である。例1〜4、8〜14は板厚24mm、例5
は板厚1.8mm、例6〜7は板厚32mm、例15〜21
は板厚16mmである。例1の本発明例は(200)回折
強度比が3.5以上で、高い制振性能(η≧0.03
5)を有し、Mnが0.2%未満のために強度は378
MPaにとどまっている。例2〜7は圧延仕上温度が7
20℃以上で、(200)回折強度比が3.5以上で、
結晶粒径が120μ以下であり、Mnが0.2%以上添
加されているため、高強度(≧420MPa)で、高い
制振性能(η≧0.035)と高靭性(≧80J)を有
する。
Examples 1 to 7 are examples of the present invention, and Examples 8 to 21 are comparative examples. Examples 1-4 and 8-14 have a plate thickness of 24 mm, Example 5
Has a plate thickness of 1.8 mm, Examples 6 to 7 have a plate thickness of 32 mm, Examples 15 to 21
Is a plate thickness of 16 mm. The example of the present invention of Example 1 has a (200) diffraction intensity ratio of 3.5 or more and high vibration damping performance (η ≧ 0.03).
5) and the strength is 378 due to less than 0.2% Mn.
It remains at MPa. Examples 2 to 7 have a rolling finish temperature of 7
At 20 ° C or higher, (200) diffraction intensity ratio of 3.5 or higher,
Since the crystal grain size is 120 μ or less and Mn is added by 0.2% or more, it has high strength (≧ 420 MPa), high vibration damping performance (η ≧ 0.035) and high toughness (≧ 80 J). .

【0034】例4、5は、強度上昇に有効な選択元素を
含有するため、更に高強度(≧450MPa)で、例
6、7は、靭性上昇に有効な選択元素を含有するため、
更に高靭性(≧100J)である。
Since Examples 4 and 5 contain a selective element effective for increasing the strength, the strength is higher (≧ 450 MPa), and Examples 6 and 7 contain a selective element effective for increasing the toughness.
Further, it has high toughness (≧ 100 J).

【0035】比較例8は(200)回折強度比が3.5
以上だが、結晶粒径が120μ超で、Cが高く、制振性
能と靭性が低い。例9は(200)回折強度比が3.5
以上で、結晶粒径が120μ以下であるが、Siが低
く、強度、制振性能が低い。例10は(200)回折強
度比が3.5以上で、結晶粒径が120μ以下である
が、Siが高く、制振性能が低い。例11、12は(2
00)回折強度比が3.5以上で、結晶粒径が120μ
以下であるが、例11はPが高く、例12はSが高く、
制振性能が低い。
Comparative Example 8 has a (200) diffraction intensity ratio of 3.5.
However, the crystal grain size exceeds 120 μm, the C content is high, and the vibration damping performance and toughness are low. Example 9 has a (200) diffraction intensity ratio of 3.5.
As described above, although the crystal grain size is 120 μ or less, Si is low and strength and vibration damping performance are low. In Example 10, the (200) diffraction intensity ratio is 3.5 or more and the crystal grain size is 120 μ or less, but Si is high and the vibration damping performance is low. Examples 11 and 12 are (2
00) The diffraction intensity ratio is 3.5 or more, and the crystal grain size is 120μ.
As follows, Example 11 has a high P, Example 12 has a high S,
Vibration control performance is low.

【0036】例13は(200)回折強度比が3.5以
上で、結晶粒径が120μ以下であるが、Crが低く、
強度、制振性能が低い。例14は(200)回折強度比
が3.5以上で、結晶粒径が120μ以下であるが、C
rが高く、靭性が低い。例15は(200)回折強度比
が3.5以上で、結晶粒径が120μ以下であるが、A
lが低く、強度、制振性能が低い。
In Example 13, the (200) diffraction intensity ratio is 3.5 or more and the crystal grain size is 120 μ or less, but Cr is low,
Low strength and vibration damping performance. In Example 14, the (200) diffraction intensity ratio is 3.5 or more and the crystal grain size is 120 μ or less, but C
r is high and toughness is low. Example 15 has a (200) diffraction intensity ratio of 3.5 or more and a crystal grain size of 120 μ or less.
1 is low, strength and vibration damping performance are low.

【0037】例16は(200)回折強度比が3.5以
上で、結晶粒径が120μ以下であるが、Alが高く、
靭性が低い。例17は(200)回折強度比が3.5以
上で、結晶粒径が120μ以下であるが、Nが高く、制
振性能が低い。例18は加熱温度が高く、例19は97
0℃以下の圧下率が低く、(200)回折強度比が低
く、結晶粒径が120μ超で、制振性能と靭性が低い。
In Example 16, the (200) diffraction intensity ratio is 3.5 or more and the crystal grain size is 120 μ or less, but Al is high,
Low toughness. In Example 17, the (200) diffraction intensity ratio is 3.5 or more and the crystal grain size is 120 μ or less, but N is high and the vibration damping performance is low. Example 18 has a high heating temperature, and Example 19 has 97
The rolling reduction at 0 ° C. or lower is low, the (200) diffraction intensity ratio is low, the crystal grain size is more than 120 μm, and the vibration damping performance and toughness are low.

【0038】例20は熱処理温度が低く、(200)回
折強度比が低く、結晶粒径は120μ以下であるが、制
振性能が低い。例21は熱処理温度が高く、(200)
回折強度比が低く、結晶粒径が120μ以下であるが、
制振性能が低い。
In Example 20, the heat treatment temperature is low, the (200) diffraction intensity ratio is low, and the crystal grain size is 120 μ or less, but the vibration damping performance is low. Example 21 has a high heat treatment temperature (200)
The diffraction intensity ratio is low and the crystal grain size is 120μ or less,
Vibration control performance is low.

【0039】次に、表3に示す本発明の成分範囲の合金
の鋼P,Q,Rについて、表4に示す本発明の製造条件
で製造したものの各種特性を合わせて示す。例1、2、
3は圧延仕上温度が更に望ましい範囲にある例である。
板厚は全て24mmである。鋼P,Q,RのAr1 はそれ
ぞれ735℃、740℃、730℃である。
Next, various characteristics of the steels P, Q, and R of the alloys in the composition range of the present invention shown in Table 3 are shown together with those produced under the production conditions of the present invention shown in Table 4. Examples 1, 2,
No. 3 is an example in which the rolling finishing temperature is in a more desirable range.
The plate thickness is all 24 mm. Ar 1 of the steels P, Q and R are 735 ° C., 740 ° C. and 730 ° C., respectively.

【0040】例1、2、3は圧延仕上温度がAr1 +5
0℃〜Ar1 −20℃の範囲内にあり、(200)回折
強度比が5.0以上で、更に良好な制振性能(η≧0.
045)を有し、圧延仕上温度がAr1 +50℃〜Ar
1 +100℃の範囲にない例4〜6に比べ、より良好な
制振性能を有している。
In Examples 1, 2, and 3, the rolling finishing temperature was Ar 1 +5.
Within the range of 0 ° C. to Ar 1 -20 ° C., the (200) diffraction intensity ratio is 5.0 or more, and further excellent vibration damping performance (η ≧ 0.
045) and the rolling finishing temperature is Ar 1 + 50 ° C. to Ar.
It has better vibration damping performance than Examples 4 to 6, which are not in the range of 1 + 100 ° C.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【発明の効果】本発明により、制振性能を要求される場
合や、靭性あるいは強度などの特性と制振性能が同時に
要求される船舶、橋梁、産業機械、建設用構造材料等の
供給が可能となり、工業界に与える効果は極めて大き
い。
EFFECTS OF THE INVENTION According to the present invention, it is possible to supply ships, bridges, industrial machines, structural materials for construction where vibration damping performance is required, and characteristics such as toughness or strength and vibration damping performance are required at the same time. Therefore, the effect on the industry is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/58 C22C 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/58 C22C 38/58

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02%以下、 Si:0.5%以上、3.5%以下、 Mn:0.2%未満、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%以上、3.5%以下、 Al:0.060%超、3.5%以下、 N :0.006%以下を含有し、残部Fe及び不可避
的不純物からなり、(200)回折強度比が3.5以上
であることを特徴とする制振合金。
1. By weight%, C: 0.02% or less, Si: 0.5% or more, 3.5% or less, Mn: less than 0.2%, P: 0.010% or less, S: 0 0.005% or less, Cr: 0.5% or more, 3.5% or less, Al: more than 0.060%, 3.5% or less, N: 0.006% or less, the balance Fe and unavoidable impurities A damping alloy having a (200) diffraction intensity ratio of 3.5 or more.
【請求項2】 重量%で、 C :0.02%以下、 Si:0.5%以上、3.5%以下、 Mn:0.2%以上、2.5%以下、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%以上、3.5%以下、 Al:0.060%超、3.5%以下、 N :0.006%以下を含有し、残部Fe及び不可避
的不純物からなり、(200)回折強度比が3.5以上
であることを特徴とする制振合金。
2. By weight%, C: 0.02% or less, Si: 0.5% or more, 3.5% or less, Mn: 0.2% or more, 2.5% or less, P: 0.010. % Or less, S: 0.005% or less, Cr: 0.5% or more, 3.5% or less, Al: more than 0.060%, 3.5% or less, N: 0.006% or less, A vibration-damping alloy comprising the balance Fe and unavoidable impurities and having a (200) diffraction intensity ratio of 3.5 or more.
【請求項3】 重量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ti:0.005〜0.1%、 B :0.0003〜0.005%を1種または2種以
上含有することを特徴とする請求項1または2のいずれ
かに記載の制振合金。
3. By weight%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005 to 0. 2%, V: 0.005-0.2%, Ti: 0.005-0.1%, B: 0.0003-0.005%, 1 type (s) or 2 or more types are contained, It is characterized by the above-mentioned. The vibration damping alloy according to item 1 or 2.
【請求項4】 重量%で、 Ca :0.001〜0.05%、 REM:0.001〜0.1%を1種または2種含有す
ることを特徴とする請求項1〜3のいずれかに記載の制
振合金。
4. The composition according to any one of claims 1 to 3, wherein the content of Ca is 0.001 to 0.05%, and REM is 0.001 to 0.1% by weight. Damping alloy described in Crab.
【請求項5】 結晶粒径を120μ以下にすることによ
り高い靭性を確保したことを特徴とする請求項1〜4の
いずれかに記載の制振合金。
5. The vibration damping alloy according to claim 1, wherein a high toughness is ensured by setting the crystal grain size to 120 μm or less.
【請求項6】 加熱温度が1000〜1200℃、97
0℃以下の圧下率が70%以上、圧延仕上温度が870
℃以下で熱間圧延後、室温まで冷却し、660〜960
℃で焼戻しまたは焼きなまし熱処理することを特徴とす
る請求項1〜5のいずれかに記載の制振合金の製造方
法。
6. A heating temperature of 1000 to 1200 ° C., 97
The rolling reduction temperature of 0 ° C or less is 70% or more, and the rolling finishing temperature is 870.
After hot rolling at ℃ or less, cool to room temperature, 660-960
The method for producing a vibration damping alloy according to any one of claims 1 to 5, characterized by performing a tempering or an annealing heat treatment at a temperature of ° C.
【請求項7】 圧延仕上温度の範囲を720〜870℃
とする熱間圧延を行うことを特徴とする請求項6記載の
制振合金の製造方法。
7. The rolling finishing temperature range is 720 to 870 ° C.
The method for producing a vibration-damping alloy according to claim 6, wherein hot rolling is performed.
【請求項8】 圧延仕上温度の範囲をAr1 +50℃〜
Ar1 +100℃とする熱間圧延を行うことを特徴とす
る請求項6または7のいずれかに記載の制振合金の製造
方法。
8. The rolling finishing temperature range is Ar 1 + 50 ° C.
The method for producing a vibration damping alloy according to claim 6, wherein hot rolling at Ar 1 + 100 ° C. is performed.
JP30783595A 1995-11-27 1995-11-27 Damping alloy and its production Withdrawn JPH09143622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30783595A JPH09143622A (en) 1995-11-27 1995-11-27 Damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30783595A JPH09143622A (en) 1995-11-27 1995-11-27 Damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH09143622A true JPH09143622A (en) 1997-06-03

Family

ID=17973779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30783595A Withdrawn JPH09143622A (en) 1995-11-27 1995-11-27 Damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH09143622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637920A (en) * 2021-08-19 2021-11-12 西南交通大学 Multi-element Fe-Al-based damping alloy and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113637920A (en) * 2021-08-19 2021-11-12 西南交通大学 Multi-element Fe-Al-based damping alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4410741B2 (en) High strength thin steel sheet with excellent formability and method for producing the same
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JPH08337843A (en) High carbon hot rolled steel sheet excellent in punching workability and its production
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JP3153980B2 (en) Low yield ratio steel plate with good toughness
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
JPH09143624A (en) Damping alloy and its production
JPH09143622A (en) Damping alloy and its production
JPH09143623A (en) Damping alloy and its production
JP2022069229A (en) Austenite stainless steel and method for manufacturing the same
JPH09157794A (en) High damping alloy and its production
JPH09227997A (en) High damping alloy and its production
JPH09104950A (en) High damping alloy and its production
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JPH09157792A (en) High damping alloy and its production
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness
JPH06145797A (en) Production of thick silicon steel plate for magnetic shielding structure
JP2718550B2 (en) Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties
JPS63128153A (en) Spring steel having superior setting resistance
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
JPH07188817A (en) Ni-fe magnetic alloy excellent in magnetic property and workability and its production
JPH08319539A (en) High damping alloy with high strength and high toughness and its production
JPH09176780A (en) High strength steel excellent in damping characteristic and its production
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204