JP3548358B2 - High-strength and high-toughness damped steel sheet and method for producing the same - Google Patents
High-strength and high-toughness damped steel sheet and method for producing the same Download PDFInfo
- Publication number
- JP3548358B2 JP3548358B2 JP31125196A JP31125196A JP3548358B2 JP 3548358 B2 JP3548358 B2 JP 3548358B2 JP 31125196 A JP31125196 A JP 31125196A JP 31125196 A JP31125196 A JP 31125196A JP 3548358 B2 JP3548358 B2 JP 3548358B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- toughness
- steel sheet
- strength
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、船舶、橋梁、産業機械、建築用構造材料として高い制振性を有する高強度な制振鋼板およびその製造方法に係わるものである。
【0002】
【従来の技術】
最近、船舶、橋梁、産業機械、建築物はその材料には、構造材料の基本特性である強度、靭性に加え高い制振性が同時に要求される傾向にある。すなわち、例えば、橋梁上の高速鉄道走行時や大規模土木、建築作業時の騒音、振動を構造材料そのものの制振効果で抑え、かつ、構造部材として十分な靭性を有するという課題を解決しようとするものである。
【0003】
樹脂サンドイッチ型制振鋼板に代わる制振性を目的とした部材に供される従来の鉄系材料は、振動による交番応力作用下での磁壁移動の非可逆運動によるヒステリシスに起因した高い制振特性を得るため、フェライトフォーマーを添加して組織をフェライト単相化することをねらい、Al及びSiを添加した材料と、Crを積極的に添加した材料との2種類に分けられる。前者の例としては、特開平4−99148号公報に記載されるようにAlを最高7.05%及びSiを最高4.5%まで添加した強磁性型制振合金があり、後者の例としては、特開昭52−73118号公報に記載されるようにCrを8〜30%添加した強磁性制振合金などがある。さらに、特開平6−220583号公報及び特開平5−302148号公報で開示されているように、Mnが0.1または0.2%以下で、Crを1〜5%を添加した強磁性制振合金がある。また、本発明者らは、特願平6−258982号(特開平8−158012号公報)でMnが0.2〜2.5%、Crを1〜5%を添加した強磁性制振合金を提案した。特開平7−278657号公報では、高靭性を有する制振合金およびその製造方法を示した。
【0004】
また、田中良平、「制振材料その機能と応用」(広済堂1992年3月発行p192〜197)に強磁性型合金として、外部応力が磁区壁の移動を引き起こし、それによるヒステリシス損で振動エネルギーが吸収されることが記述されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの合金のうち特開平4−99148号公報記載の合金はAl及びSi添加量の上限規制が不適当であるため、粗大なAl系及びSi系介在物の生成をまねき、これが破壊の発生点として作用するため靭性が低下する。
【0006】
また、特願平6−258982号(特開平8−158012号公報)に記載の発明では圧延条件を規定していないために制振性のバラツキが大きく、制振性の指標である損失係数が0.020±0.015であった。制振材料の文献では、制振合金の機構を書いたもので、その向上策や具体的な成分系・製造方法あるいは制振性に加えて靭性を同時に満足する方法に関する記述はない。
【0007】
本発明は、バラツキの少ない優れた制振性および、強度・靭性の機械特性を同時に満足する、高強度・高靱性制振鋼板およびその製造方法を提供することを目的とする。
【0008】
(1) 質量%で、C:0.02%以下、Si:0.01%以上、3.5%以下、Mn:0.2%未満、P:0.010%以下、S:0.005%以下、Cr:0.02%以上、3.5%以下、Al:0.002%以上、3.5%以下、N:0.006%以下を含有し、残部Fe及び不可避的不純物からなり、結晶粒径が100μm以下で、かつ、板厚方向4分の1厚み位置における(200)回折強度比が2.5〜12.0であることを特徴とする、高強度・高靭性制振鋼板。
【0009】
(2) さらに、質量%で、Cu:0.05〜2.5%、Ni:0.05〜2.5%、Mo:0.05〜4.5%、Nb:0.005〜0.2%、V:0.005〜0.2%、Ti:0.005〜0.1%、B:0.0003〜0.005%を1種または2種以上含有することを特徴とする、上記(1)に記載の高強度・高靭性制振鋼板。
【0010】
(3) さらに、質量%で、Ca:0.001〜0.05%、REM:0.001〜0.1%を1種または2種含有することを特徴とする、上記(1)または(2)に記載の高強度・高靭性制振鋼板。
【0011】
(4) 質量%で、C:0.02%以下、Si:0.01%以上、3.5%以下、Mn:0.2%未満、P:0.010%以下、S:0.005%以下、Cr:0.02%以上、3.5%以下、Al:0.002%以上、3.5%以下、N:0.006%以下を含有し、残部Fe及び不可避的不純物からなる鋼を、加熱温度が1000〜1200℃、950℃以下の圧下率が30〜70%、圧延仕上温度が600〜850℃で熱間圧延後、600℃〜950℃で焼戻しまたは焼きなまし熱処理することを特徴とする、結晶粒径が100μm以下で、かつ、板厚方向4分の1厚み位置における(200)回折強度比が2.5〜12.0の高強度・高靭性制振鋼板の製造方法。
【0012】
(5) さらに、質量%で、Cu:0.05〜2.5%、Ni:0.05〜2.5%、Mo:0.05〜4.5%、Nb:0.005〜0.2%、V:0.005〜0.2%、Ti:0.005〜0.1%、B:0.0003〜0.005%を1種または2種以上含有することを特徴とする、上記(4)に記載の高強度・高靭性制振鋼板の製造方法。
(6) さらに、質量%で、Ca:0.001〜0.05%、REM:0.001〜0.1%を1種または2種含有することを特徴とする、上記(4)または(5)に記載の高強度・高靭性制振鋼板の裂造方法。
【0013】
【発明の実施の形態】
本発明は上記事情に鑑みなされたもので、振動による交番応力作用下での磁壁移動非可逆運動によるヒステリシスに起因した高い制振特性を得るために、磁壁移動に有害な各種元素や介在物、析出物の生成を招き、磁壁移動を妨げ、制振性を大きく損なう元素を極力低下した純鉄系成分を基本としている。
【0014】
さらに、従来は結晶粒界が磁壁移動を阻害するため、もっぱら粗粒化することで制振性を向上させていたが、本発明者らは種々検討した結果、粗粒化による制振性向上の方法に替わる方法として、(200)回折強度を高くすることで、大幅に制振性が向上することを発見した。(200)回折強度を高くすることで、鋼板表面に平行な方向の<100>方位が強化される。つまり、磁化容易方向が鋼板表面に平行な方向に強化される。磁化容易方向を強化することで制振性が向上することは新たな発見である。
【0015】
この(200)回折強度比が2.5以上になると、制振性の指標である損失係数は0.015以上確保できる。さらに、制振性能の観点のみから見ると、(200)回折強度比は高い程よく、その結果として0.015〜0.05の損失係数を確保することができる。靭性等の他の鋼材特性との兼ね合いから実用上(200)回折強度比は2.5から12.0の範囲が好ましい。ここで、(200)回折強度比は、X線回折により板厚方向の4分の1厚み位置における(200)回折強度を測定し、特定の方位を強化したり制御していないランダムサンプル材の(200)回折強度に対する比を求めた。今回検討した結果では、(200)回折強度比は最大でも15程度であった。
【0016】
この(200)回折強度比を高くするためには、低温圧延を行うことが必要で、検討の結果、950℃以下の圧下率を30%以上にすることで達成できる。このため、圧延仕上温度は950℃以下となる。
【0017】
削除
【0018】
次に靭性向上のためには、結晶粒径を100μm以下にすることが必要である。上記の(200)回折強度比を2.5以上にする製造方法のうち圧延仕上温度が600℃未満では、結晶粒径が100μmを越えることがあるため、圧延仕上温度は600℃以上とする。
【0019】
熱間圧延後、(200)回折強度比を高くし、圧延によって鋼板中に導入された歪を減少させるために、焼戻しまたは焼きなまし熱処理が必要であるが、高温で熱処理すると(200)回折強度比が低くなるため、上限温度は950℃である。
【0020】
このように、細粒組織でも集合組織を導入することで制振性が向上するが、さらに一層の制振性向上の検討を行った。その結果、フェライトフォーマーであるSi、Al、Crを添加することで熱間圧延後の歪取り熱処理の過程で若干の粗粒化が達成され、制振性がさらに向上することを見出した。Si、Al、Crの添加で強度も上昇する。
【0021】
次に、本発明の鋼成分の限定理由を説明する。
【0022】
Cは、固溶状態でも炭化物として析出しても、磁壁移動の障害として作用して制振性を低下させるため低いほど好ましく、上限を0.02%とする。
【0023】
Siは、脱酸剤として重要であるため、0.01%以上添加する必要がある。さらに、強度上昇のためには必要で、また、フェライトフォーマーであり、添加することで熱間圧延後の歪取り熱処理の過程で若干の粗粒化が達成され、制振性をさらに向上させるため、0.50%以上添加するのが好ましい。しかし、3.5%を越えて添加しても、制振性はむしろ低下し、コストアップとなるため、上限を3.5%とする。
【0024】
Mnは、固溶体強化元素であり、制振性及び靭性向上に効果がなく、添加することでコストアップとなるため、上限を0.2%未満とする。
【0025】
P、Sは、鋼中において非金属介在物を形成し、かつ、偏析することにより磁壁の移動を妨げる害を及ぼし制振性を低下させるので少ない程良い。このため、Pは0.010%以下、Sは0.005%以下とする。
【0026】
Alは、Siと同様に脱酸剤として重要であるほか、制振性、強度を向上させる重要な元素であり、最低0.002%を確保する必要がある。さらに、強度上昇のためには必要で、また、フェライトフォーマーであり、添加することで熱間圧延後の歪取り熱処理の過程で、若干の粗粒化が達成され、制振性をさらに向上させるため、0.060%以上添加するのが好ましい。しかし、3.5%を越えて添加しても、制振性はむしろ低下し、コストアップとなるため、上限を3.5%とする。
【0027】
Crは、結晶粒を粗大化する元素であり、制振性を若干向上させるので、0.02%以上添加する。さらに、強度上昇のためには必要で、また、フェライトフォーマーであり、添加することで熱間圧延後の歪取り熱処理の過程で若干の粗粒化が達成され、制振性をさらに向上させるため、0.50%以上添加するのが好ましい。しかし、3.5%を越えて添加しても、制振性はむしろ低下し、コストアップとなるため、上限を3.5%とする。
【0028】
Nは、固溶状態でも窒化物として析出しても、磁壁移動の障害として作用して制振性を低下させるため低いほど好ましく、上限を0.006%とする。
【0029】
さらに、必要に応じて添加されるCu、Ni、Mo、V、Ti、Bは、強度上昇に有効な元素であり、その効果が不足しない範囲の量を下限とし、また、制振性及び靭性が低下しない範囲の量を上限とした。従って、Cu:0.05〜2.5%、Ni:0.05〜2.5%、Mo:0.05〜4.5%、Nb:0.005〜0.2%、V:0.005〜0.2%、Ti:0.005〜0.1%、B:0.0003〜0.005%、の範囲とした。
【0030】
さらに、必要に応じて添加されるCa、REMは、靭性向上に有効な元素であり、その効果が不足しない範囲の量を下限とし、また、靭性がむしろ低下し、制振性が低下しない範囲の量を上限とした。従って、Ca:0.001〜0.05%、REM:0.001〜0.1%の範囲とした。
【0031】
製造条件については、加熱温度は、加熱オーステナイト粒を微細にし、(200)回折強度比を高くするため、1200℃以下とし、さらに、加熱時の鋼材内温度偏差をなくすため、1000℃以上とする。
【0032】
圧延条件に関しては、(200)回折強度比を高くするため950℃以下で30%以上の圧延が必要であるが、圧下率が70%を越えると、圧延機に対する負担が大きくなり、また、圧延時間が長くなりコストアップ要因となるため、上限を70%とする。
【0033】
圧延仕上温度は、950℃以下で30%以上の圧延を行うため、850℃以下となるが、600℃未満ではフェライト域圧延となり結晶粒径が100μm超となることがあり、靭性が低下するため、下限を600℃とする。
【0034】
室温まで冷却した後、(200)回折強度比をさらに向上させ、圧延によって鋼材中に導入された歪を減少させるために、焼戻しまたは焼きなまし熱処理が必要であり、600℃以上の熱処理を行うが、(200)回折強度比は高温で熱処理すると弱くなるため、上限温度は950℃とする。
【0035】
さらに、表面だけに高い硬度が要求される機械部材やベアリングのような分野においては表面を硬化させることが必要となるが、本発明による制振材料は常識的な表面硬化層厚さにおいては、その制振特性はほとんど影響を受けないことを実験により確かめた。表面硬化は浸炭や窒化により鋼材表面の硬度をHv700以上に表面硬化させることができる。
【0036】
削除
【0037】
削除
【0038】
削除
【0039】
以上のように成分系と製造方法を十分に検討、規定した結果、損失係数0.025±0.010という高くバラツキの非常に少ない制振性と強度・靭性を同時に満足する鋼材を提供することが可能となった。
【0040】
本発明は主として、鋼板、熱延鋼板についてであるが、形鋼、線・棒鋼、鋼管等としても製造可能である。
【0041】
【実施例】
まず、表1に示す成分範囲の供試合金を作成し、表2に示す製造条件で試験片を作成した。板厚は、A1〜A9は20mm、A11〜A15が3mm、A17、A19が50mm、B1〜B8が32mm、B9〜B17が10mmである。
【0042】
表2に示す鋼のうちA1〜A19は本発明鋼であり、鋼B1〜B17は比較例である。これらの鋼について、表2に示す製造条件で製造したものの各種特性を合せて表に示す。制振性は、元厚×40mm幅×400mm長さの板状試験片を加工し、機械インピーダンス法による制振性測定を行った。(なお、板厚6mm以上の各鋼板は、熱間圧延後、室温まで冷却した後、熱処理した。板厚がそれ以下のものは熱間圧延後、巻取り、その後熱処理した。)
例A1〜A19の本発明例は、本発明の成分範囲の合金であり、本発明の製造方法範囲の製造条件であるため、(200)回折強度比が2.5以上で、高強度(≧450MPa)で、高い制振性(損失係数)(≧0.025)、高靭性(≧100J)を示す。
【0043】
比較例B1〜B8は、本発明の成分範囲外の合金で、(200)回折強度比が低く、制振性能と靭性が低い。比較例B9〜B17は、本発明の製造方法外の製造条件で、(200)回折強度比が低く、制振性能と靭性が低い。B15は強度も低い。
【0044】
削除
【0045】
【表1】
【0046】
【表2】
【0047】
削除
【0048】
【発明の効果】
本発明により、制振性能だけでなく機械的特性(高強度・高靭性)が同時に要求される船舶、橋梁、産業機械、建設用構造材料の供給が可能となり、工業界に与える効果は極めて大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength vibration-damping steel sheet having high vibration-damping properties as a structural material for ships, bridges, industrial machines, and buildings, and a method of manufacturing the same.
[0002]
[Prior art]
Recently, materials for ships, bridges, industrial machines, and buildings tend to be required to have high vibration damping properties in addition to strength and toughness, which are basic properties of structural materials. That is, for example, noise and vibration during high-speed railway running on a bridge, large-scale civil engineering, and construction work are suppressed by the damping effect of the structural material itself, and the problem of having sufficient toughness as a structural member is to be solved. To do.
[0003]
The conventional iron-based material used for members with the purpose of damping instead of a resin sandwich type damping steel plate has high damping characteristics due to hysteresis caused by irreversible motion of domain wall motion under the action of alternating stress due to vibration. In order to obtain a ferrite former, the structure is divided into two types, a material to which Al and Si are added and a material to which Cr is positively added, in order to form a ferrite single phase by adding a ferrite former. An example of the former is a ferromagnetic damping alloy containing up to 7.05% of Al and up to 4.5% of Si as described in JP-A-4-99148. Are ferromagnetic damping alloys to which 8 to 30% of Cr is added as described in JP-A-52-73118. Further, as disclosed in JP-A 6-220583 and JP-A No. 5-302148, JP-ferromagnetic system Mn of 0.1 or 0.2% or less, with the addition of 1-5% of Cr There is a vibration alloy. In addition, the present inventors have disclosed a ferromagnetic vibration damping alloy containing 0.2 to 2.5% of Mn and 1 to 5% of Cr in Japanese Patent Application No. 6-258982 (JP-A-8-158012). Suggested. JP-A-7-278657 discloses a vibration damping alloy having high toughness and a method for producing the same.
[0004]
In addition, Ryohei Tanaka, "Synthesis of Damping Materials and Their Functions and Applications" (Kosaido, March 1992, pp. 192 to 197), as a ferromagnetic alloy, external stress causes the domain wall to move, resulting in hysteresis loss and vibration energy. It is stated that it is absorbed.
[0005]
[Problems to be solved by the invention]
However, among these alloys, the alloys described in Japanese Patent Application Laid-Open No. 4-99148 are inadequate for the upper limit of the amount of Al and Si to be added. Since it acts as an occurrence point, toughness is reduced.
[0006]
Further, large damping of the variations for not define a rolling conditions in the invention described in JP Gantaira No. 6-258982 (JP-A-8-158012), the loss factor is an indicator of vibration damping property Was 0.020 ± 0.015. The literature on vibration damping materials describes the mechanism of vibration damping alloys, and does not describe any improvement measures, specific component systems / manufacturing methods, or methods for simultaneously satisfying toughness in addition to vibration damping properties.
[0007]
An object of the present invention is to provide a high-strength, high-toughness vibration-damping steel sheet which simultaneously satisfies excellent vibration damping properties with little variation and mechanical properties of strength and toughness, and a method for producing the same.
[0008]
(1) In mass%, C: 0.02% or less, Si: 0.01% or more and 3.5% or less, Mn: less than 0.2%, P: 0.010% or less, S: 0.005 %, Cr: 0.02% to 3.5%, Al: 0.002% to 3.5%, N: 0.006% or less, with the balance being Fe and unavoidable impurities A high-strength, high-toughness vibration damper characterized by a crystal grain size of 100 μm or less and a (200) diffraction intensity ratio of 2.5 to 12.0 at a quarter thickness position in the thickness direction. Steel sheet .
[0009]
(2) Further, in mass%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005 to 0.5%. 2%, V: 0.005 to 0.2%, Ti: 0.005 to 0.1%, B: 0.0003 to 0.005%. The high-strength, high-toughness damped steel sheet according to (1).
[0010]
(3) The above-mentioned (1) or (1), further comprising one or two kinds of Ca: 0.001 to 0.05% and REM: 0.001 to 0.1% by mass%. The high-strength, high-toughness damped steel sheet according to 2).
[0011]
(4) In mass%, C: 0.02% or less, Si: 0.01% or more and 3.5% or less, Mn: less than 0.2%, P: 0.010% or less, S: 0.005 %, Cr: 0.02% to 3.5%, Al: 0.002% to 3.5%, N: 0.006% or less, with the balance being Fe and unavoidable impurities After hot rolling the steel at a heating temperature of 1000-1200 ° C., a rolling reduction of 950 ° C. or less at 30-70%, a finishing temperature of 600-850 ° C., and then performing a tempering or annealing heat treatment at 600 ° C.-950 ° C. Characteristic method for producing a high-strength, high-toughness damped steel sheet having a crystal grain size of 100 μm or less and a (200) diffraction intensity ratio of 2.5 to 12.0 at a quarter thickness position in the thickness direction. .
[0012]
(5) Further, in mass%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005 to 0.5%. 2%, V: 0.005 to 0.2%, Ti: 0.005 to 0.1%, B: 0.0003 to 0.005%. The method for producing a high-strength, high-toughness damped steel sheet according to (4).
(6) The above (4) or (4), further comprising one or two kinds of Ca: 0.001 to 0.05% and REM: 0.001 to 0.1% by mass%. The method for cracking a high-strength, high-toughness damped steel sheet according to 5).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention has been made in view of the above circumstances, in order to obtain high vibration damping characteristics due to hysteresis due to domain wall movement irreversible movement under the action of alternating stress due to vibration, various elements and inclusions harmful to domain wall movement, It is based on a pure iron-based component in which elements that cause generation of precipitates, hinder domain wall movement, and greatly impair damping properties are reduced as much as possible.
[0014]
Further, conventionally, since the crystal grain boundaries hinder domain wall movement, the vibration suppression was improved solely by coarsening, but as a result of various studies, the present inventors have found that the vibration suppression is improved by the coarsening. As an alternative to the above method, it has been found that by increasing the (200) diffraction intensity, the vibration damping property is greatly improved. By increasing the (200) diffraction intensity, the <100> direction parallel to the steel sheet surface is strengthened . That is, the direction of easy magnetization is strengthened in a direction parallel to the steel sheet surface. It is a new finding that the vibration damping property is improved by strengthening the easy magnetization direction.
[0015]
When the (200) diffraction intensity ratio is 2.5 or more, the loss coefficient which is an index of damping properties can be secured 0.015 or more. Further, from the viewpoint of vibration damping performance alone, the higher the (200) diffraction intensity ratio, the better, and as a result, a loss coefficient of 0.015 to 0.05 can be secured. For practical use, the (200) diffraction intensity ratio is preferably in the range of 2.5 to 12.0 in consideration of other steel properties such as toughness. Here, the (200) diffraction intensity ratio is obtained by measuring the (200) diffraction intensity at a quarter thickness position in the plate thickness direction by X-ray diffraction, and strengthening or controlling a specific orientation of a random sample material. The ratio to the (200) diffraction intensity was determined. According to the results of this study, the (200) diffraction intensity ratio was about 15 at the maximum.
[0016]
In order to increase the (200) diffraction intensity ratio, it is necessary to perform low-temperature rolling, and as a result of examination, it can be achieved by setting the rolling reduction at 950 ° C. or less to 30% or more. For this reason, the rolling finishing temperature is 950 ° C. or less.
[0017]
Delete [0018]
Next, in order to improve toughness, it is necessary to reduce the crystal grain size to 100 μm or less . When the rolling finish temperature is less than 600 ° C. in the above-mentioned production method in which the (200) diffraction intensity ratio is 2.5 or more, the crystal grain size may exceed 100 μm, so the roll finish temperature is set to 600 ° C. or more.
[0019]
After hot rolling, tempering or annealing heat treatment is required to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. , The upper limit temperature is 950 ° C.
[0020]
As described above, the introduction of the texture in the fine-grained structure improves the vibration damping property. However, further study was made on the improvement of the vibration damping property. As a result, it has been found that the addition of Si, Al, and Cr, which are ferrite formers, achieves some coarsening in the process of heat treatment for removing strain after hot rolling, and further improves vibration damping properties. The strength also increases with the addition of Si, Al and Cr.
[0021]
Next, the reasons for limiting the steel components of the present invention will be described.
[0022]
C is preferably as low as possible because C acts as a hindrance to domain wall movement and lowers the vibration damping property, regardless of whether it is in a solid solution state or as a carbide, and the upper limit is made 0.02%.
[0023]
Since Si is important as a deoxidizing agent, it must be added at 0.01% or more . Further, it is necessary for increasing the strength, and is a ferrite former, and by adding, a slight coarsening is achieved in the process of heat treatment for removing strain after hot rolling , which further improves vibration damping properties . Therefore , it is preferable to add 0.50% or more . However, even if it is added in excess of 3.5%, the vibration damping property is rather lowered and the cost is increased. Therefore, the upper limit is set to 3.5%.
[0024]
Mn is a solid solution strengthening element, has no effect on improving vibration damping properties and toughness, and increases the cost by adding Mn. Therefore, the upper limit is made less than 0.2%.
[0025]
Since P and S form nonmetallic inclusions in steel and cause segregation to hinder the movement of the magnetic domain wall and lower the damping performance, the smaller the amount, the better. Therefore, P is set to 0.010% or less and S is set to 0.005% or less.
[0026]
Al, in addition important as Si as well as a deoxidizer, damping property, is an important element to improve the strength, it is necessary to ensure a minimum of 0.002%. In addition, it is necessary for increasing the strength , and it is a ferrite former, and by adding it, during the strain relief heat treatment after hot rolling, slight coarsening is achieved, further improving vibration damping properties Therefore , it is preferable to add 0.060% or more . However, even if it is added in excess of 3.5%, the vibration damping property is rather lowered and the cost is increased. Therefore, the upper limit is set to 3.5%.
[0027]
Cr is an element that coarsens the crystal grains and slightly improves the vibration damping properties, so Cr is added in an amount of 0.02% or more. Further, in necessary in order to increase strength, also a ferrite former, some grain coarsening in the process of stress relief heat treatment after hot rolling is achieved by adding further improve the vibration damping property Therefore , it is preferable to add 0.50% or more . However, even if it is added in excess of 3.5%, the vibration damping property is rather lowered and the cost is increased. Therefore, the upper limit is set to 3.5%.
[0028]
N is also precipitated as nitride in a solid solution state, the lower the order to reduce the vibration damping property acts as a failure of the domain wall motion preferably, the upper limit 0.006%.
[0029]
Further, Cu is added as required, Ni, Mo, V, Ti, B is an element effective-strength increase, and the amount in the range where the effect is not insufficient lower limit, also vibration-damping properties and The amount in the range where the toughness does not decrease is set as the upper limit. Therefore, C u: 0.05~2.5%, Ni : 0.05~2.5%, Mo: 0.05~4.5%, Nb: 0.005~0.2%, V: 0.005 to 0.2%, Ti: 0.005 to 0.1%, and B: 0.0003 to 0.005%.
[0030]
Furthermore, Ca is added if necessary, REM is an element effective on toughness propensity, the amount in the range where the effect is not insufficient lower limit, or, toughness is rather reduced, the vibration damping property The amount which does not decrease is set as the upper limit. Therefore, Ca: 0.001 to 0.05% and REM: 0.001 to 0.1%.
[0031]
The production conditions, heating temperature, and the pressurized heat austenite grains fine, and (200) to increase the diffraction intensity ratio, and 1200 ° C. or less, further, to eliminate the steel in the temperature difference during heating, 1000 ° C. or higher I do.
[0032]
Regarding the rolling conditions, it is necessary to roll at 30% or more at 950 ° C. or less in order to increase the (200) diffraction intensity ratio. However, when the rolling reduction exceeds 70%, the load on the rolling mill increases, and The upper limit is set to 70% because the time becomes longer and the cost increases.
[0033]
The rolling finish temperature is 850 ° C. or less because rolling at 30% or more is performed at 950 ° C. or less. However, when the temperature is less than 600 ° C., ferrite is rolled and the crystal grain size may exceed 100 μm, and the toughness is reduced. , And the lower limit is 600 ° C.
[0034]
After cooling to room temperature , tempering or annealing heat treatment is required to further improve the (200) diffraction intensity ratio and reduce the strain introduced into the steel by rolling, and heat treatment at 600 ° C. or higher is performed. Since the (200) diffraction intensity ratio becomes weaker when heat treatment is performed at a high temperature, the upper limit temperature is set to 950 ° C.
[0035]
Furthermore, it is necessary to harden the surface in fields such as mechanical members and bearings where high hardness is required only on the surface, but the vibration damping material according to the present invention has a common-sense surface hardened layer thickness, It was confirmed by experiments that the damping characteristics were hardly affected. As for the surface hardening, the hardness of the steel material surface can be hardened to Hv700 or more by carburizing or nitriding .
[0036]
Delete [0037]
Delete
Delete [0039]
As described above, as a result of thoroughly examining and specifying the component system and the manufacturing method, it is necessary to provide a steel material that simultaneously satisfies the vibration damping property and the strength and toughness with a high loss coefficient of 0.025 ± 0.010 and very little variation. Became possible.
[0040]
The present invention mainly relates to a steel sheet and a hot-rolled steel sheet, but can also be manufactured as a shaped steel, a wire / bar, a steel pipe and the like.
[0041]
【Example】
Also not a, to create a test game gold component ranges shown in Table 1, a test piece was prepared in the manufacturing conditions shown in Table 2. The plate thickness is 20 mm for A1 to A9 , 3 mm for A11 to A15 , 50 mm for A17 and A19 , 32 mm for B1 to B8, and 10 mm for B9 to B17.
[0042]
Among the steels shown in Table 2, A1 to A19 are steels of the present invention, and steels B1 to B17 are comparative examples. The various properties of these steels manufactured under the manufacturing conditions shown in Table 2 are also shown in the table. For the vibration damping property, a plate-shaped test piece having an original thickness × 40 mm width × 400 mm length was processed, and the vibration damping property was measured by a mechanical impedance method . (Note that the steel plate or sheet thickness 6 mm, after hot rolling, after cooling to room temperature, and heat treated. Plate thickness after between the hot rolling less things, winding, and then heat-treated.)
The present invention examples of Examples A1 to A19 are alloys in the component range of the present invention , and the production conditions are in the production method range of the present invention. Therefore , the (200) diffraction intensity ratio is 2.5 or more, and the high intensity (≧ 450 MPa) , exhibiting high damping properties (loss coefficient) (≧ 0.025) and high toughness (≧ 100 J).
[0043]
Comparative Examples B1 to B8 are alloys outside the component range of the present invention, and have a low (200) diffraction intensity ratio and low vibration damping performance and toughness. Comparative Examples B9 to B17 have low (200) diffraction intensity ratios and low vibration damping performance and toughness under the manufacturing conditions other than the manufacturing method of the present invention. B15 also has low strength.
[0044]
Delete [0045]
[Table 1]
[0046]
[Table 2]
[0047]
Delete
【The invention's effect】
According to the present invention, it is possible to supply ships, bridges, industrial machines, and structural materials for construction that require not only damping performance but also mechanical properties (high strength and high toughness) at the same time, and the effect on the industrial industry is extremely large. .
Claims (6)
C :0.02%以下、
Si:0.01%以上、3.5%以下、
Mn:0.2%未満、
P :0.010%以下、
S :0.005%以下、
Cr:0.02%以上、3.5%以下、
Al:0.002%以上、3.5%以下、
N :0.006%以下
を含有し、残部Fe及び不可避的不純物からなり、結晶粒径が100μm以下で、かつ、板厚方向4分の1厚み位置における(200)回折強度比が2.5〜12.0であることを特徴とする、高強度・高靭性制振鋼板。In mass%,
C: 0.02% or less,
Si: 0.01% or more and 3.5% or less,
Mn: less than 0.2%,
P: 0.010% or less,
S: 0.005% or less,
Cr: 0.02% or more and 3.5% or less,
Al: 0.002% or more and 3.5% or less,
N: 0.006% or less, the balance being Fe and unavoidable impurities, the crystal grain size is 100 µm or less, and the (200) diffraction intensity ratio at a quarter thickness position in the thickness direction is 2.5. A high-strength, high-toughness vibration-damping steel sheet , characterized by being 12.0 to 12.0.
Cu:0.05〜2.5%、
Ni:0.05〜2.5%、
Mo:0.05〜4.5%、
Nb:0.005〜0.2%、
V :0.005〜0.2%、
Ti:0.005〜0.1%、
B :0.0003〜0.005%
を1種または2種以上含有することを特徴とする、請求項1に記載の高強度・高靭性制振鋼板。Furthermore, in mass%,
Cu: 0.05-2.5%,
Ni: 0.05-2.5%,
Mo: 0.05 to 4.5%,
Nb: 0.005 to 0.2%,
V: 0.005 to 0.2%,
Ti: 0.005 to 0.1%,
B: 0.0003-0.005%
The high-strength and high-toughness vibration-damping steel sheet according to claim 1, wherein one or more kinds are contained.
Ca:0.001〜0.05%、
REM:0.001〜0.1%
を1種または2種含有することを特徴とする、請求項1または請求項2に記載の高強度・高靭性制振鋼板。Furthermore, in mass%,
Ca: 0.001 to 0.05%,
REM: 0.001-0.1%
The high-strength and high-toughness damped steel sheet according to claim 1, wherein the steel sheet contains one or two of the following.
C :0.02%以下、
Si:0.01%以上、3.5%以下、
Mn:0.2%未満、
P :0.010%以下、
S :0.005%以下、
Cr:0.02%以上、3.5%以下、
Al:0.002%以上、3.5%以下、
N :0.006%以下
を含有し、残部Fe及び不可避的不純物からなる鋼を、加熱温度が1000〜1200℃、950℃以下の圧下率が30〜70%、圧延仕上温度が600〜850℃で熱間圧延した後、600〜950℃で焼戻しまたは焼きなまし熱処理することを特徴とする、結晶粒径が100μm以下で、かつ、板厚方向4分の1厚み位置における(200)回折強度比が2.5〜12.0の高強度・高靭性制振鋼板の製造方法。In mass%,
C: 0.02% or less,
Si: 0.01% or more and 3.5% or less,
Mn: less than 0.2%,
P: 0.010% or less,
S: 0.005% or less,
Cr: 0.02% or more and 3.5% or less,
Al: 0.002% or more and 3.5% or less,
N: A steel containing 0.006% or less, with the balance being Fe and unavoidable impurities, having a heating temperature of 1000 to 1200 ° C, a rolling reduction of 950 ° C or less of 30 to 70%, and a rolling finish temperature of 600 to 850 ° C. Characterized by a tempering or annealing heat treatment at 600 to 950 ° C. at a crystal grain size of 100 μm or less and a (200) diffraction intensity ratio at a quarter thickness position in the plate thickness direction. A method for producing a high-strength, high-toughness vibration-damping steel sheet of 2.5 to 12.0.
Cu:0.05〜2.5%、
Ni:0.05〜2.5%、
Mo:0.05〜4.5%、
Nb:0.005〜0.2%、
V:0.005〜0.2%、
Ti:0.005〜0.1%、
B:0.0003〜0.005%
を1種または2種以上含有することを特徴とする、請求項4に記載の高強度・高靭性制振鋼板の製造方法。Furthermore, in mass%,
Cu: 0.05-2.5%,
Ni: 0.05-2.5%,
Mo: 0.05 to 4.5%,
Nb: 0.005 to 0.2%,
V: 0.005 to 0.2%,
Ti: 0.005 to 0.1%,
B: 0.0003-0.005%
The method for producing a high-strength and high-toughness vibration-damping steel sheet according to claim 4, wherein one or more kinds are contained.
Ca:0.001〜0.05%、
REM:0.001〜0.1%
を1種または2種含有することを特徴とする、請求項4または請求項5に記載の高強度・高靭性制振鋼板の製造方法。Furthermore, in mass%,
Ca: 0.001 to 0.05%,
REM: 0.001-0.1%
The method for producing a high-strength and high-toughness damped steel sheet according to claim 4, wherein the steel sheet contains one or two of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31125196A JP3548358B2 (en) | 1996-11-08 | 1996-11-08 | High-strength and high-toughness damped steel sheet and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31125196A JP3548358B2 (en) | 1996-11-08 | 1996-11-08 | High-strength and high-toughness damped steel sheet and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10140236A JPH10140236A (en) | 1998-05-26 |
JP3548358B2 true JP3548358B2 (en) | 2004-07-28 |
Family
ID=18014912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31125196A Expired - Fee Related JP3548358B2 (en) | 1996-11-08 | 1996-11-08 | High-strength and high-toughness damped steel sheet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3548358B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030054284A (en) * | 2001-12-24 | 2003-07-02 | 주식회사 포스코 | Bearing steel and its heat treatment method for eliminating surface micro crack formation during surface hardening heat treatment |
KR100924604B1 (en) * | 2002-07-12 | 2009-12-03 | 주식회사 대진메탈공업 | High damping damping alloys for the manufacture of mechanical parts requiring gears and wear resistance |
US8641835B2 (en) | 2008-10-10 | 2014-02-04 | Kabushiki Kaisha Toyota Jidoshokki | Iron alloy, iron-alloy member, and process for manufacturing the same |
JP5601268B2 (en) * | 2011-04-11 | 2014-10-08 | 株式会社豊田自動織機 | Iron alloy damping material manufacturing method and iron alloy damping material |
WO2023148087A1 (en) * | 2022-02-03 | 2023-08-10 | Tata Steel Ijmuiden B.V. | Method of manufacturing a low-carbon steel strip having improved formability |
-
1996
- 1996-11-08 JP JP31125196A patent/JP3548358B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10140236A (en) | 1998-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102129846B1 (en) | Electronic steel sheet and its manufacturing method | |
JP5181439B2 (en) | Non-oriented electrical steel sheet | |
KR101032007B1 (en) | Damping alloy sheet and process for producing the same | |
JP2978427B2 (en) | High Mn nonmagnetic steel for cryogenic use and manufacturing method | |
JP3548358B2 (en) | High-strength and high-toughness damped steel sheet and method for producing the same | |
JP2010235976A (en) | Soft-magnetic steel, soft magnetism steel component, and manufacturing method therefor | |
KR20080085068A (en) | Damping alloy sheet and process for producing the same | |
JP3492026B2 (en) | High-strength high-toughness damping alloy and method for producing the same | |
JPH064891B2 (en) | Method for manufacturing non-magnetic steel wire rod | |
JP3276045B2 (en) | Non-magnetic PC steel wire excellent in delayed fracture characteristics and method of manufacturing the same | |
JPH06145797A (en) | Production of thick silicon steel plate for magnetic shielding structure | |
JPH09227997A (en) | High damping alloy and its production | |
JP4852804B2 (en) | Non-oriented electrical steel sheet | |
JPH09143624A (en) | Damping alloy and its production | |
JPH02145723A (en) | Manufacture of thick steel material having excellent direct current magnetization characteristics | |
JPH09143622A (en) | Damping alloy and its production | |
JPH09143623A (en) | Damping alloy and its production | |
JP2639290B2 (en) | Manufacturing method of non-oriented electrical steel sheet for rotating machines | |
JP2987735B2 (en) | High fatigue strength thick steel plate | |
JP3561922B2 (en) | Manufacturing method of soft magnetic stainless steel | |
JPH09157794A (en) | High damping alloy and its production | |
JPS6184324A (en) | Manufacture of nonmagnetic steel wire | |
JPH09104950A (en) | High damping alloy and its production | |
JPH03285017A (en) | Production of resistance welded tube having high vibration damping property | |
JPH09157792A (en) | High damping alloy and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20031028 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040416 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |