JPS6184324A - Manufacture of nonmagnetic steel wire - Google Patents

Manufacture of nonmagnetic steel wire

Info

Publication number
JPS6184324A
JPS6184324A JP20398884A JP20398884A JPS6184324A JP S6184324 A JPS6184324 A JP S6184324A JP 20398884 A JP20398884 A JP 20398884A JP 20398884 A JP20398884 A JP 20398884A JP S6184324 A JPS6184324 A JP S6184324A
Authority
JP
Japan
Prior art keywords
steel
wire
corrosion resistance
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20398884A
Other languages
Japanese (ja)
Inventor
Chuzo Sudo
須藤 忠三
Fukukazu Nakazato
中里 福和
Shoji Nishimura
彰二 西村
Yasutaka Okada
康孝 岡田
Yoshihiko Kamata
芳彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20398884A priority Critical patent/JPS6184324A/en
Publication of JPS6184324A publication Critical patent/JPS6184324A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a high-strength high-Mn nonmagnetic steel wire at a low cost by hot rolling a steel contg. specified percentages of C, Si, Mn, Ni, Cr and N under specified conditions and by cold drawing the resulting wire rod. CONSTITUTION:A steel consisting of, by weight, 0.01-0.50% C, <=1.0% Si, 10-25% Mn, 0.1-5% Ni, 10-20% Cr, 0.01-0.5% N and the balance Fe with inevitable impurities or further contg. one or more among 0.005-0.30% Se, 0.005-0.30% Te, 0.05-0.20% Pb, 0.0005-0.02% Ca and 0.03-0.15% S is hot rolled at >=70% reduction of area, 900-1,000 deg.C coiling temp. and >=5 deg.C/sec cooling rate after coiling. The resulting wire rod is directly cold drawing at >=55% reduction of area without carrying out soln. heat treatment. A nonmagnetic steel wire having high strength such as >=180kg/mm<2> tensile strength and superior corrosion resistance is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、通信装置、音響製品、コンピュータ関連機器
および精密電子機器の部品として使用に供される高Mn
系非磁性鋼線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides high Mn materials for use as parts of communication devices, audio products, computer-related equipment, and precision electronic equipment.
The present invention relates to a method of manufacturing non-magnetic steel wire.

(従来の技術) 」二連の如き電気、電子機器の分野の発展は近年めざま
しく、それに伴って透磁率を低くして磁気に感じないよ
うにしたいわゆる非磁性鋼が構造材としであるいばボル
ト、ナツトさらにはハネ、シャフト等多くの用途に多量
に使用されるようになってぎた。
(Prior Art) In recent years, the field of electrical and electronic equipment, such as double-barrel wires, has made remarkable progress, and with this, so-called non-magnetic steel, which has low magnetic permeability and does not feel magnetic, has become popular as a structural material. It has come to be used in large quantities for many purposes such as bolts, nuts, springs, and shafts.

一般に、かかる用途には透磁率が低いことがらオーステ
ナイト鋼が非磁性H料として使用される場合が多い。
Generally, austenitic steel is often used as the non-magnetic H material for such applications due to its low magnetic permeability.

ところで、禽温で安定なオーステナイI・組織を得るに
はNi、 CrおよびMnのうち2元素あるいは3元素
を比較的多量に添加する必要がある。その代表例として
S II S 304.5US316等のオーステナイ
ト系ステンレス鋼がある。また、近年高価なNiのかわ
りにMnを多用した高Mn系オーステナイト鋼である非
磁性鋼の開発が活発に行われている。
By the way, in order to obtain an austenite I structure that is stable at room temperature, it is necessary to add relatively large amounts of two or three of Ni, Cr and Mn. A typical example thereof is austenitic stainless steel such as S II S 304.5 US316. Furthermore, in recent years, development of non-magnetic steel, which is a high Mn-based austenitic steel that uses a large amount of Mn instead of expensive Ni, has been actively conducted.

これらのオーステナイト系ステンレス鋼あるいは高Mn
系鋼から成る非磁性鋼は、厚板、管体さらには条鋼など
として使用されるが、線+Aの形態で使用される量もか
なり多い。その場合の線i、lGj熱間圧延のまま使用
されることは少なく、多くの場合、軟化熱処理後、冷間
伸線、冷間圧延、冷間圧造等の冷間加工および表面切削
穴あけ、溝切り等の切削加圧を施されて最終製品となる
These austenitic stainless steels or high Mn
Non-magnetic steel, which is a type of steel, is used for thick plates, tubes, and long steel, but it is also used in a considerable amount in the form of wire + A. In that case, the wire i, lGj is rarely used as hot-rolled, and in many cases, after softening heat treatment, cold processing such as cold wire drawing, cold rolling, and cold heading, and surface cutting, drilling, and grooves are performed. It is subjected to cutting pressure such as cutting to become the final product.

これらの加工を行う場合、上述のオーステナイ1系ステ
ンレス鋼はオーステナイト絹織の安定性が(1(いため
加−L段階での透磁率の劣化が問題となる。一方、高M
n系オーステナイト鋼はオーステナイト絹織の安定性は
高いが耐食性に劣る。また、これらの鋼はいずれも一般
に冷間加工)71が悪し4二め、複雑な形状に加圧する
ことがゲff1L<、また伸線加二[による強度確保等
に制約がある。その他、従来の製造方/J:では特別な
配慮がなされていないため加Tに際して必ず軟化熱処理
を必要とするごとから省エネルギーの観点からも好まし
いI)のではない。
When these processes are carried out, the stability of the austenite silk weave of the austenite 1 series stainless steel mentioned above becomes a problem (1).
N-type austenitic steel has high austenitic silk weave stability but poor corrosion resistance. In addition, all of these steels are generally poor in cold working (71), and secondly, there are limitations in securing strength due to wire drawing. In addition, the conventional manufacturing method /J: does not take special consideration and therefore requires a softening heat treatment during heating, so it is not preferable from the viewpoint of energy saving.

このように、」上述の如き精密電子機器やその部品に使
用される非磁性鋼は、用途上、高強度で耐摩耗性にずく
れ、かつ耐食性が良好で安価なものが望まれるが、これ
らのすべてを満足する材料は未だ出現していない。
In this way, non-magnetic steel used in precision electronic devices and their parts as described above is desired to have high strength, wear resistance, good corrosion resistance, and low cost. A material that satisfies all of the above has not yet appeared.

(発明が解決すべき問題点) そこで本発明者らは、従来鋼のかかる問題点、欠点の改
善を目的として、Mn−Cr−N系のオーステナイト鋼
の本来有する特性に着目し、安定した非磁性と加工性、
更に良好な耐食性を併せて得ることのできる成分系を基
礎的に鋭意検削し、その結果かかる目的達成には高Mn
系が有利であって、しかもCrt−、旧、Nの各含有量
を調整することにより、それらと相俟って所期の目的が
達成されることを知った。さらに本発明者らは、金属組
織的にも結晶の細粒化を図ることによりさらに一層ずく
れた特性が得られることを知り、そのために制御圧延す
ることが有利であることを知り、それらの内容をまとめ
て先に特許出願した(特願昭59−159022号)。
(Problems to be Solved by the Invention) Therefore, in order to improve the problems and drawbacks of conventional steels, the present inventors focused on the inherent characteristics of Mn-Cr-N-based austenitic steel, and achieved stable non-contamination. Magnetism and processability,
We have conducted a basic thorough examination of the component system that can provide even better corrosion resistance, and as a result, we have found that high Mn is required to achieve this objective.
It has been found that the system is advantageous, and that by adjusting the contents of Crt-, old, and N, the desired purpose can be achieved in combination with these. Furthermore, the present inventors have learned that even more irregular properties can be obtained by making the crystal grains finer in terms of metallographic structure, and that controlled rolling is advantageous for this purpose. I summarized the contents and filed a patent application (Japanese Patent Application No. 159022/1982).

本発明者らはさらに」−述の如き先行発明を改善すべく
研究、開発を続りたところ、従来不可欠と考えられてい
た、冷間伸線に先立つ溶体化処理工程を省略して、高M
n系にもかかわらず、熱間圧延材に直接に冷間伸線を行
うことにより、低コストで高強度の鋼線材がi!7られ
ることを見い出して本発明を完成した。
The present inventors further continued research and development to improve the prior invention as described above, and found that the solution treatment process prior to cold wire drawing, which had been considered indispensable in the past, was omitted, resulting in a high M
Even though it is an n-type steel wire, by directly cold drawing the hot rolled material, i! 7, and completed the present invention.

当業者にはすでに知られているように、高Mn系オース
テナイト鋼ば冷間加工性が一般に非常に悪く、伸線加工
は難しいと云われ、冷間伸線り先立ってその都度溶体化
処理を必要とするなど、製造コストが高く、また、最終
的に得られる線材の強度も必ずしも満足すべきものでは
なかったのであった。
As is already known to those skilled in the art, high Mn austenitic steels generally have very poor cold workability and are said to be difficult to wire-draw. However, the manufacturing cost was high, and the strength of the final wire rod was not necessarily satisfactory.

(問題点を解決するための手段) かくして、本発明にあっては、前述の組成を有しかつ前
述の方法により得られた熱間圧延材の特性に着目したの
であって、本発明によれば、むしろ冷間伸線に先立って
溶体化処理を省略するごとにより、予想外に強度の改善
が図られるのである。
(Means for Solving the Problems) Thus, the present invention focuses on the characteristics of the hot-rolled material having the above-mentioned composition and obtained by the above-mentioned method. In fact, by omitting the solution treatment prior to cold wire drawing, the strength is unexpectedly improved.

ここに、本発明の特徴とするところは、重量%で、 C:0.01〜0.50%、 Si : 1.0%以下
、Mn=10〜25%、  旧:o、i 〜5%、Cr
:10〜20%、   N : 0.01〜0.5%、
を含¥1し、さらに必要により、 Se : 0.005−0.30%、Te : 0.0
05−0.30%、Pb : 0.05〜0.20%、
  Ca : 0.0005〜0.02%およびS :
 0.03〜0.15%のうち1種または2種以上を含
有し、 残部Feおよび不可避不純物 から成る組成を有する鋼を、減面率70%以上、捲取温
度900〜1000℃、捲取後の冷却速度5℃/秒以上
の条件下で熱間圧延し、次いで得られた線材を、溶体処
理を施さずに直接に、減面率55%以上で冷間伸線する
ことを特徴とする、引張強さ180kg/mf%以上の
高強度を有する耐食性にずくれた非磁性鋼線の製造方法
である。
Here, the characteristics of the present invention are as follows: C: 0.01 to 0.50%, Si: 1.0% or less, Mn = 10 to 25%, Old: o, i - 5% ,Cr
: 10~20%, N: 0.01~0.5%,
Including ¥1, and if necessary, Se: 0.005-0.30%, Te: 0.0
05-0.30%, Pb: 0.05-0.20%,
Ca: 0.0005-0.02% and S:
Steel containing one or more of 0.03 to 0.15% and having a composition consisting of Fe and unavoidable impurities is rolled at an area reduction of 70% or more and a rolling temperature of 900 to 1000°C. It is characterized by hot rolling under conditions of a subsequent cooling rate of 5°C/sec or more, and then directly cold drawing the obtained wire without solution treatment at an area reduction rate of 55% or more. This is a method for producing a non-magnetic steel wire with high tensile strength of 180 kg/mf% or more and excellent corrosion resistance.

(作用) ここで、本発明において鋼組成および圧延加工条件を上
述の如く制限した理由を述べる。
(Function) Here, the reason why the steel composition and rolling conditions are limited as described above in the present invention will be described.

C(炭素) Cはオーステナイトを安定にすると同時に固溶強化に寄
与する元素であって、0.01%以」二含有させる必要
がある。一方、0.50%を越えるとオーステナイト結
晶粒界に多量の炭化物が析出し、これにより線材の延性
が劣化すると共に、冷間加工性や耐食性の低下につなが
る。したがって、本発明にあってはC含有量を0.01
〜0.50%と限定した。
C (Carbon) C is an element that stabilizes austenite and at the same time contributes to solid solution strengthening, and must be contained in an amount of 0.01% or more. On the other hand, if it exceeds 0.50%, a large amount of carbides will precipitate at the austenite grain boundaries, which will deteriorate the ductility of the wire and lead to a decrease in cold workability and corrosion resistance. Therefore, in the present invention, the C content is set to 0.01
It was limited to ~0.50%.

Si (ケイ素) Siは通常脱酸剤として精錬過稈で溶鋼中に添加される
が、1,0%を越えて添加してもその脱酸効果にそれ以
1−の向−1−はみられず、むしろ非金属介在物が増加
しC鋼の清浄度の悪化をもたらすため、その上限を1.
0%と定めた。
Si (Silicon) Si is normally added to molten steel as a deoxidizing agent during refining, but even if it is added in excess of 1.0%, its deoxidizing effect will be adversely affected. Rather, the number of nonmetallic inclusions increases and the cleanliness of C steel deteriorates, so the upper limit is set to 1.
It was set as 0%.

Mn (マンガン) Mnは安価にオーステリ“イト絹織を安定化さUる作用
があり、鋼の特性を非磁性とするに必要な元素である。
Mn (Manganese) Mn has the effect of stabilizing the austerite silk weave at a low cost, and is an element necessary to make the steel non-magnetic.

そのためには10%以上含有さ・lる必要があるか、−
・方、25%を越えると応力腐食割れ発生の恐れがある
ため、本発明ではMn含有量を10〜25%と定めた。
For that purpose, is it necessary to contain 10% or more?
- On the other hand, if it exceeds 25%, stress corrosion cracking may occur, so in the present invention, the Mn content is set at 10 to 25%.

また非磁性および耐食性の双方満足さ−lる範囲として
は15〜20%がより望ましい範囲といえる。
A more desirable range for satisfying both non-magnetism and corrosion resistance is 15 to 20%.

Ni にノゲル) Niはオーステナイト組織を′安定にし耐食性を改善す
るのに有効な元素であり、そのためには少なくとも0.
1 %以上添加する必要がある。しかし5%を越えると
オーステナイト組織の安定化に対しでは過剰であるばか
りでなく、コスト上昇を招き好ましくない。したがって
、本発明にあってはNi含有量の上限を5%と定めた。
(Ni) Ni is an effective element for stabilizing the austenite structure and improving corrosion resistance.
It is necessary to add 1% or more. However, if it exceeds 5%, it is not only excessive for stabilizing the austenite structure, but also causes an increase in cost, which is undesirable. Therefore, in the present invention, the upper limit of the Ni content is set at 5%.

好ましくは、1.0〜3,0%である。Preferably it is 1.0 to 3.0%.

Cr (クロム) CrはMn−Niを含む鋼のオーステナイト組織を著し
く安定なものにすると共に積層欠陥エネルギーを小さく
することにより加工硬化度を高める効果がある。これら
の効果に加え耐食性の改善をはかるには10%以%以−
含有が必要である。しかし20%を越えると前記効果に
それ以上の向上が認められず、逆Lこオーステナイト組
織の代わりにδフエライト組織が生成して透磁率μが」
二昇し非磁性特性がそこなわれることとなる。したがっ
て、本発明においてCrの含有量は10〜20%と定め
た。より好ましくは、Cr含有量は13〜17%である
Cr (Chromium) Cr has the effect of significantly stabilizing the austenite structure of steel containing Mn-Ni and increasing the degree of work hardening by reducing stacking fault energy. In addition to these effects, to improve corrosion resistance, 10% or more
Containment is necessary. However, when it exceeds 20%, no further improvement in the above effect is observed, and instead of the inverted L austenite structure, a δ ferrite structure is generated, and the magnetic permeability μ is reduced.
As a result, the non-magnetic properties are damaged. Therefore, in the present invention, the Cr content is set at 10 to 20%. More preferably, the Cr content is 13-17%.

N(窒素) NはCと同様オーステナイト組織を安定にすると同時に
固溶強化に寄与する元素である。Nは耐応力腐食割れ性
を改善する効果もあり、そのためには0.01%以−ヒ
の含有が必要である。これによって、オースナナ41〜
組織の安定、耐食性散湯等を目的としたNi等の高価な
元素の多重添加を回避することもできる。一方、Nが0
.5%を越える様な鋼を溶解することは極めて難しく、
またそのような高N鋼は鋳込め鋼塊中にブしI−ボール
による欠陥を発生させる恐れがあり々Tよしくない。し
たがってN含有量は0,01〜()、5%と定めた。
N (Nitrogen) Like C, N is an element that stabilizes the austenite structure and at the same time contributes to solid solution strengthening. N also has the effect of improving stress corrosion cracking resistance, and for this purpose it is necessary to contain it in an amount of 0.01% or more. As a result, Ausnana 41~
It is also possible to avoid multiple additions of expensive elements such as Ni for the purpose of stabilizing the structure, sprinkling corrosion resistance, etc. On the other hand, N is 0
.. It is extremely difficult to melt steel that exceeds 5%.
Moreover, such high N steel is undesirable because it may cause defects due to I-balls in the cast steel ingot. Therefore, the N content was determined to be 0.01 to (), 5%.

Se、1’e、、I’l+、Ca、 Sのうち1種また
は2種:Se、Te、、I’b、Ca、Sはそれぞれ被
削+ll改善に有効な元素である。被削性を改善するた
めには、Se  :  0.005  %以上、 Te
  :  0.005  %以」二、 pb  :  
0゜05%以上、Ca : 0.0005%以上、S 
: 0.03%以%以−必要である。一方、各元素とも
多量に添加すると鋼の機械的性質の異方性を助長し、さ
らに例えばTeは熱間加工性をも劣化させるため、所要
により添加する場合にあってもそれらの」上限をSe 
: 0.30%、Te : 0.30%、Pb : 0
.20%、Ca:0゜02%、S:O,15%とそれぞ
れ定めた。Sは鋼の被削性を向」ニさせるのに特に効果
的である。ずなわら、高Mn系非磁性鋼は切削温度が高
く、切削加工に際しては耐熱性のある工具が必要となる
が、Sを含有させることによって切削温度を下げること
ができ、被削性の向上に大きく寄与するからである。し
かし、多量に添加すると機械的性質および耐食性を劣化
させる。その上限は上述のように0.15%である。
One or two of Se, 1'e, , I'l+, Ca, and S: Se, Te, , I'b, Ca, and S are each effective elements for improving the +ll of the material. In order to improve machinability, Se: 0.005% or more, Te
: 0.005% or more”2, pb:
0°05% or more, Ca: 0.0005% or more, S
: 0.03% or more is required. On the other hand, if each element is added in large amounts, it promotes anisotropy in the mechanical properties of steel, and Te, for example, also deteriorates hot workability. Se
: 0.30%, Te: 0.30%, Pb: 0
.. 20%, Ca: 0°02%, and S:O, 15%. S is particularly effective in improving the machinability of steel. Of course, high Mn non-magnetic steel has a high cutting temperature and requires a heat-resistant tool for cutting, but by adding S, the cutting temperature can be lowered, improving machinability. This is because it greatly contributes to However, when added in large amounts, mechanical properties and corrosion resistance deteriorate. Its upper limit is 0.15% as mentioned above.

一方、熱間加工での加工度(減面積率)を70%以上と
したのは、非磁性鋼線材はl−述の如く伸線等の冷間加
工を施されるため、冷間加工に先立ち組織を細粒化して
高い延性と強度をl?fll保しておくことが必要であ
り、そのためには熱間圧延での加工度は減面積率で70
%以」二必要とするからである。
On the other hand, the degree of working (area reduction rate) in hot working was set at 70% or more because non-magnetic steel wire rods are subjected to cold working such as wire drawing as described in l-. High ductility and strength are achieved by first refining the structure. It is necessary to maintain the full area, and for that purpose, the degree of work in hot rolling is 70
This is because it requires at least 2%.

非磁性鋼線材の巻取温度はその結晶粒と密接な関係があ
る。すなわち巻取温度が900℃未満であると結晶の粒
成長が抑制され極めて微細な結晶となる。また、それに
伴い加工歪の一部が残留する。
The winding temperature of non-magnetic steel wire is closely related to its crystal grains. That is, when the winding temperature is less than 900° C., grain growth of the crystals is suppressed, resulting in extremely fine crystals. In addition, a part of processing distortion remains accordingly.

これらの結果、線材の冷間加工性が損なわれる。As a result, the cold workability of the wire is impaired.

その他巻取温度が900°C未満では、その後の冷却速
度にも関係するが、過剰の炭化物等が粒界に析出してし
まい、冷間加工性や耐食性の低下を招く。
In addition, if the coiling temperature is less than 900°C, excessive carbides and the like will precipitate at grain boundaries, which will lead to a decrease in cold workability and corrosion resistance, although it also depends on the subsequent cooling rate.

一方、巻取温度が1000℃を超えると結晶粒が粗大化
し、これまた冷間加工性の低下を招くこととなる。した
がって、本発明において巻取温度は900°C以上、1
000℃以下と定めた。
On the other hand, if the coiling temperature exceeds 1000°C, the crystal grains will become coarse, which will also lead to a decrease in cold workability. Therefore, in the present invention, the winding temperature is 900°C or higher, 1
000℃ or less.

冷却速度を5℃/sec Iu上と限定したのし」、本
発明において対象とする鋼の如き高合金鋼ではMn、C
r等の炭化物が析出しやすく、線材を巻取ってから強制
冷却を行なわないと、これらの炭化物の析出が避し1ら
れないからである。これらの炭化物が析出すると延+1
1、冷間加工性および耐食性の低下を招く。本発明にあ
っては上述の巻取温度と関連しているが、−・メ[〉に
その下限冷却速度を5℃/Se(、としている。例えば
、900℃以」込+noo”r:以下の高温の線月をル
ースコ・イ月用二に巻取り、次いで適当な冷媒にて強制
冷却を行うことで5℃、/see以1−の冷用速瓜を確
保し、炭化物の析111を回避している。
By limiting the cooling rate to 5°C/sec Iu, Mn, C
This is because carbides such as R tend to precipitate, and unless forced cooling is performed after winding the wire, precipitation of these carbides is unavoidable. When these carbides precipitate, the increase is +1
1. This leads to a decrease in cold workability and corrosion resistance. In the present invention, although it is related to the above-mentioned coiling temperature, the lower limit cooling rate is set to 5°C/Se (, for example, 900°C or less + noo'r: below) The high-temperature melon was rolled up in a Rusco-Igetsu-2, and then forced cooling was performed using an appropriate refrigerant to ensure a cold melon of 5°C, /see or less, and the carbide analysis 111 was carried out. Avoiding.

本発明によれば、このようにして得られた熱間圧延材は
、次いで、通常必要とされる溶体化処理を省略し、:1
ス1〜低下を図りながら、76間伸線を行い、強度の向
1.を図る。
According to the invention, the hot-rolled material thus obtained is then subjected to omitting the normally required solution treatment and:
Wire drawing was performed for 76 minutes while trying to reduce the strength from 1 to 1. We aim to

ごのよ・うに、本発明によれば、目標強度を得るにシ、
l、冷間伸線による加工硬化を利用するが圧延で強度を
高めたので、伸線減面率は55%以1、好ましく番よ5
5〜70%と比較的低い値を採用でき、L7たがって、
この点においても本発明は伸線′:1ス1を低下でき、
安価な線月の供給が可能となる。
As you can see, according to the present invention, in order to obtain the target strength,
l. Work hardening by cold wire drawing is used, but the strength is increased by rolling, so the wire drawing area reduction rate is 55% or more 1, preferably number 5.
A relatively low value of 5 to 70% can be adopted, and therefore L7,
In this respect as well, the present invention can reduce the wire drawing': 1 s1,
It becomes possible to supply cheap wire moons.

なお、本発明の別の好適態様によれば、前述の熱間圧延
加工に先立って1150°C以」二、1250℃未満の
温度に加熱するが、本発明が対象とする鋼の如ぎ高合金
鋼の熱間圧延に当たっζは炭化物等の析出物を7トリク
ス中に再固溶させる必要があるために、上記範囲の高温
度に加熱するのが好ましい。
In addition, according to another preferred embodiment of the present invention, prior to the above-mentioned hot rolling process, heating is performed to a temperature of 1150° C. or higher and lower than 1250° C. In hot rolling of alloy steel, it is necessary to re-dissolve precipitates such as carbides into the 7 trix, so it is preferable to heat the alloy steel to a high temperature within the above range.

このような加熱に際しては、一般的には1150°C以
上の温度であれば実用−に問題ないが、これらの鋼は熱
間変形抵抗が高いため力旧:!1温度は高い方が圧延加
工し易い。しかしながら1250℃以上になると変形能
の低下が著しく加工割れ等の問題を生じることがある。
When heating in this way, there is generally no problem in practical use if the temperature is 1150°C or higher, but these steels have a high resistance to hot deformation, so it is difficult to do so. 1. The higher the temperature, the easier the rolling process. However, when the temperature exceeds 1250°C, the deformability is significantly reduced and problems such as processing cracks may occur.

次に、本発明を実施例によってさらに説明する。Next, the present invention will be further explained by examples.

男−施−例」− 第1表に示す組成の3種の鋼を調製し、1200℃に加
熱してから減面率80%で熱間圧延し、次いで950℃
で捲取後、10℃/秒の冷却速度で冷却して熱間圧延線
材を製造した。このよ・うにして得た熱間圧延線材(直
径5.5mm )を各表に示す冷間伸線後、得られた線
材について機械的特性、耐食性等を評価した。これらは
いずれも直径5.5mmの熱間圧延1lIl線1Aを直
径3.2mmにまで冷間伸線した。具体的処理加■°条
(!1は第2表にまとめて示すが本発明に3Lる場合、
冷間l1ll綿に先立一つ溶体化処理ム31−切行わな
かった。表中、鋼種2の高Mn鋼について本発明と同様
に溶体化処理を−・切行わずに冷間伸線を行ったとこ7
.伸線途中で減面率51%のとき破断してしip、った
Example - Three types of steel with the compositions shown in Table 1 were prepared, heated to 1200°C, hot rolled at a reduction of area of 80%, and then rolled to 950°C.
After winding the wire rod, it was cooled at a cooling rate of 10° C./second to produce a hot rolled wire rod. The hot rolled wire rods (diameter 5.5 mm) thus obtained were cold drawn as shown in each table, and the mechanical properties, corrosion resistance, etc. of the obtained wire rods were evaluated. In each case, a hot rolled 1lIl wire 1A having a diameter of 5.5 mm was cold drawn to a diameter of 3.2 mm. Specific processing additions (!1 are summarized in Table 2, but if 3L is included in the present invention,
No solution treatment was performed prior to cold l1ll cotton. In the table, high Mn steel of steel type 2 was subjected to cold wire drawing without solution treatment as in the present invention.
.. It broke during wire drawing when the reduction in area was 51%.

4「お、各実施例で冑られた調料の各特性を評1+ll
iするために採用した試験法し、1次の通りであった。
4 “Oh, evaluate each characteristic of the preparation in each example 1+ll
The test method adopted for the test was as follows.

耐食J’L試験: 伸線(多のイJ(試ヰ」を#500のペーパーにてfl
l−げriJI磨した試験片を60℃の人工海水の飽和
水及気圧下の湿潤環境下で60時間曝露試験を行い、発
錆状況を目視観察した。発錆のないものを[−良好]と
した。
Corrosion resistance J'L test: Wire drawing (test) with #500 paper
The l-geriJI polished test pieces were subjected to an exposure test for 60 hours in a humid environment under saturated artificial seawater and atmospheric pressure at 60°C, and the state of rusting was visually observed. Those with no rust were rated as [-good].

イ巾JIJJ!を工(ご111目;(:第2表の加工業
(’lによって製造したものについて測定した。従って
、加工履歴は鋼種により異なる。
I width JIJJ! Measurements were made for products manufactured by the processing industry in Table 2. Therefore, the processing history differs depending on the type of steel.

伸−綿下円界: 伸線限界の評価方法し1種々あるが、ここでは■ダイス
11冒−I 1ullでの断線が連続して3回以上起っ
た場合、 ■伸線材の絞り値が30%以下となった加工度、■引張
り試験材の破面がタテに割れ、その割れが母材部まで進
展した場合、 のいずれかに該当した時点の伸線加工度を伸線限界とし
た。
Drawing-cotton lower circle: There are various methods for evaluating the wire drawing limit, but here we will use The degree of wire drawing at the time when either of the following conditions occurred was defined as the wire drawing limit: ■ If the fracture surface of the tensile test material cracked vertically and the crack progressed to the base material, .

一岐飢性: 被削性の評価はその用途を考慮し切削表面の仕上り状況
について分類した。
Ichiki Hunger: The evaluation of machinability was classified based on the finish of the cut surface, taking into account its use.

すなわち、旋盤にてピーリング加工後、仕−Lり表面に
全くむしれが認められなかったものを「O」、わずかに
むしれ疵は認められるものの若干の手直しをすれば実用
」二問題ないと1′す断されるものを「△」、むれ疵が
著しく実用に耐えないと判断したものを「×」として評
価した。
In other words, if there is no peeling at all on the finished surface after peeling on a lathe, it is ``O'', and if there are slight peeling flaws, it can be put into practical use with some modification.''There are no problems. Those with 1' cracks were evaluated as "△", and those with excessive scratches that were judged to be unsuitable for practical use were evaluated as "x".

月1硼先 本発明の場合について、熱間圧延後の間取温度の影響を
示す。本例では加熱温度1200℃、冷却速度5℃/秒
、減面率75%以上で熱間圧延を行った。
The influence of the floor plan temperature after hot rolling is shown for the case of the present invention. In this example, hot rolling was performed at a heating temperature of 1200° C., a cooling rate of 5° C./sec, and an area reduction rate of 75% or more.

伸線条件は実施例1の試験No、 3に同じであった。The wire drawing conditions were the same as in Test No. 3 of Example 1.

本例で使用した鋼の組成は第4表に示す通りである。The composition of the steel used in this example is shown in Table 4.

結果を第5表にまとめて示すが、これらからも明らかな
ように薙取温度が低いと、鋼中に炭化物が析出するため
耐食性が劣化し使用に耐え4(い。
The results are summarized in Table 5, and as is clear from these, when the nipping temperature is low, carbides precipitate in the steel, which deteriorates the corrosion resistance and makes the steel unusable.

また延性も若に低下し、伸線性が低くなる。一方、捲取
温度を高くし過ぎると結晶粒が相く/fり延性が若T劣
化する。したがって+SS層温度900°(:以上で、
かつ望71F L、 <は]000’c以下にするのが
適当である。
In addition, the ductility decreases slightly and the wire drawability decreases. On the other hand, if the winding temperature is too high, the crystal grains will intertwine and the ductility will deteriorate. Therefore, +SS layer temperature 900° (: above,
And it is appropriate that 71F L, < is ]000'c or less.

害」劉舛1一 本例は、熱間圧延の加工度(減面率)の影曾を調査した
。本例では加熱温度1200°C11を取)品度100
0゛C1冷却速度5℃/秒の条件下でP!1間圧延を行
い、伸線条(IIは減面率66.1%と実施例1の試験
歯3と同じであった。本例で使用した鋼の組成は第6表
に示す通りであった。
In this example, the influence of the working degree (area reduction rate) of hot rolling was investigated. In this example, the heating temperature is 1200°C11) Quality 100
0゛C1 Under conditions of cooling rate 5℃/sec P! After rolling for 1 hour, the drawn wire (II) had an area reduction rate of 66.1%, which was the same as Test Teeth 3 of Example 1. The composition of the steel used in this example was as shown in Table 6. Ta.

得られた結果を第7表にまとめて示すが、これらからも
明らかなよ・うに、加工度が小さい場合は結晶粒が相い
ため延性が低く、伸線が不可能番こなるのが分かる。
The obtained results are summarized in Table 7, and as is clear from these, it is clear that when the working degree is small, the crystal grains intersect with each other, resulting in low ductility and wire drawing becomes impossible.

丈jiiイタリー/1一 本例では捲取後の冷10速度の影響を調査した。Length jii Italy/11 In this example, the influence of 10 cooling speeds after winding was investigated.

本例は供試料として実施例2において使用したものを使
い、加熱温度1200℃、■を取温度10(10°C1
圧延加工度75%で熱間圧延を行った。伸線条件は実施
例1の試験No、 3に同じあった。冷却はステルモア
方式により行い冷却速度は風量を変えることで変化さセ
た。
In this example, the sample used in Example 2 was used, the heating temperature was 1200℃, and the temperature was 10 (10℃1
Hot rolling was performed at a rolling degree of 75%. The wire drawing conditions were the same as in Test No. 3 of Example 1. Cooling was performed using the Stelmore method, and the cooling rate was varied by changing the air volume.

結果を第8表にまとめて示すが、これらのデータからも
分かるように、冷却速度が遅いと鋼中炭化物が析出し耐
食性を阻害するので、ta数取後冷却速度は5℃/秒以
上が必要である。
The results are summarized in Table 8, and as can be seen from these data, if the cooling rate is slow, carbides in the steel will precipitate and impair corrosion resistance, so the cooling rate after taking the ta count should be 5°C/sec or more. is necessary.

実Ilt医」一 本例では伸線前の溶体化処理と伸線加工度の影響を調査
した。本例では鋼種として実施例2と同し鋼種のものを
使い、熱間圧延条件は加タハ温度1200℃、tS取温
度1000℃、圧延加工度75%であった。
In this example, we investigated the effects of solution treatment before wire drawing and the degree of wire drawing. In this example, the same steel type as in Example 2 was used, and the hot rolling conditions were a rolling temperature of 1200°C, a tS temperature of 1000°C, and a rolling degree of 75%.

伸線条件は実施例1の試験歯3と同しであった。The wire drawing conditions were the same as those for test tooth 3 of Example 1.

得られた伸線材について引張強さおよび絞り値をそれぞ
れ評価した。第1図および第2図は、伸線減面率に対し
て引張強さおよび絞り値をグラフにまとめてそれぞれ示
す。各図中、符司1で示すグラフは熱間圧延後の冷却速
度を7゛C/秒とし、溶体化処理することなく、直接に
直径3゜2mII+まで冷間伸線したものについて調べ
たデータであり、一方、0号2−C示ずグラフtよ熱間
圧延後の冷却速度を3℃/秒とし、そのままでは溶体化
か不充分なのでさらに110(1’c加熱後水冷するこ
とで再溶体化処理を施し、その後直径3.2mmまで冷
間伸線L7たものについての実験データである。本発明
方法に、にれば熱間圧延材ままで、特にl容体化処理を
3“る必要がなく、しかも強度が高く伸線性が良いため
、180 kg/ m’fa以」−の強度が容易に得ら
れるのが分かる。
The tensile strength and reduction of area of the obtained wire drawn material were evaluated. FIGS. 1 and 2 are graphs showing the tensile strength and the aperture value against the wire drawing area reduction ratio, respectively. In each figure, the graph indicated by mark 1 is data obtained by examining wires that were cold-drawn directly to a diameter of 3°2 mII+ without solution treatment at a cooling rate of 7°C/sec after hot rolling. On the other hand, according to graph t (not shown in No. 2-C), the cooling rate after hot rolling was set to 3°C/sec, and since the solutionization was insufficient as it was, the temperature was further increased to 110°C (by cooling with water after heating for 1'c). This is experimental data for a wire that has been subjected to solution treatment and then cold-drawn to a diameter of 3.2 mm.If the method of the present invention is applied, the hot-rolled material can be used as it is, and in particular, it can be subjected to It can be seen that a strength of 180 kg/m'fa or more can be easily obtained because it is unnecessary and has high strength and good drawability.

(効果) 以」−述べたところからも明らかなように、熱間圧延条
件が本発明において規定する範囲から外れた場合は耐食
性劣化と同時に伸線性も劣化するため伸線減面率を高く
とることができず、場合によっては所要の強度を得られ
ない。
(Effect) - As is clear from the above, if the hot rolling conditions are outside the range specified in the present invention, the wire drawability will deteriorate at the same time as the corrosion resistance deteriorates, so the wire drawing area reduction ratio should be set high. In some cases, the required strength cannot be obtained.

また、熱闘圧延条件が本発明の範囲内であっても圧延後
別工程で溶体化処理を施せば耐食性は良好になるが、溶
体化によるコストがかかると共に強度が−Fがるため伸
線減面率を高くとる必要があり、ロス1〜的に不利であ
り、この点からも本発明の効果は明らかである。
In addition, even if the hot rolling conditions are within the range of the present invention, corrosion resistance can be improved if solution treatment is performed in a separate process after rolling, but the solution treatment increases costs and decreases the strength by -F, which reduces wire drawing. It is necessary to have a high area ratio, which is disadvantageous in terms of loss 1, and the effects of the present invention are clear from this point as well.

第7表 第8表Table 7 Table 8

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る方法により製造された鋼線材の
引張強さを比較例のそれとともに伸線減面率に対して示
すグラフ;および 第2図は、同しく絞り値を示すグラフである。 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 −(他1名)(−シロ
) 鎧膚歪’li I& (嘔)r−硅
FIG. 1 is a graph showing the tensile strength of the steel wire manufactured by the method according to the present invention, as well as that of a comparative example, against the drawing area reduction ratio; and FIG. 2 is a graph showing the reduction of area. It is. Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - (1 other person) (-shiro) Armored skin distortion'li I& (vo)r-sil

Claims (1)

【特許請求の範囲】 重量%で、 C:0.01〜0.50%、Si:1.0%以下、Mn
:10〜25%、Ni:0.1〜5%、Cr:10〜2
0%、N:0.01〜0.5%、を含有し、さらに必要
により Se:0.005〜0.30%、Te:0.005〜0
.30%、Pb:0.05〜0.20%、Ca:0.0
005〜0.02%およびS:0.03〜0.15%の
うち1種または2種以上を含有し、 残部Feおよび不可避不純物 から成る組成を有する鋼を、減面率70%以上、捲取温
度900〜1000℃、捲取後の冷却速度5℃/秒以上
の条件下で熱間圧延し、次いで得られた線材を、溶体化
処理を施さずに直接に、減面率55%以上で冷間伸線す
ることを特徴とする、引張強さ180kg/mm^2以
上の高強度を有する耐食性にすぐれた非磁性鋼線の製造
方法。
[Claims] In weight%, C: 0.01 to 0.50%, Si: 1.0% or less, Mn
:10~25%, Ni:0.1~5%, Cr:10~2
0%, N: 0.01 to 0.5%, and if necessary, Se: 0.005 to 0.30%, Te: 0.005 to 0.
.. 30%, Pb: 0.05-0.20%, Ca: 0.0
Steel containing one or more of 0.005 to 0.02% and S: 0.03 to 0.15%, with the balance consisting of Fe and unavoidable impurities, is rolled with an area reduction of 70% or more. Hot rolling is carried out under the conditions of a take-up temperature of 900 to 1000°C and a cooling rate of 5°C/sec or more after winding, and then the obtained wire is directly rolled without solution treatment with an area reduction of 55% or more. A method for producing a non-magnetic steel wire with high tensile strength of 180 kg/mm^2 or more and excellent corrosion resistance, the method comprising cold drawing.
JP20398884A 1984-10-01 1984-10-01 Manufacture of nonmagnetic steel wire Pending JPS6184324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20398884A JPS6184324A (en) 1984-10-01 1984-10-01 Manufacture of nonmagnetic steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20398884A JPS6184324A (en) 1984-10-01 1984-10-01 Manufacture of nonmagnetic steel wire

Publications (1)

Publication Number Publication Date
JPS6184324A true JPS6184324A (en) 1986-04-28

Family

ID=16482921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20398884A Pending JPS6184324A (en) 1984-10-01 1984-10-01 Manufacture of nonmagnetic steel wire

Country Status (1)

Country Link
JP (1) JPS6184324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851059A (en) * 1987-03-12 1989-07-25 Nippon Steel Corp. Non-magnetic high hardness austenitic stainless steel
JPH02267245A (en) * 1989-04-08 1990-11-01 Kobe Steel Ltd Wear-resistant and high-strength non-magnetic steel fiber for reinforcing concrete
FR2744379A1 (en) * 1996-02-07 1997-08-08 Smf Int METHOD FOR THE MECHANICAL TREATMENT OF A NON-MAGNETIC AUSTENITE STEEL LONG-SHAPED PRODUCT AND IN PARTICULAR OF A ROD SHEER FOR OIL DRILLING
CN1065500C (en) * 1995-07-14 2001-05-09 东丽株式会社 Container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851059A (en) * 1987-03-12 1989-07-25 Nippon Steel Corp. Non-magnetic high hardness austenitic stainless steel
JPH02267245A (en) * 1989-04-08 1990-11-01 Kobe Steel Ltd Wear-resistant and high-strength non-magnetic steel fiber for reinforcing concrete
CN1065500C (en) * 1995-07-14 2001-05-09 东丽株式会社 Container
FR2744379A1 (en) * 1996-02-07 1997-08-08 Smf Int METHOD FOR THE MECHANICAL TREATMENT OF A NON-MAGNETIC AUSTENITE STEEL LONG-SHAPED PRODUCT AND IN PARTICULAR OF A ROD SHEER FOR OIL DRILLING
EP0789085A1 (en) * 1996-02-07 1997-08-13 S.M.F. International Method for mechanical treatment of elongated amagnetic austenitic steel workpieces, especially of drill collars for oil drilling

Similar Documents

Publication Publication Date Title
JP3440937B2 (en) Method of manufacturing steel wire and steel for steel wire
JP4465057B2 (en) High carbon steel sheet for precision punching
JPH10219394A (en) Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
KR20140120935A (en) Steel wire rod with excellent spring workability for high-strength spring, process for manufacturing same, and high-strength spring
KR960008887B1 (en) Ni-fe magnetic alloy and method for producing thereof
JPS60258410A (en) Manufacture of thick high tensile strength steel sheet superior in weldability and low temperature toughness
JPH10273731A (en) Production of cu-containing ferritic stainless steel strip
JPS6137953A (en) Nonmagnetic steel wire rod and its manufacture
JPH02301541A (en) Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH0681037A (en) Production of hot rolled strip of dual phase stainless steel
JPS6184324A (en) Manufacture of nonmagnetic steel wire
KR102175586B1 (en) Non-heat treated wire rod having excellent drawability and impact toughness and method for manufacturing thereof
JP2022069229A (en) Austenite stainless steel and method for manufacturing the same
KR20220089479A (en) High-strength wire rod and steel wire for steel fiber and method for manufacturing the same
JPH1030122A (en) Production of hot rolled steel strip with high strength and high toughness
JPH01100248A (en) Two-phase stainless steel and its production
JPH04210450A (en) Wire for wire saw and its manufacture
TW202030343A (en) Carbon alloy steel sheet and method for producing carbon alloy steel sheet
JP3536752B2 (en) Thin-walled steel plate with excellent resistance to hydrogen-induced cracking and method for producing the same
JPH06212358A (en) Nonmagnetic pc steel wire and its production
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JP7534603B2 (en) High carbon steel wire rod
JPS609097B2 (en) Ultra-low yield point steel with excellent workability and non-aging properties and its manufacturing method
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability