JPH09104950A - High damping alloy and its production - Google Patents

High damping alloy and its production

Info

Publication number
JPH09104950A
JPH09104950A JP26160495A JP26160495A JPH09104950A JP H09104950 A JPH09104950 A JP H09104950A JP 26160495 A JP26160495 A JP 26160495A JP 26160495 A JP26160495 A JP 26160495A JP H09104950 A JPH09104950 A JP H09104950A
Authority
JP
Japan
Prior art keywords
less
diffraction intensity
intensity ratio
alloy
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26160495A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Hidesato Mabuchi
秀里 間渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26160495A priority Critical patent/JPH09104950A/en
Publication of JPH09104950A publication Critical patent/JPH09104950A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high damping alloy having high damping capacity and high toughness by specifying the compsn. composed of C, Si, Mn, P, S, Cr, Al, N and Fe and the (200) diffraction intensity ratio. SOLUTION: A high damping alloy having a compsn. contg., by weight, <=0.02% C, 0.01 to <0.5% Si, <0.2% Mn, <=0.010%P, <=0.005% S, <0.5% Cr, 0.002 to 0.060% Al and <=0.006% N, furthermore contg., at need, one or more kinds among 0.05 to 2.5% Cu, 0.05 to 2.5% Ni, 0.05 to 4.5% Mo, 0.005 to 0.2% Nb, 0.005 to 0.2% V, 0.005 to 0.1% Ti and 0.0003 to 0.005% B, moreover contg. one or two kinds of 0.001 to 0.05% Ca and 0.001 to 0.1% rare earth metals, and the balance Fe with inevitable impurities, in which the (200) diffraction intensity ratio is regulated to >=2.5 and, preferably, having <=100μm grin size is obtd. This high damping alloy can be obtd. by regulating hot rolling and tempering conditions in the alloy having the prescribed compsn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用構造材料として高い制振性を有する制振合
金及び高靱性を有する制振合金並びにそれらの製造方法
に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping alloy having a high damping property, a damping alloy having a high toughness as a structural material for ships, bridges, industrial machines and constructions, and a manufacturing method thereof. .

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物は
その材料には、構造材料の基本特性である靱性に加え高
い制振性が同時に要求される傾向にある。すなわち、た
とえば、橋梁上の高速鉄道走行時や大規模土木、建築作
業時の騒音、振動を構造材料そのものの制振効果で抑
え、かつ、構造部材として十分な靱性を有するという課
題を解決しようとするものである。
2. Description of the Related Art Recently, ships, bridges, industrial machines and buildings tend to be required at the same time to have high damping properties in addition to toughness which is a basic characteristic of structural materials. That is, for example, the problem of suppressing noise and vibration during high-speed railway running on a bridge, large-scale civil engineering, and construction work by the damping effect of the structural material itself, and having sufficient toughness as a structural member is attempted. To do.

【0003】樹脂サンドイッチ型制振鋼板に代わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振性を得るため、フェラ
イトフォーマーを添加して組織をフェライト単相化する
ことをねらい、Al及びSiを添加した材料と、Crを
積極的に添加した材料との2種類に分けられる。
Conventional iron-based materials used as members for the purpose of damping property instead of resin sandwich type damping steel plate are high in hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration. In order to obtain a damping property, a ferrite former is added to make the structure into a ferrite single phase, and it is divided into two types: a material to which Al and Si are added and a material to which Cr is positively added.

【0004】前者の例としては、特開平4−99148
号公報に記載されるようにAlを最高7.05%及びS
iを最高4.5%まで添加した強磁性型制振合金があ
り、後者の例としては、特開昭52−73118号公報
に記載されるようにCrを8〜30%添加した強磁性制
振合金などがある。さらに、特開平6−220583号
公報及び特開平5−302148号公報で、Mnが0.
1または0.2%以下で、Crを1〜5%を添加した強
磁性制振合金がある。また、発明者らは、特願平6−2
58982号でMnが0.2〜2.5%、Crを1〜5
%を添加した強磁性制振合金を提案した。
As an example of the former, Japanese Patent Laid-Open No. 4-99148
As described in Japanese Patent Publication, the Al content is up to 7.05% and S
There is a ferromagnetic damping alloy with i added up to 4.5%. An example of the latter is a ferromagnetic damping alloy with 8 to 30% of Cr as described in JP-A-52-73118. There are vibration alloys. Further, in JP-A-6-220583 and JP-A-5-302148, Mn is 0.
There is a ferromagnetic damping alloy containing 1 to 0.2% or less and 1 to 5% of Cr. In addition, the inventors of the present invention filed Japanese Patent Application No. 6-2.
No. 58982 has Mn of 0.2 to 2.5% and Cr of 1 to 5
%, A ferromagnetic damping alloy was proposed.

【0005】また、田中良平著、制振材料(その機能と
応用)広済堂、1992年3月発行p192〜197に
強磁性型合金として、外部応力が磁区壁の移動を引き起
こしそれによるヒステリシス損で振動エネルギーが吸収
されることが記述されている。
Also, Ryohei Tanaka, damping material (its function and application), published by Kosaido, March 1992, p.192-197, as a ferromagnetic alloy, external stress induces movement of magnetic domain wall and vibration due to hysteresis loss. It is described that energy is absorbed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
合金のうち特開平4−99148号公報記載の合金はA
l及びSi添加量の上限規制が不適当であるため、粗大
なAl系及びSi系介在物の生成をまねき、使用条件に
よってはこれが破壊の発生点として作用するため靱性が
低下する問題がある。
However, among the above alloys, the alloy described in JP-A-4-99148 is A
Since the upper limit of the amount of l and Si added is not appropriate, it causes the formation of coarse Al-based and Si-based inclusions, and depending on the use conditions, this acts as a point where fracture occurs, so that there is a problem that toughness decreases.

【0007】また、特開昭52−73118号公報記載
の合金はCr添加が過剰なため、上記同様Cr系介在物
の靱性低下を起こしかねない。さらに、、特開平6−2
20583号公報及び特開平5−302148号公報
は、積極的な靱性向上策がとられていないため、靱性が
低いことが問題となることもあり得る。また、特願平6
−258982号は靱性の確保優先で制振性については
未だ不十分なレベルといえる。
In addition, since the alloy described in JP-A-52-73118 has an excessive Cr content, the toughness of the Cr-based inclusions may be reduced as described above. Furthermore, JP-A-6-2
In 20583 and Japanese Unexamined Patent Publication (Kokai) No. 5-302148, since toughness improvement measures are not taken positively, low toughness may pose a problem. In addition, Japanese Patent Application Hei 6
It can be said that -258982 is still at an insufficient level in terms of vibration damping because it prioritizes securing toughness.

【0008】一方、制振材料に関する文献では、制振合
金の機構を書いたものがほとんどで、その向上策や具体
的な成分系・製造方法あるいは制振性に加えて靱性を同
時に満足する方法に関して記述されたものはこれまでに
ない。本発明は優れた制振性並びに制振性と高靱性を有
する制振合金およびそれらの製造方法を提供することを
目的とする。
On the other hand, most of the literature on damping materials describes the mechanism of damping alloys, and there are methods for improving them, specific component systems, manufacturing methods, and methods for simultaneously satisfying toughness in addition to damping characteristics. Nothing has been written about. An object of the present invention is to provide a damping alloy having excellent damping properties, damping properties and high toughness, and a method for producing them.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに達成された本発明の要旨は、次のとおりである。 (1)重量%で、C:0.02%以下、Si:0.01
%以上、0.5%未満、Mn:0.2%未満、P:0.
010%以下、S:0.005%以下、Cr:0.5%
未満、Al:0.002%以上、0.060%以下、
N:0.006%以下、を含有し、残部Fe及び不可避
的不純物からなり、(200)回折強度比が2.5以上
であることを特徴とする制振合金。
Means for Solving the Problems The gist of the present invention achieved to solve the above problems is as follows. (1)% by weight, C: 0.02% or less, Si: 0.01
% Or more, less than 0.5%, Mn: less than 0.2%, P: 0.
010% or less, S: 0.005% or less, Cr: 0.5%
Less than, Al: 0.002% or more, 0.060% or less,
N: 0.006% or less, a balance Fe and unavoidable impurities, and a (200) diffraction intensity ratio of 2.5 or more.

【0010】(2)さらに、重量%で、Cu:0.05
〜2.5%、Ni:0.05〜2.5%、Mo:0.0
5〜4.5%、Nb:0.005〜0.2%、V:0.
005〜0.2%、Ti:0.005〜0.1%、B:
0.0003〜0.005%、を1種または2種以上含
み、(200)回折強度比が2.5以上であることを特
徴とする(1)記載の制振合金。
(2) Further, in weight%, Cu: 0.05
~ 2.5%, Ni: 0.05-2.5%, Mo: 0.0
5 to 4.5%, Nb: 0.005 to 0.2%, V: 0.
005-0.2%, Ti: 0.005-0.1%, B:
The vibration damping alloy according to (1), wherein the damping alloy has a (200) diffraction intensity ratio of 2.5 or more, and contains 0.0003 to 0.005%.

【0011】(3)さらに、重量%で、Ca:0.00
1〜0.05%、REM:0.001〜0.1%、を1
種または2種含み、(200)回折強度比が2.5以上
であることを特徴とする(1)または(2)に記載の制
振合金。
(3) Further, in weight%, Ca: 0.00
1 to 0.05%, REM: 0.001 to 0.1%, 1
The damping alloy according to (1) or (2), characterized in that the damping alloy has a (200) diffraction intensity ratio of 2.5 or more.

【0012】(4)(1)から(3)のいずれかに記載
の合金において、(200)回折強度比が2.5以上、
結晶粒径が100μ以下で、高靱性を有することを特徴
とする制振合金。 (5)(1)から(3)のいずれかに記載の合金を、加
熱温度が1000〜1150℃、900℃以下の圧下率
が30〜70%、圧延仕上温度が800℃以下で熱間圧
延後、室温まで冷却し、650℃〜950℃で焼戻しま
たは焼きなまし熱処理することを特徴とする制振合金の
製造方法。
(4) In the alloy according to any one of (1) to (3), the (200) diffraction intensity ratio is 2.5 or more,
A vibration damping alloy having a crystal grain size of 100 μm or less and high toughness. (5) The alloy according to any one of (1) to (3) is hot-rolled at a heating temperature of 1000 to 1150 ° C., a rolling reduction of 30 to 70% at 900 ° C. or less, and a rolling finishing temperature of 800 ° C. or less. After that, it is cooled to room temperature and tempered or annealed at 650 ° C to 950 ° C, and a heat treatment for annealing is performed.

【0013】(6)(1)から(3)のいずれか記載の
合金を、加熱温度が1000〜1150℃、900℃以
下の圧下率が30〜70%、圧延仕上温度が650〜8
00℃で熱間圧延後、室温まで冷却し、650℃〜95
0℃で焼戻しまたは焼きなまし熱処理し、高靱性を有す
ることを特徴とする制振合金の製造方法。 (7)(1)から(3)のいずれかに記載の合金を、加
熱温度が1000〜1150℃、900℃以下の圧下率
が30〜70%、圧延仕上温度がAr1 −20℃〜Ar
1 +50℃で熱間圧延後、室温まで冷却し、650℃〜
950℃で焼戻しまたは焼きなまし熱処理し、高靱性を
有することを特徴とする制振合金の製造方法。
(6) The alloy according to any one of (1) to (3) has a heating temperature of 1000 to 1150 ° C., a rolling reduction of 900 ° C. or less of 30 to 70%, and a rolling finishing temperature of 650 to 8
After hot rolling at 00 ° C, cooled to room temperature, 650 ° C to 95 ° C.
A method for producing a vibration damping alloy, characterized by having high toughness by tempering or annealing heat treatment at 0 ° C. (7) For the alloy according to any one of (1) to (3), the heating temperature is 1000 to 1150 ° C, the rolling reduction at 900 ° C or lower is 30 to 70%, and the rolling finishing temperature is Ar 1 to 20 ° C to Ar.
After hot rolling at 1 + 50 ° C, cool down to room temperature,
A method for producing a vibration damping alloy, characterized by having high toughness by tempering or annealing heat treatment at 950 ° C.

【0014】[0014]

【発明の実施の形態】本発明は上記事情に鑑みなされた
もので、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスに起因した高い制振性を得る
ことを達成した。このため磁壁移動に有害な各種元素や
介在物、析出物の生成を招き、磁壁移動を妨げ、制振性
を大きく損なう元素を極力低下した純鉄系成分を基本と
している。
The present invention has been made in view of the above circumstances, and has achieved high vibration damping property due to hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration. Therefore, it is based on pure iron-based components in which various elements, inclusions, and precipitates that are harmful to the domain wall movement are generated, which hinders the domain wall movement and greatly impairs vibration damping properties.

【0015】さらに、従来は結晶粒界が磁壁移動を阻害
するため、もっぱら粗粒化することで制振性を向上させ
ていたが、発明者らは種々検討した結果、粗粒化による
制振性向上の方法に代わる方法として、(200)回折
強度を高くすることにより磁壁移動し易くすれば、大幅
に制振性が向上することを発見した。(200)回折強
度を高くすることで、(200)面に包含される方位の
うちの1つである鋼板表面に平行な方向の<100>方
位が強化できる。つまり、磁化容易方向が鋼板表面に平
行な方向に強化される。磁化容易方向を強化することで
制振性が向上することは新たな発見である。この(20
0)回折強度比を2.5以上にすることで制振性が向上
することを見い出した。(200)回折強度比を2.5
以上にすると、制振性能の指標である損失係数は0.0
2以上確保できて良く、制振性能の観点のみから見る
と、(200)回折強度比は高いほど良いが、靱性など
他の鋼材特性との兼ね合いから実用上(200)回折強
度比は2.5から12.0の範囲が好ましく、その結果
として0.02〜0.05の損失係数を確保するのが好
ましい。ここで、(200)回折強度比は、X線回折に
より板厚方向4分の1厚み位置における(200)回折
強度を測定し、特定の方位を強化や制御していないラン
ダムサンプル材の(200)回折強度に対する比を求め
た。今回検討した結果では、(200)回折強度比は最
大値でも15程度であった。
Further, in the past, since the crystal grain boundary hinders the domain wall movement, the vibration damping property was improved only by coarsening the grain. However, as a result of various studies by the inventors, the vibration damping by the coarsening has been performed. As an alternative to the method for improving the vibration resistance, it has been found that if the (200) diffraction intensity is increased to facilitate the domain wall movement, the vibration damping property is significantly improved. By increasing the (200) diffraction intensity, the <100> orientation that is one of the orientations included in the (200) plane and is parallel to the steel sheet surface can be enhanced. That is, the direction of easy magnetization is strengthened in a direction parallel to the steel sheet surface. It is a new discovery that the damping property is improved by strengthening the easy magnetization direction. This (20
0) It was found that the vibration damping property is improved by setting the diffraction intensity ratio to 2.5 or more. (200) Diffraction intensity ratio is 2.5
With the above, the loss factor, which is an index of damping performance, is 0.0
From the viewpoint of vibration damping performance, the higher the (200) diffraction intensity ratio, the better, but from the viewpoint of other steel properties such as toughness, the (200) diffraction intensity ratio is practically 2. The range of 5 to 12.0 is preferable, and as a result, it is preferable to secure the loss factor of 0.02 to 0.05. Here, the (200) diffraction intensity ratio is obtained by measuring the (200) diffraction intensity at a quarter thickness position in the plate thickness direction by X-ray diffraction, and measuring the (200) diffraction intensity of a random sample material in which a specific orientation is not strengthened or controlled. ) The ratio to the diffraction intensity was obtained. As a result of this study, the maximum value of the (200) diffraction intensity ratio was about 15.

【0016】この(200)回折強度比を高くするため
には、低温圧延を行うことが必要で、検討の結果、90
0℃以下の圧下率を30%以上にすることで達成でき
る。このため、圧延仕上温度は800℃以下となる。さ
らに、制振性向上のため詳細に検討した結果、圧延仕上
温度をAr1 −20℃〜Ar1 +50℃にすることで
(200)回折強度比がさらに向上し制振性が一層向上
することを見い出した。
In order to increase the (200) diffraction intensity ratio, it is necessary to carry out low-temperature rolling.
This can be achieved by setting the rolling reduction at 0 ° C. or less to 30% or more. Therefore, the rolling finishing temperature is 800 ° C. or lower. Further, as a result of a detailed study for improving the vibration damping property, it was found that by setting the rolling finishing temperature to Ar 1 −20 ° C. to Ar 1 + 50 ° C., the (200) diffraction intensity ratio was further improved and the vibration damping property was further improved. Found out.

【0017】次に靱性向上のためには、結晶粒径を10
0μ以下にすることが必要である。上記の(200)回
折強度比を2.5以上にする製造方法のうち圧延仕上温
度が650℃未満では、結晶粒径が100μを超えるこ
とがあるため、圧延仕上温度は650℃以上とする。熱
間圧延後、(200)回折強度比を高くし、圧延によっ
て鋼板中に導入された歪を減少するために、焼戻しまた
は焼きなまし熱処理が必要であるが、高温で熱処理する
と(200)回折強度比が低くなるため、上限温度は9
50℃である。
Next, in order to improve the toughness, the crystal grain size is set to 10
It is necessary to make it 0 μm or less. When the rolling finishing temperature is lower than 650 ° C. in the manufacturing method for setting the (200) diffraction intensity ratio to 2.5 or higher, the crystal grain size may exceed 100 μ, so the rolling finishing temperature is set to 650 ° C. or higher. After hot rolling, tempering or annealing heat treatment is necessary in order to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. Is lower, the upper limit temperature is 9
50 ° C.

【0018】次に、本発明の限定理由を説明する。Cは
固溶状態でも炭化物として析出しても磁壁移動の障害と
して作用して制振性を低下させるため低いほど好まし
く、上限を0.02%とする。Siは脱酸材として重要
であるため、0.01%以上添加する必要があるが、
0.5%を超えて添加すると固溶状態で磁壁移動の障害
として作用して制振性を低下させるため、上限を0.5
0%とする。
Next, the reasons for limitation of the present invention will be described. Since C acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a carbide and reduces the vibration damping property, the lower the C is, the more preferable the upper limit is 0.02%. Si is important as a deoxidizer, so 0.01% or more must be added.
If added in excess of 0.5%, it acts as an obstacle to domain wall movement in the solid solution state and reduces the vibration damping property.
0%.

【0019】Mnは固溶体強化元素であり、制振性及び
靱性向上に効果がなく、添加することでコストアップと
なるため、0.2%未満に限定する。P,Sは鋼中にお
いて非金属介在部を形成し、かつ、偏析することにより
磁壁の移動を妨げる害を及ぼし制振性を低下させるので
少ないほどよい。このため、Pは0.010%以下、S
は0.005%以下とする。
Mn is a solid solution strengthening element and has no effect on improving the vibration damping property and toughness, and the addition thereof increases the cost. Therefore, it is limited to less than 0.2%. P and S form a non-metallic intervening portion in steel and segregate to impede the movement of the magnetic domain wall to lower the vibration damping property. Therefore, P is 0.010% or less, S
Is 0.005% or less.

【0020】AlはSiやMnと同様に脱酸材として重
要であるほか、制振性と強度を向上させる重要な元素で
ある。最低0.005%を確保する必要があるが、過剰
添加によりAl2 3 などの介在物のほか、Nと化合し
てAlNなどの析出物を生成し、制振性、靱性の低下を
まねくため上限を0.060%に制限する。Crはフェ
ライトフォーマーであり、添加することにより結晶粒を
粗大化する元素であり、制振性を若干向上させるが、同
時に靱性の低下をまねき、また高価な元素であるため極
力添加量を低減することが好ましいため、上限を0.5
%未満に制限する。
Al, like Si and Mn, is an important element as a deoxidizing material, and is an important element for improving vibration damping property and strength. It is necessary to secure at least 0.005%, but excessive addition causes inclusions such as Al 2 O 3 and compound with N to form precipitates such as AlN, leading to deterioration of vibration damping and toughness. Therefore, the upper limit is limited to 0.060%. Cr is a ferrite former, which is an element that coarsens the crystal grains by adding it, and slightly improves the vibration damping property, but at the same time leads to a decrease in toughness, and since it is an expensive element, the addition amount is reduced as much as possible. Therefore, the upper limit is 0.5.
Limit to less than%.

【0021】Nは固溶状態でも窒化物として析出しても
磁壁移動の障害として作用して制振性を低下させるため
低いほど好ましく、上限を0.006%とする。さら
に、必要に応じて添加されるCu,Ni,Mo,Nb,
V,Ti,Bは強度上昇に有効な元素であり、その効果
が不足しない範囲として前記の量を下限とし、また制振
性及び靱性が低下しない範囲として、前記の量を上限と
した。
N, which acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a nitride, lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.006%. Furthermore, Cu, Ni, Mo, Nb, which is added as necessary,
V, Ti, and B are elements effective in increasing strength, and the above amount was set as the lower limit so that the effect is not insufficient, and the above amount was set as the upper limit as the range in which vibration damping and toughness were not reduced.

【0022】さらに、必要に応じて添加されるCa、R
EMは靱性向上に有効な元素であり、その効果が不足し
ない範囲として前記の量を下限とし、また靱性がむしろ
低下し制振性が低下しない範囲として、前記の量を上限
とした。製造条件については、加熱温度は加熱オーステ
ナイト粒を微細にし、(200)回折強度比を高くする
ため、1150℃以下とし、さらに、加熱時の鋼板内温
度偏差をなくすため、1000℃以上とする。
Further, Ca, R added as necessary
EM is an element effective in improving the toughness, and the above amount was set as the lower limit as a range in which the effect was not insufficient, and the above amount was set as the upper limit as the range in which the toughness was not lowered and the vibration damping property was not lowered. Regarding the manufacturing conditions, the heating temperature is set to 1150 ° C. or lower in order to make the heated austenite grains fine and increase the (200) diffraction intensity ratio, and further set to 1000 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating.

【0023】圧延条件に関しては、(200)回折強度
比を高くするため、900℃以下で30%以上の圧延が
必要であるが、圧下率が70%を超えると、圧延機に対
する負荷が大きくなり、また、圧延時間が長くなりコス
トアップ要因となるため、上限を70%とする。圧延仕
上温度は、900℃以下で30%以上の圧延を行うた
め、800℃以下となるが、650℃未満ではフェライ
ト域圧延となり結晶粒径が100μ超となることがあり
靱性が低下するため、下限を650℃とする。
Regarding the rolling conditions, in order to raise the (200) diffraction intensity ratio, it is necessary to roll at 30% or more at 900 ° C. or lower, but if the rolling reduction exceeds 70%, the load on the rolling mill becomes large. Also, the rolling time becomes long and this causes a cost increase, so the upper limit is made 70%. The rolling finishing temperature is 800 ° C. or lower because the rolling is performed at 900 ° C. or lower and 30% or higher. However, if the rolling finish temperature is lower than 650 ° C., ferrite rolling occurs and the grain size may exceed 100 μ, resulting in low toughness. The lower limit is 650 ° C.

【0024】さらに、圧延仕上温度をAr1 −20℃〜
Ar1 +50℃にすることで(200)回折強度比がさ
らに向上し制振特性が一層向上する。熱間圧延後室温ま
で冷却した後、(200)回折強度比をさらに向上さ
せ、圧延によって鋼板中に導入された歪を減少するため
に、焼戻しまたは焼きなまし熱処理が必要であり、65
0℃以上の熱処理を行なうが、(200)回折強度比は
高温で熱処理すると弱くなるため、上限温度は950℃
とする。
Further, the rolling finishing temperature is Ar 1 -20 ° C.
By setting the temperature to Ar 1 + 50 ° C., the (200) diffraction intensity ratio is further improved and the vibration damping property is further improved. After hot rolling and cooling to room temperature, tempering or annealing heat treatment is required to further improve the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling.
Although heat treatment is performed at 0 ° C or higher, the upper limit temperature is 950 ° C because the (200) diffraction intensity ratio becomes weak when heat treatment is performed at high temperature.
And

【0025】[0025]

【実施例】まず表1および表2に示す成分範囲の供試合
金を作製し、これより元厚×40mm幅×400mm長さの
板状試験片を加工し、機械インピーダンス法による制振
性測定を行った。
[Examples] First, matchmaking alloys having the ranges of components shown in Tables 1 and 2 were prepared, and a plate-shaped test piece having an original thickness of 40 mm width and 400 mm length was machined from this, and the vibration damping property was measured by the mechanical impedance method. I went.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1および2に示す合金のうち鋼A〜Eは
本発明の成分範囲の合金であり、鋼F〜Lは本発明の成
分範囲外の合金である。これらの鋼について、表3およ
び表4に示す製造条件で製造したものの各種特性を合わ
せて表に示す。
Among the alloys shown in Tables 1 and 2, Steels A to E are alloys within the composition range of the present invention, and Steels F to L are alloys outside the composition range of the present invention. The various properties of these steels manufactured under the manufacturing conditions shown in Tables 3 and 4 are also shown in the table.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】なお、各鋼板は熱間圧延後室温まで冷却し
た後熱処理した。No. 1〜6は本発明例であり、No. 7
〜17は比較例である。No. 1〜3、7〜13は板厚2
5mm、No. 4は板厚2.5mm、No. 5,6は板厚50m
m、No. 14〜17は板厚40mmである。本発明No. 1
は(200)回折強度比が2.5以上で、高い制振性能
(η≧0.02)、を有する。本発明No. 2〜6はさら
に圧延仕上温度が650℃以上で、(200)回折強度
比が2.5以上で、結晶粒径が100μ以下であり、高
い制振性能(η≧0.02)と高靱性(≧100J)を
有する。本発明No. 3,4は、強度上昇に有効な選択元
素を含有するため、さらに高強度で、本発明No. 5,6
は靱性上昇に有効な選択元素を含有するため、さらに高
靱性(≧120J)である。
Each steel sheet was hot-rolled, cooled to room temperature, and then heat-treated. No. 1 to 6 are examples of the present invention, and No. 7
-17 are comparative examples. No. 1-3 and 7-13 are plate thickness 2
5mm, No. 4 is 2.5mm thick, No. 5 and 6 is 50m thick
m, Nos. 14 to 17 have a plate thickness of 40 mm. Invention No. 1
Has a (200) diffraction intensity ratio of 2.5 or more and high vibration damping performance (η ≧ 0.02). In the invention Nos. 2 to 6, the rolling finishing temperature is 650 ° C. or higher, the (200) diffraction intensity ratio is 2.5 or higher, the crystal grain size is 100 μm or less, and high vibration damping performance (η ≧ 0.02 ) And high toughness (≧ 100 J). Since the present invention Nos. 3 and 4 contain a selective element effective for increasing the strength, the present invention Nos. 5 and 6 have higher strength.
Has a higher toughness (≧ 120 J) because it contains a selective element effective for increasing the toughness.

【0032】比較例No. 7は(200)回折強度比が
2.5以上だが、結晶粒径が100μ超で、Cが高く、
制振性能と靱性が低い。比較例No. 8は(200)回折
強度比が2.5以上で、結晶粒径が100μ以下である
が、Siが高く、制振性能が低い。比較例No. 9,10
は(200)回折強度比が2.5以上で、結晶粒径が1
00μ以下であるが、比較例No. 9はPが高く、No. 1
0はSが高く、制振性能が低い。比較例No. 11は(2
00)回折強度比が2.5以上で、結晶粒径が100μ
以下であるが、Crが高く、靱性が低い。比較例No. 1
2は(200)回折強度比が2.5以上で、結晶粒径が
100μ以下であるが、Alが高く、制振性、靱性が低
い。比較例No. 13は(200)回折強度比が2.5以
上で、結晶粒径が100μ以下であるが、Nが高く、制
振性能が低い。比較例No. 14は加熱温度が高く、比較
例No. 15は900℃以下の圧下率が低く、(200)
回折強度比が低く、結晶粒径が100μ超で、制振性能
と靱性が低い。比較例No. 16は熱処理温度が低く、
(200)回折強度比が低く、結晶粒径は100μ以下
であるが、制振性能が低い。比較例No. 17は熱処理温
度が高く、(200)回折強度比が低く、結晶粒径が1
00μ以下であるが、制振性能が低い。
Comparative Example No. 7 has a (200) diffraction intensity ratio of 2.5 or more, but has a crystal grain size of more than 100 μ and a high C,
Vibration damping performance and toughness are low. Comparative Example No. 8 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 100 μ or less, but has high Si and low vibration damping performance. Comparative Example No. 9, 10
Has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 1
Although it is less than 00μ, Comparative Example No. 9 has a high P and No. 1
0 has high S and low vibration damping performance. Comparative example No. 11 is (2
00) The diffraction intensity ratio is 2.5 or more, and the crystal grain size is 100μ.
Although below, Cr is high and toughness is low. Comparative example No. 1
No. 2 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 100 μ or less, but has a high Al content and low vibration damping and toughness. Comparative Example No. 13 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 100 μ or less, but has a high N and a low vibration damping performance. Comparative Example No. 14 has a high heating temperature, Comparative Example No. 15 has a low rolling reduction of 900 ° C. or less, (200)
Diffraction intensity ratio is low, crystal grain size is over 100μ, and vibration damping performance and toughness are low. Comparative example No. 16 has a low heat treatment temperature,
The (200) diffraction intensity ratio is low and the crystal grain size is 100 μ or less, but the vibration damping performance is low. Comparative Example No. 17 has a high heat treatment temperature, a low (200) diffraction intensity ratio, and a grain size of 1
Although it is less than 00μ, the vibration damping performance is low.

【0033】次に、表5に示す本発明の成分範囲の合金
の鋼P,Q,Rについて表6に示す本発明の製造条件で
製造したものの各種特性を合わせて示す。
Next, various characteristics of the steels P, Q, and R of the alloys in the composition range of the present invention shown in Table 5 are shown together with those produced under the production conditions of the present invention shown in Table 6.

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【表6】 [Table 6]

【0036】本発明No. 18,19,20は圧延仕上温
度がさらに望ましい範囲にある例である。板厚は全て2
0mmである。鋼P,Q,RのAr1 はそれぞれ675
℃,680℃,670℃である。本発明No. 18,1
9,20は圧延仕上温度がAr1 +50℃〜Ar1 −2
0℃の範囲内にあり、(200)回折強度比が4以上
で、さらに良好な制振性能(η≧0.03)を有し、圧
延仕上温度がAr1 +50℃〜Ar1 −20℃の範囲に
ない本発明No. 21〜23に比べより良好な制振性能を
有している。
The invention Nos. 18, 19 and 20 are examples in which the rolling finishing temperature is in a more desirable range. All plate thickness is 2
It is 0 mm. Ar 1 of steels P, Q and R is 675 respectively
C, 680 C and 670 C. Invention No. 18, 1
In 9 and 20, the rolling finishing temperature is Ar 1 + 50 ° C. to Ar 1 -2.
Within the range of 0 ° C., the (200) diffraction intensity ratio is 4 or more, the vibration damping performance is good (η ≧ 0.03), and the rolling finishing temperature is Ar 1 + 50 ° C. to Ar 1 −20 ° C. It has better vibration damping performance than those of the present invention Nos. 21 to 23, which are not within the range.

【0037】[0037]

【発明の効果】本発明により、制振性能、及び、高靱性
と制振性能が同時に要求される船舶、橋梁、産業機械、
建設用構造材料の供給が可能となり、工業界に与える効
果は極めて大きい。
EFFECTS OF THE INVENTION According to the present invention, a ship, a bridge, an industrial machine, which is required to have damping performance and high toughness and damping performance at the same time,
Supply of structural materials for construction becomes possible, and the effect on the industrial world is extremely large.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.02%以下、 Si:0.01%以上、0.5%未満、 Mn:0.2%未満、 P:0.010%以下、 S:0.005%以下、 Cr:0.5%未満、 Al:0.002%以上、0.060%以下、 N:0.006%以下、 を含有し、残部Fe及び不可避的不純物からなり、(2
00)回折強度比が2.5以上であることを特徴とする
制振合金。
1. By weight%, C: 0.02% or less, Si: 0.01% or more and less than 0.5%, Mn: less than 0.2%, P: 0.010% or less, S: 0. 0.005% or less, Cr: less than 0.5%, Al: 0.002% or more, 0.060% or less, N: 0.006% or less, and the balance Fe and inevitable impurities, (2
00) A damping alloy having a diffraction intensity ratio of 2.5 or more.
【請求項2】 さらに、重量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V:0.005〜0.2%、 Ti:0.005〜0.1%、 B:0.0003〜0.005%、 を1種または2種以上含み、(200)回折強度比が
2.5以上であることを特徴とする請求項1記載の制振
合金。
2. Further, in weight%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005. 0.2%, V: 0.005 to 0.2%, Ti: 0.005 to 0.1%, B: 0.0003 to 0.005%, and one or more kinds are contained, (200) The damping alloy according to claim 1, wherein the diffraction intensity ratio is 2.5 or more.
【請求項3】 さらに、重量%で、 Ca:0.001〜0.05%、 REM:0.001〜0.1%、 を1種または2種含み、(200)回折強度比が2.5
以上であることを特徴とする請求項1または2に記載の
制振合金。
3. Further, by weight, Ca: 0.001 to 0.05% and REM: 0.001 to 0.1% are contained in one or two kinds, and a (200) diffraction intensity ratio is 2. 5
It is above, The damping alloy of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 請求項1から3のいずれかに記載の合金
において、(200)回折強度比が2.5以上、結晶粒
径が100μ以下で、高靱性を有することを特徴とする
制振合金。
4. An alloy according to claim 1, which has a (200) diffraction intensity ratio of 2.5 or more, a crystal grain size of 100 μ or less, and high toughness. alloy.
【請求項5】 請求項1から3のいずれかに記載の合金
を、加熱温度が1000〜1150℃、900℃以下の
圧下率が30〜70%、圧延仕上温度が800℃以下で
熱間圧延後、室温まで冷却し、650℃〜950℃で焼
戻しまたは焼きなまし熱処理することを特徴とする制振
合金の製造方法。
5. The alloy according to claim 1 is hot-rolled at a heating temperature of 1000 to 1150 ° C., a rolling reduction of 30 to 70% at 900 ° C. or less, and a rolling finishing temperature of 800 ° C. or less. After that, it is cooled to room temperature and tempered or annealed at 650 ° C to 950 ° C, and a heat treatment for annealing is performed.
【請求項6】 請求項1から3のいずれかに記載の合金
を、加熱温度が1000〜1150℃、900℃以下の
圧下率が30〜70%、圧延仕上温度が650〜800
℃で熱間圧延後、室温まで冷却し、650℃〜950℃
で焼戻しまたは焼きなまし熱処理し、高靱性を有するこ
とを特徴とする制振合金の製造方法。
6. The alloy according to claim 1, wherein the heating temperature is 1000 to 1150 ° C., the rolling reduction at 900 ° C. or less is 30 to 70%, and the rolling finishing temperature is 650 to 800.
After hot rolling at ℃, cool to room temperature, 650 ℃ ~ 950 ℃
A method for producing a vibration-damping alloy, characterized by having high toughness after being subjected to tempering or annealing heat treatment in.
【請求項7】 請求項1から3のいずれかに記載の合金
を、加熱温度が1000〜1150℃、900℃以下の
圧下率が30〜70%、圧延仕上温度がAr 1 −20℃
〜Ar1 +50℃で熱間圧延後、室温まで冷却し、65
0℃〜950℃で焼戻しまたは焼きなまし熱処理し、高
靱性を有することを特徴とする制振合金の製造方法。
7. The alloy according to any one of claims 1 to 3.
At a heating temperature of 1000 to 1150 ° C. and 900 ° C. or less
The rolling reduction is 30 to 70%, and the rolling finishing temperature is Ar. 1-20 ° C
~ Ar1After hot rolling at + 50 ° C, cool to room temperature,
High temperature after tempering or annealing heat treatment at 0 ℃ -950 ℃
A method for producing a vibration damping alloy having toughness.
JP26160495A 1995-10-09 1995-10-09 High damping alloy and its production Withdrawn JPH09104950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26160495A JPH09104950A (en) 1995-10-09 1995-10-09 High damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26160495A JPH09104950A (en) 1995-10-09 1995-10-09 High damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH09104950A true JPH09104950A (en) 1997-04-22

Family

ID=17364219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26160495A Withdrawn JPH09104950A (en) 1995-10-09 1995-10-09 High damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH09104950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008221A1 (en) 1998-08-05 2000-02-17 Nippon Steel Corporation Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
WO2008072645A1 (en) * 2006-12-08 2008-06-19 Jfe Steel Corporation Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000008221A1 (en) 1998-08-05 2000-02-17 Nippon Steel Corporation Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
EP1026276A1 (en) * 1998-08-05 2000-08-09 Nippon Steel Corporation Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
EP1026276A4 (en) * 1998-08-05 2005-03-09 Nippon Steel Corp Rolled steel product excellent in weatherability and fatigue resisting characteristic and method of production thereof
WO2008072645A1 (en) * 2006-12-08 2008-06-19 Jfe Steel Corporation Member excelling in damping capacity, process for producing the same and steel sheet employed as member excelling in damping capacity

Similar Documents

Publication Publication Date Title
US6632295B2 (en) High tensile strength hot-rolled steel sheet and method for manufacturing the same
JPS61270356A (en) Austenitic stainless steels plate having high strength and high toughness at very low temperature
KR102178731B1 (en) High strength steel sheet having excellent workability property, and method for manufacturing the same
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JPH07113144A (en) Nonmagnetic stainless steel excellent in surface property and production thereof
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JPH0742549B2 (en) High Mn non-magnetic steel for linear motor car steel bridge
JPH09104950A (en) High damping alloy and its production
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
KR102209575B1 (en) Steel sheet having excellent workability and balance of strength and ductility, and method for manufacturing the same
JPH09227997A (en) High damping alloy and its production
JPH09143624A (en) Damping alloy and its production
JPH05279788A (en) Non-heattreated steel for hot forging excellent in strength and toughness
JPS63166931A (en) Manufacture of high tension hot rolled steel sheet having high magnetic flux density
JPH09157794A (en) High damping alloy and its production
JPH09143622A (en) Damping alloy and its production
JPH09143623A (en) Damping alloy and its production
KR102237486B1 (en) High strength ultra thick steel plate having excellent very low temperature strain aging impact toughness at the center of thickness and method of manufacturing the same
JP2987735B2 (en) High fatigue strength thick steel plate
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JPH09157792A (en) High damping alloy and its production
JPH06145797A (en) Production of thick silicon steel plate for magnetic shielding structure
EP0676482A1 (en) Low decarburization spring steel
JPH09176780A (en) High strength steel excellent in damping characteristic and its production
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030107