JPH09157792A - High damping alloy and its production - Google Patents

High damping alloy and its production

Info

Publication number
JPH09157792A
JPH09157792A JP31455895A JP31455895A JPH09157792A JP H09157792 A JPH09157792 A JP H09157792A JP 31455895 A JP31455895 A JP 31455895A JP 31455895 A JP31455895 A JP 31455895A JP H09157792 A JPH09157792 A JP H09157792A
Authority
JP
Japan
Prior art keywords
less
vibration damping
damping alloy
diffraction intensity
intensity ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31455895A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Hidesato Mabuchi
秀里 間渕
Tatsuyuki Suyama
竜之 壽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31455895A priority Critical patent/JPH09157792A/en
Publication of JPH09157792A publication Critical patent/JPH09157792A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structural material requiring damping property and high toughness by constituting a high damping alloy so that it has a composition containing specific percentages of C, Si, Mn, P, S, Cr, Al, and N and having the balance Fe. SOLUTION: The high damping alloy has a composition consisting of, by weight, <=0.02% C, 0.5-3.5% Si, <0.2% Mn, <=0.01% P, <=0.005% S, 0.5-3.5% Cr, 0.002-0.06% Al, <=0.006% N, and the balance Fe with inevitable impurities. Further, one or more elements among Cu, Ni, Mo, Nb, V, Ti, B, Ca, and REM can be incorporated. The alloy is heated at 1000-1200 deg.C, and draft at <=960 deg.C and rolling finishing temp. are regulated to >=70% and <=860 deg.C, respectively, and tempering is done at 660-960 deg.C. By the procedure, (200) diffraction intensity ratio is regulated to >=3.2. By this method, the high damping alloy having excellent damping property and high toughness can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用構造材料として高い制振性を有する制振合
金及び高靭性を有する制振合金に係わるものである。
TECHNICAL FIELD The present invention relates to a damping alloy having a high damping property and a damping alloy having a high toughness as a structural material for ships, bridges, industrial machines and constructions.

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物の
材料には、構造材料の基本特性である強度、靭性に加え
高い制振性が同時に要求される傾向にある。即ち、例え
ば橋梁上の高速鉄道走行時や大規模土木、建築作業時の
騒音、振動を構造材料そのものの制振効果で抑え、かつ
構造部材として十分な靭性を有するという課題を解決し
ようとするものである。
2. Description of the Related Art Recently, materials for ships, bridges, industrial machines and buildings tend to be required at the same time to have high vibration damping properties in addition to the basic characteristics of structural materials such as strength and toughness. That is, for example, the problem of suppressing noise and vibration during high-speed railway running on a bridge, large-scale civil engineering, and construction work by the damping effect of the structural material itself and having sufficient toughness as a structural member Is.

【0003】樹脂サンドイッチ型制振鋼板に代わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振特性を得るため、フェ
ライトフォーマーを添加して組織をフェライト単相化す
ることを狙い、Al及びSiを添加した材料と、Crを
積極的に添加した材料との2種類に分けられる。
Conventional iron-based materials used as members for the purpose of damping property instead of resin sandwich type damping steel plate are high in hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration. In order to obtain damping characteristics, it is divided into two types: a material to which Al and Si are added and a material to which Cr is positively added, with the aim of adding a ferrite former to make the structure into a ferrite single phase.

【0004】前者の例としては、特開平4−99148
号公報記載のようにAlを最高7.05%及びSiを最
高4.5%まで添加した強磁性型合金があり、後者の例
としては、特開昭52−73118号公報記載のように
Crを8〜30%添加した強磁性制振合金などがある。
As an example of the former, Japanese Patent Laid-Open No. 4-99148
There is a ferromagnetic alloy containing Al up to 7.05% and Si up to 4.5% as described in JP-A No. 52-73118. 8 to 30% of ferromagnetic damping alloys.

【0005】更に、特開平6−220583号公報及び
特開平5−302148号公報で、Mnが0.1または
0.2%以下で、Crを1〜5%添加した強磁性制振合
金がある。また本発明者らは、特願平6−258982
号でMnが0.2〜2.5%、Crを1〜5%添加した
強磁性制振合金を提案した。また、田中良平、制振材料
「その機能と応用」広済堂、1992年3月発行、P. 1
92〜197 に強磁性型合金として、外部応力が磁区壁の移
動を引き起こし、それによるヒステリシス損で振動エネ
ルギーが吸収されることが記述されている。
Further, in JP-A-6-220583 and JP-A-5-302148, there is a ferromagnetic damping alloy in which Mn is 0.1 or 0.2% or less and 1 to 5% of Cr is added. . In addition, the present inventors have filed Japanese Patent Application No. 6-258982.
Proposed a ferromagnetic damping alloy containing 0.2 to 2.5% of Mn and 1 to 5% of Cr. In addition, Ryohei Tanaka, Vibration damping material "its function and application", Kosaido, March 1992, P. 1
It is described in 92 to 197 that, as a ferromagnetic alloy, external stress causes the domain wall to move, and the resulting hysteresis loss absorbs vibration energy.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の合金のうち特開平4−99148号公報記載の合金は
Al及びSi添加量の上限規制が不適当であるため、粗
大なAl系及びSi系介在物の生成を招き、これが破壊
の発生点として作用するため靭性が低下する。また、特
開昭52−73118号公報記載の合金はCr添加が過
剰なため、上記と同様にCr系介在物による靭性低下を
招く。
However, among these alloys, the alloy described in Japanese Patent Application Laid-Open No. 4-99148 has an inappropriate upper limit regulation of Al and Si addition amounts. This leads to the formation of a substance, which acts as a point of fracture occurrence, resulting in a decrease in toughness. Further, since the alloy described in JP-A-52-73118 is excessively Cr-added, the toughness is lowered by the Cr-based inclusions similarly to the above.

【0007】更に、特開平6−220583号公報及び
特開平5−302148号公報は、積極的な靭性向上策
がなされていないため、靭性が低い。また、特願平6−
258982号は靭性の確保優先で制振性については不
十分である。また制振材料の文献では、制振合金の機構
を書いたもので、その向上策や具体的な成分系・製造方
法あるいは制振性に加えて靭性を同時に満足する方法に
関する記述はない。本発明は、優れた制振性及び制振性
と高靭性を有する制振合金を提供することを目的とす
る。
Further, in JP-A-6-220583 and JP-A-5-302148, the toughness is low because there is no positive measure for improving the toughness. In addition, Japanese Patent Application No. 6-
No. 258982 is insufficient in terms of vibration damping because it prioritizes securing toughness. Further, in the literature of damping materials, the mechanism of damping alloy is written, and there is no description about the improvement measures, specific component systems / manufacturing methods, or methods for simultaneously satisfying toughness in addition to damping properties. An object of the present invention is to provide a damping alloy having excellent damping properties and damping properties and high toughness.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1) 重量%で、C:0.02%以下、Si:0.5
%以上、3.5%以下、Mn:0.2%未満、P:0.
010%以下、S:0.005%以下、Cr:0.5%
以上、3.5%以下、Al:0.002%以上、0.0
60%以下、N:0.006%以下を含有し、残部Fe
及び不可避的不純物からなり、(200)回折強度比が
3.2以上であることを特徴とする制振合金。
The gist of the present invention is as follows. (1) C: 0.02% or less by weight%, Si: 0.5
% Or more and 3.5% or less, Mn: less than 0.2%, P: 0.
010% or less, S: 0.005% or less, Cr: 0.5%
Or more, 3.5% or less, Al: 0.002% or more, 0.0
60% or less, N: 0.006% or less, balance Fe
And a (200) diffraction intensity ratio of 3.2 or more, and a damping alloy.

【0009】(2) 重量%で、C:0.02%以下、
Si:0.5%以上、3.5%以下、Mn:0.2%以
上、2.5%以下、P:0.010%以下、S:0.0
05%以下、Cr:0.5%以上、3.5%以下、A
l:0.002%以上、0.060%以下、N:0.0
06%以下を含有し、残部Fe及び不可避的不純物から
なり、(200)回折強度比が3.2以上であることを
特徴とする制振合金。
(2) C: 0.02% or less by weight%,
Si: 0.5% or more, 3.5% or less, Mn: 0.2% or more, 2.5% or less, P: 0.010% or less, S: 0.0
05% or less, Cr: 0.5% or more, 3.5% or less, A
1: 0.002% or more, 0.060% or less, N: 0.0
A vibration-damping alloy, which contains not more than 06%, consists of the balance Fe and unavoidable impurities, and has a (200) diffraction intensity ratio of 3.2 or more.

【0010】(3) 重量%で、Cu:0.05〜2.
5%、Ni:0.05〜2.5%、Mo:0.05〜
4.5%、Nb:0.005〜0.2%、V:0.00
5〜0.2%、Ti:0.005〜0.1%、B:0.
0003〜0.005%を1種または2種以上含有する
ことを特徴とする(1)または(2)のいずれかに記載
の制振合金。
(3) Cu: 0.05-2.
5%, Ni: 0.05 to 2.5%, Mo: 0.05 to
4.5%, Nb: 0.005-0.2%, V: 0.00
5 to 0.2%, Ti: 0.005 to 0.1%, B: 0.
The vibration damping alloy according to (1) or (2), characterized in that it contains 0003 to 0.005% by one kind or two or more kinds.

【0011】(4) 重量%で、Ca:0.001〜
0.05%、REM:0.001〜0.1%を1種また
は2種含有することを特徴とする(1)〜(3)のいず
れかに記載の制振合金。 (5) 結晶粒径を120μ以下にすることにより高い
靭性を確保したことを特徴とする(1)〜(4)のいず
れかに記載の制振合金。
(4) Ca: 0.001% by weight
0.05% and REM: 0.001-0.1% are contained 1 type or 2 types, The damping alloy in any one of (1)-(3) characterized by the above-mentioned. (5) The damping alloy according to any one of (1) to (4), characterized in that high toughness is ensured by setting the crystal grain size to 120 μm or less.

【0012】(6) 加熱温度が1000〜1200
℃、960℃以下の圧下率が70%以上、圧延仕上温度
が860℃以下で熱間圧延後、室温まで冷却し、660
〜960℃で焼戻しまたは焼きなまし熱処理することを
特徴とする(1)〜(5)のいずれかに記載の制振合金
の製造方法。 (7) 圧延仕上温度の範囲を710〜860℃とする
熱間圧延を行うことを特徴とする(6)記載の制振合金
の製造方法。 (8) 圧延仕上温度の範囲をAr1 +50℃〜Ar1
+100℃とする熱間圧延を行うことを特徴とする
(6)または(7)のいずれかに記載の制振合金の製造
方法。
(6) The heating temperature is 1000 to 1200
℃, 960 ℃ or less rolling reduction of 70% or more, rolling finishing temperature is 860 ℃ or less after hot rolling, cooled to room temperature, 660
The method for producing a vibration-damping alloy according to any one of (1) to (5), which comprises performing a tempering or an annealing heat treatment at ˜960 ° C. (7) The method for producing a vibration-damping alloy according to (6), characterized in that hot rolling is performed at a rolling finishing temperature in the range of 710 to 860 ° C. (8) Rolling finishing temperature range is Ar 1 + 50 ° C. to Ar 1
The method for producing a vibration damping alloy according to (6) or (7), characterized in that hot rolling at + 100 ° C. is performed.

【0013】[0013]

【発明の実施の形態】本発明は上記事情に鑑みなされた
もので、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスに起因した高い制振特性を得
るために、磁壁移動に有害な各種元素や介在物、析出物
の生成を招き、磁壁移動を妨げ、制振性を大きく損なう
元素を極力低下した純鉄系成分を基本としている。
The present invention has been made in view of the above circumstances, and in order to obtain high damping characteristics due to hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration, the It is based on pure iron-based components in which the elements that cause harmful harmful elements, inclusions, and precipitates, interfere with domain wall movement, and greatly impair vibration damping are minimized.

【0014】更に、従来は結晶粒界が磁壁移動を阻害す
るため、もっぱら粗粒化することで制振性を向上させて
いたが、発明者らは種々検討した結果、粗粒化による制
振性向上の方法に替わる方法として、(200)回折強
度を高くすることで、大幅に制振性が向上することを発
見した。(200)回折強度を高くすることで、鋼板表
面に平行な方向の〈100〉方位が強化される。
Further, in the past, since the crystal grain boundaries hinder the domain wall movement, the vibration damping property was improved only by coarsening the grain. However, as a result of various studies by the inventors, the vibration damping by the coarsening has been achieved. As an alternative to the method for improving the vibration resistance, it has been found that the vibration damping property is significantly improved by increasing the (200) diffraction intensity. By increasing the (200) diffraction intensity, the <100> orientation parallel to the steel sheet surface is strengthened.

【0015】つまり、磁化容易方向が鋼板表面に平行な
方向に強化される。磁化容易方向を強化することで制振
性が向上することは新たな発見である。この(200)
回折強度比を3.2以上にすることで制振性が向上する
ことを見い出した。
That is, the easy magnetization direction is strengthened in the direction parallel to the steel plate surface. It is a new discovery that the damping property is improved by strengthening the easy magnetization direction. This (200)
It was found that the damping property is improved by setting the diffraction intensity ratio to 3.2 or more.

【0016】(200)回折強度比を3.2以上にする
と、制振性の指標である損失係数はは0.03以上確保
できて良く、制振性能の観点のみから見ると(200)
回折強度比は高いほど良いが、靭性など他の鋼材特性と
の兼ね合いから、実用上(200)回折強度比は3.2
から12.5の範囲が好ましく、その結果として0.0
3〜0.06の損失係数を確保するのが好ましい。
When the (200) diffraction intensity ratio is set to 3.2 or more, the loss coefficient, which is an index of vibration damping property, can be secured to be 0.03 or more, and from the viewpoint of vibration damping performance only (200).
The higher the diffraction intensity ratio, the better, but in consideration of other steel material properties such as toughness, the practical (200) diffraction intensity ratio is 3.2.
A range of 1 to 12.5 is preferred, resulting in 0.0
It is preferable to ensure a loss factor of 3 to 0.06.

【0017】ここで、(200)回折強度比は、X線回
折により板厚方向4分の1厚み位置における(200)
回折強度を測定し、特定の方位を強化や制御していない
ランダムサンプル材の(200)回折強度に対する比を
求めた。今回検討した結果では、(200)回折強度比
は最大値でも15程度であった。
Here, the (200) diffraction intensity ratio is (200) at a quarter thickness position in the plate thickness direction by X-ray diffraction.
The diffraction intensity was measured and the ratio to the (200) diffraction intensity of the random sample material in which the specific orientation was not strengthened or controlled was determined. As a result of this study, the maximum value of the (200) diffraction intensity ratio was about 15.

【0018】この(200)回折強度比を高くするため
には低温圧延を行うことが必要で、検討の結果、960
℃以下の圧下率を70%以上にすることで達成できる。
このため、圧延仕上温度は860℃以下となる。更に、
制振性向上のため詳細に検討した結果、圧延仕上温度を
Ar1 +50℃〜Ar1 +100℃にすることで、(2
00)回折強度比が更に向上し制振性が一層向上するこ
とを見い出した。
In order to increase the (200) diffraction intensity ratio, it is necessary to carry out low temperature rolling, and as a result of examination, 960
It can be achieved by setting the rolling reduction at 70 ° C or lower to 70% or higher.
Therefore, the rolling finishing temperature is 860 ° C. or lower. Furthermore,
As a result of a detailed study for improving the vibration damping property, by setting the rolling finishing temperature to Ar 1 + 50 ° C. to Ar 1 + 100 ° C., (2
It has been found that the 00) diffraction intensity ratio is further improved and the vibration damping property is further improved.

【0019】更に、400MPa以上の高強度を要求さ
れる場合には、制振性及び靭性を損なうことなく、強度
を大幅に上昇させることのできる元素としてMnを見い
出した。Mnを0.2%以上添加することにより、損失
係数(=η)0.03以上の制振性と400MPa以上
の強度の両立、あるいはηが0.03以上の制振性と4
00MPa以上の強度並びにVノッチシャルピー衝撃試
験の0℃の吸収エネルギーが80J以上の高靭性の全て
を満足させることが可能である。
Further, when a high strength of 400 MPa or more is required, Mn was found as an element capable of significantly increasing the strength without impairing the vibration damping property and the toughness. By adding 0.2% or more of Mn, both the vibration damping property of loss factor (= η) of 0.03 or more and the strength of 400 MPa or more, or the vibration damping property of η of 0.03 or more and 4
It is possible to satisfy all of the strength of 00 MPa or more and the high toughness of the absorbed energy at 0 ° C. in the V notch Charpy impact test of 80 J or more.

【0020】次に靭性向上のためには、結晶粒径を12
0μ以下にすることが必要である。上記の(200)回
折強度比を3.2以上にする製造方法のうち、圧延仕上
温度が710℃未満では結晶粒径が120μを超えるこ
とがあるため、圧延仕上温度は710℃以上とする。熱
間圧延後、(200)回折強度比を高くし、圧延によっ
て鋼板中に導入された歪を減少するために、焼戻しまた
は焼きなまし熱処理が必要であるが、高温で熱処理する
と(200)回折強度比が低くなるため、上限温度は9
60℃である。
Next, in order to improve the toughness, the crystal grain size is set to 12
It is necessary to make it 0 μm or less. In the manufacturing method for setting the (200) diffraction intensity ratio to 3.2 or more, if the rolling finishing temperature is less than 710 ° C., the crystal grain size may exceed 120 μ, so the rolling finishing temperature is set to 710 ° C. or more. After hot rolling, tempering or annealing heat treatment is necessary in order to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. Is lower, the upper limit temperature is 9
60 ° C.

【0021】このように、細粒組織でも集合組織を導入
することで制振性が向上するが、更に一層の制振性向上
の検討を行った。その結果、フェライトフォーマーであ
るSi,Crを添加することで、熱間圧延後の歪取り熱
処理の過程で若干の粗粒が達成され、制振性が更に向上
することを見い出した。Si,Crの添加で強度も上昇
する。
As described above, the damping property is improved by introducing the texture even in the fine grain structure, and further improvement of the damping property was examined. As a result, it was found that by adding the ferrite formers Si and Cr, some coarse grains were achieved in the process of strain relief heat treatment after hot rolling, and the vibration damping property was further improved. The strength is also increased by adding Si and Cr.

【0022】次に、本発明の限定理由を説明する。C
は、固溶状態でも炭化物として析出しても磁壁移動の障
害として作用し、制振性を低下させるため好ましくな
く、上限を0.02%とする。Siは、脱酸材として重
要である以外に、重要なフェライトフォーマーかつ固溶
体強化元素であるため制振性向上に不可欠であり、0.
5%以上の添加が必要である。一方、3.5%を超えて
添加するとSiO2 などの介在物の生成を招き、破壊の
発生点として作用するため靭性を著しく低下させる。従
って、Siの添加範囲は0.5%以上、3.5%以下と
する。
Next, the reasons for limitation of the present invention will be described. C
Is not preferable because it acts as an obstacle to domain wall movement even if it is in a solid solution state or is precipitated as a carbide, and reduces the vibration damping property. Therefore, the upper limit is 0.02%. In addition to being important as a deoxidizing material, Si is an important ferrite former and solid solution strengthening element, so Si is indispensable for improving vibration damping properties.
Addition of 5% or more is required. On the other hand, if added in excess of 3.5%, inclusions such as SiO 2 are generated, which acts as a point of occurrence of fracture, resulting in a significant decrease in toughness. Therefore, the range of addition of Si is 0.5% or more and 3.5% or less.

【0023】Mnは、固溶体強化元素であり、制振性及
び靭性向上に効果がなく、添加することでコストアップ
となるため、特に400MPa以上の高強度が必要でな
い場合は、0.2%未満に限定するのが良い。ただし、
特に400MPa以上の高強度が必要な場合は、Mnは
強度確保のためには必須の元素であり、この目的のため
には0.2%以上添加する必要があるが、2.5%を超
えて添加すると制振性の低下が起こるため、Mn量の上
限は2.5%とする。
Mn is a solid solution strengthening element, has no effect on improving vibration damping property and toughness, and if added, the cost increases. Therefore, Mn is less than 0.2% unless high strength of 400 MPa or more is required. It is good to limit to However,
Especially when high strength of 400 MPa or more is required, Mn is an essential element for securing the strength, and for this purpose, it is necessary to add 0.2% or more, but more than 2.5%. Since the vibration damping property will be deteriorated when added as Mn, the upper limit of the amount of Mn is 2.5%.

【0024】P,Sは、鋼中において非金属介在物を形
成し、かつ、偏析することにより磁壁の移動を妨げる害
を及ぼし、制振性を低下させるので少ないほど良い。こ
のため、Pは0.010%以下、Sは0.005%以下
とする。
P and S form non-metallic inclusions in the steel and segregate to exert a detrimental effect on the movement of the magnetic domain wall, and reduce the vibration damping property. Therefore, P is set to 0.010% or less and S is set to 0.005% or less.

【0025】Alは、SiやMnと同様に脱酸材として
重要であるほか、制振性と強度を向上させる重要な元素
である。最低0.002%を確保する必要があるが、過
剰添加によりAl2 3 などの介在物のほか、Nと化合
してAlNなどの析出物を生成し、制振性、靭性の低下
を招くため、上限を0.060%に制限する。
Al, like Si and Mn, is an important element as a deoxidizing material, and is an important element for improving vibration damping property and strength. Although it is necessary to secure at least 0.002%, excessive addition causes inclusions such as Al 2 O 3 and compounding with N to form precipitates such as AlN, resulting in deterioration of vibration damping and toughness. Therefore, the upper limit is limited to 0.060%.

【0026】Crは、フェライトフォーマーであり、添
加することにより結晶粒を若干粗大化する元素であり、
制振性を向上させるため、0.50%以上添加するが、
同時に靭性の低下を招き、また高価な元素であるため極
力添加量を低減することが好ましいため、上限を3.5
%以下に制限する。Nは、固溶状態でも窒化物として析
出しても磁壁移動の障害として作用し、制振性を低下さ
せるため低いほど好ましく、上限を0.006%とす
る。
Cr is a ferrite former, and is an element that causes the crystal grains to become slightly coarse when added.
0.50% or more is added to improve the vibration damping property.
At the same time, the toughness is lowered, and since it is an expensive element, it is preferable to reduce the added amount as much as possible. Therefore, the upper limit is 3.5.
% Or less. N acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a nitride, and lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.006%.

【0027】更に、必要に応じて添加されるCu,N
i,Mo,Nb,V,Ti,Bは、強度上昇に有効な元
素であり、その効果が不足しない範囲として前記の量を
下限とし、また制振性及び靭性が低下しない範囲とし
て、前記の量を上限とした。更に、必要に応じて添加さ
れるCa,REMは、靭性向上に有効な元素であり、そ
の効果が不足しない範囲として前記の量を下限とし、ま
た靭性がむしろ低下し制振性が低下しない範囲として、
前記の量を上限とした。
Further, Cu, N added as necessary
i, Mo, Nb, V, Ti, and B are elements effective for increasing strength, and the above amount is set as the lower limit as a range in which the effect is not insufficient, and as a range in which vibration damping and toughness are not deteriorated. The upper limit was the amount. Further, Ca and REM added as necessary are elements effective for improving the toughness, and the above amount is set as the lower limit as a range in which the effect is not insufficient, and a range in which the toughness rather decreases and the vibration damping property does not decrease. As
The above amount was made the upper limit.

【0028】製造条件については、加熱温度は加熱オー
ステナイト粒を微細にし、(200)回折強度比を高く
するため、1200℃以下とし、更に、加熱時の鋼板内
温度偏差をなくすため、1000℃以上とする。圧延条
件に関しては、(200)回折強度比を高くするため、
960℃以下で70%以上の圧延が必要である。
Regarding the manufacturing conditions, the heating temperature is 1200 ° C. or lower in order to make the heated austenite grains fine and the (200) diffraction intensity ratio high, and further 1000 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating. And Regarding the rolling conditions, in order to increase the (200) diffraction intensity ratio,
70% or more rolling is required at 960 ° C or less.

【0029】圧延仕上温度は、960℃以下で70%以
上の圧延を行うため、860℃以下となるが、710℃
未満ではフェライト域圧延となり結晶粒径が120μ超
となることがあり靭性が低下するため、下限を710℃
とする。更に、圧延仕上温度をAr1 +50℃〜Ar1
+100℃にすることで、(200)回折強度比が更に
向上し制振特性が一層向上する。
The rolling finishing temperature is 860 ° C. or lower because the rolling finish temperature is 960 ° C. or lower and 70% or more is rolled, but 710 ° C.
If the temperature is less than the lower limit, the ferrite region may be rolled, and the crystal grain size may exceed 120 μ, which may lower the toughness. Therefore, the lower limit is 710 ° C.
And Furthermore, the rolling finishing temperature is Ar 1 + 50 ° C. to Ar 1
By setting the temperature to + 100 ° C., the (200) diffraction intensity ratio is further improved and the vibration damping characteristics are further improved.

【0030】熱間圧延後室温まで冷却した後、(20
0)回折強度比を更に向上させ、圧延によって鋼板中に
導入された歪を減少するために、焼戻しまたは焼きなま
し熱処理が必要であり、660℃以上の熱処理を行う
が、(200)回折強度比は高温で熱処理すると弱くな
るため、上限温度は960℃とする。
After hot rolling and cooling to room temperature, (20
0) In order to further improve the diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling, tempering or annealing heat treatment is required, and heat treatment at 660 ° C. or higher is performed, but the (200) diffraction intensity ratio is The upper limit temperature is set to 960 ° C., because heat treatment weakens it at high temperature.

【0031】[0031]

【実施例】先ず表1に示す成分範囲の供試合金を作製
し、これから元厚×40mm幅×400mm長さの板状試験
片を加工し、機械インピーダンス法による制振性測定を
行った。表1に示す合金のうち、鋼 No.A〜Fは本発明
の成分範囲の合金であり、鋼 No.G〜Oは本発明の成分
範囲外の合金である。これらの鋼について、表2に示す
製造条件で製造したものの各種特性を合わせて表2に示
す。なお、板厚6mm以上の各鋼板は熱間圧延後室温まで
冷却した後に熱処理した。板厚がそれ未満のものは熱間
圧延後、巻取り、その後熱処理した。
Example First, a matchmaking alloy having the composition range shown in Table 1 was prepared, and a plate-like test piece having an original thickness of 40 mm width and a length of 400 mm was processed from this, and the vibration damping property was measured by the mechanical impedance method. Among the alloys shown in Table 1, steel Nos. A to F are alloys within the composition range of the present invention, and steels No. G to O are alloys outside the composition range of the present invention. Table 2 also shows various characteristics of these steels manufactured under the manufacturing conditions shown in Table 2. Each steel sheet having a thickness of 6 mm or more was heat-rolled, then cooled to room temperature and then heat-treated. A sheet having a thickness less than that was hot-rolled, wound, and then heat-treated.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】例1〜7は本発明例であり、例8〜20は
比較例である。例1〜4、8〜14は板厚23mm、例5
は板厚1.7mm、例6〜7は板厚45mm、例15〜20
は板厚22mmである。例1の本発明例は(200)回折
強度比が3.2以上で、高い制振性能(η≧0.03
0)を有するが、Mnが0.2%未満のために強度は3
54MPaにとどまっている。例2〜7は圧延仕上温度
が710℃以上で、(200)回折強度比が3.2以上
で、結晶粒径が120μ以下であり、Mnが0.2%以
上添加されているため、高強度(≧400MPa)で、
高い制振性能(η≧0.030)と高靭性(≧80J)
を有する。
Examples 1 to 7 are examples of the present invention, and Examples 8 to 20 are comparative examples. Examples 1-4 and 8-14 have a plate thickness of 23 mm, Example 5
Is 1.7 mm in thickness, Examples 6 to 7 are 45 mm in thickness, Examples 15 to 20
Has a plate thickness of 22 mm. The inventive example of Example 1 has a (200) diffraction intensity ratio of 3.2 or more and high vibration damping performance (η ≧ 0.03).
0), but the strength is 3 because Mn is less than 0.2%.
It remains at 54 MPa. In Examples 2 to 7, the rolling finishing temperature is 710 ° C. or higher, the (200) diffraction intensity ratio is 3.2 or higher, the crystal grain size is 120 μm or lower, and Mn is added at 0.2% or higher. With strength (≧ 400 MPa),
High damping performance (η ≧ 0.030) and high toughness (≧ 80J)
Having.

【0035】例4、5は、強度上昇に有効な選択元素を
含有するため、更に高強度(≧430MPa)で、例
6、7は、靭性上昇に有効な選択元素を含有するため、
更に高靭性(≧100J)である。
Since Examples 4 and 5 contain the selective element effective for increasing the strength, the strength is higher (≧ 430 MPa), and Examples 6 and 7 contain the selective element effective for increasing the toughness.
Further, it has high toughness (≧ 100 J).

【0036】比較例8は(200)回折強度比が3.2
以上だが、結晶粒径が120μ超で、Cが高く、制振性
能と靭性が低い。例9は(200)回折強度比が3.2
以上で、結晶粒径が120μ以下であるが、Siが低
く、強度、制振性能が低い。例10は(200)回折強
度比が3.2以上で、結晶粒径が120μ以下である
が、Siが高く、制振性能が低い。例11、12は(2
00)回折強度比が3.2以上で、結晶粒径が120μ
以下であるが、例11はPが高く、例12はSが高く、
制振性能が低い。例13は(200)回折強度比が3.
2以上で、結晶粒径が120μ以下であるが、Crが低
く、強度、制振性能が低い。
Comparative Example 8 has a (200) diffraction intensity ratio of 3.2.
However, the crystal grain size exceeds 120 μm, the C content is high, and the vibration damping performance and toughness are low. Example 9 has a (200) diffraction intensity ratio of 3.2.
As described above, although the crystal grain size is 120 μ or less, Si is low and strength and vibration damping performance are low. In Example 10, the (200) diffraction intensity ratio is 3.2 or more and the crystal grain size is 120 μ or less, but Si is high and the vibration damping performance is low. Examples 11 and 12 are (2
00) The diffraction intensity ratio is 3.2 or more, and the crystal grain size is 120μ.
As follows, Example 11 has a high P, Example 12 has a high S,
Vibration control performance is low. Example 13 has a (200) diffraction intensity ratio of 3.
If it is 2 or more, the crystal grain size is 120 μ or less, but Cr is low, and the strength and vibration damping performance are low.

【0037】例14は(200)回折強度比が3.2以
上で、結晶粒径が120μ以下であるが、Crが高く、
靭性が低い。例15は(200)回折強度比が3.2以
上で、結晶粒径が120μ以下であるが、Alが高く、
靭性が低い。例16は(200)回折強度比が3.2以
上で、結晶粒径が120μ以下であるが、Nが高く、制
振性能が低い。
In Example 14, the (200) diffraction intensity ratio is 3.2 or more and the crystal grain size is 120 μ or less, but Cr is high,
Low toughness. In Example 15, the (200) diffraction intensity ratio is 3.2 or more and the crystal grain size is 120 μ or less, but Al is high,
Low toughness. In Example 16, the (200) diffraction intensity ratio is 3.2 or more and the crystal grain size is 120 μ or less, but N is high and the vibration damping performance is low.

【0038】例17は加熱温度が高く、例18は960
℃以下の圧下率が低く、(200)回折強度比が低く、
結晶粒径が120μ超で、制振性能と靭性が低い。例1
9は熱処理温度が低く、(200)回折強度比が低く、
結晶粒径は120μ以下であるが、制振性能が低い。例
20は熱処理温度が高く、(200)回折強度比が低
く、結晶粒径が120μ以下であるが、制振性能が低
い。
The heating temperature is high in Example 17, and 960 in Example 18.
Low rolling reduction below ℃, low (200) diffraction intensity ratio,
If the crystal grain size exceeds 120μ, vibration damping performance and toughness are low. Example 1
No. 9 has a low heat treatment temperature and a low (200) diffraction intensity ratio,
The crystal grain size is 120 μ or less, but the vibration damping performance is low. In Example 20, the heat treatment temperature is high, the (200) diffraction intensity ratio is low, and the crystal grain size is 120 μm or less, but the vibration damping performance is low.

【0039】次に、表3に示す本発明の成分範囲の合金
の鋼P,Q,Rについて、表4に示す本発明の製造条件
で製造したものの各種特性を合わせて示す。例1、2、
3は圧延仕上温度が更に望ましい範囲にある例である。
板厚は全て25mmである。鋼P,Q,RのAr1 はそれ
ぞれ725℃、730℃、720℃である。
Next, various characteristics of the steels P, Q, and R of the alloys in the composition range of the present invention shown in Table 3 are shown together with those produced under the production conditions of the present invention shown in Table 4. Examples 1, 2,
No. 3 is an example in which the rolling finishing temperature is in a more desirable range.
The plate thickness is all 25 mm. Ar 1 of the steels P, Q and R are 725 ° C., 730 ° C. and 720 ° C., respectively.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】例1、2、3は圧延仕上温度がAr1 +5
0℃〜Ar1 +100℃の範囲内にあり、(200)回
折強度比が4.5以上で、更に良好な制振性能(η≧
0.040)を有し、圧延仕上温度がAr1 +50℃〜
Ar1 +100℃の範囲にない例4〜7に比べ、より良
好な制振性能を有している。
In Examples 1, 2, and 3, the rolling finishing temperature was Ar 1 +5.
Within the range of 0 ° C. to Ar 1 + 100 ° C., the (200) diffraction intensity ratio is 4.5 or more, and further excellent vibration damping performance (η ≧
0.040) and the rolling finishing temperature is Ar 1 + 50 ° C.
It has better vibration damping performance as compared with Examples 4 to 7 which are not within the range of Ar 1 + 100 ° C.

【0043】[0043]

【発明の効果】本発明により、制振性能、及び高靭性と
制振性能が同時に要求される船舶、橋梁、産業機械、建
設用構造材料等の供給が可能となり、工業界に与える効
果は極めて大きい。
Industrial Applicability According to the present invention, it becomes possible to supply a ship, a bridge, an industrial machine, a structural material for construction, etc., which are required to have vibration damping performance and high toughness and vibration damping performance at the same time. large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/54 C22C 38/54 38/58 38/58 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C22C 38/54 C22C 38/54 38/58 38/58

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02%以下、 Si:0.5%以上、3.5%以下、 Mn:0.2%未満、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%以上、3.5%以下、 Al:0.002%以上、0.060%以下、 N :0.006%以下 を含有し、残部Fe及び不可避的不純物からなり、(2
00)回折強度比が3.2以上であることを特徴とする
制振合金。
1. By weight%, C: 0.02% or less, Si: 0.5% or more, 3.5% or less, Mn: less than 0.2%, P: 0.010% or less, S: 0 0.005% or less, Cr: 0.5% or more, 3.5% or less, Al: 0.002% or more, 0.060% or less, N: 0.006% or less, balance Fe and unavoidable impurities Consists of (2
00) A damping alloy having a diffraction intensity ratio of 3.2 or more.
【請求項2】 重量%で、 C :0.02%以下、 Si:0.5%以上、3.5%以下、 Mn:0.2%以上、2.5%以下、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%以上、3.5%以下、 Al:0.002%以上、0.060%以下、 N :0.006%以下 を含有し、残部Fe及び不可避的不純物からなり、(2
00)回折強度比が3.2以上であることを特徴とする
制振合金。
2. By weight%, C: 0.02% or less, Si: 0.5% or more, 3.5% or less, Mn: 0.2% or more, 2.5% or less, P: 0.010. % Or less, S: 0.005% or less, Cr: 0.5% or more, 3.5% or less, Al: 0.002% or more, 0.060% or less, N: 0.006% or less, The balance consists of Fe and unavoidable impurities.
00) A damping alloy having a diffraction intensity ratio of 3.2 or more.
【請求項3】 重量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ti:0.005〜0.1%、 B :0.0003〜0.005% を1種または2種以上含有することを特徴とする請求項
1または2のいずれかに記載の制振合金。
3. By weight%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005 to 0. 2%, V: 0.005-0.2%, Ti: 0.005-0.1%, B: 0.0003-0.005%, 1 type (s) or 2 or more types are contained, It is characterized by the above-mentioned. The vibration damping alloy according to item 1 or 2.
【請求項4】 重量%で、 Ca :0.001〜0.05%、 REM:0.001〜0.1% を1種または2種含有することを特徴とする請求項1〜
3のいずれかに記載の制振合金。
4. A weight percentage of Ca: 0.001 to 0.05% and REM: 0.001 to 0.1% are contained in one or two kinds.
The damping alloy according to any one of 3 above.
【請求項5】 結晶粒径を120μ以下にすることによ
り高い靭性を確保したことを特徴とする請求項1〜4の
いずれかに記載の制振合金。
5. The vibration damping alloy according to claim 1, wherein a high toughness is ensured by setting the crystal grain size to 120 μm or less.
【請求項6】 加熱温度が1000〜1200℃、96
0℃以下の圧下率が70%以上、圧延仕上温度が860
℃以下で熱間圧延後、室温まで冷却し、660〜960
℃で焼戻しまたは焼きなまし熱処理することを特徴とす
る請求項1〜5のいずれかに記載の制振合金の製造方
法。
6. A heating temperature of 1000 to 1200 ° C., 96
Rolling rate of 0% or less is 70% or more, rolling finishing temperature is 860
After hot rolling at ℃ or less, cool to room temperature, 660-960
The method for producing a vibration damping alloy according to any one of claims 1 to 5, characterized by performing a tempering or an annealing heat treatment at a temperature of ° C.
【請求項7】 圧延仕上温度の範囲を710〜860℃
とする熱間圧延を行うことを特徴とする請求項6記載の
制振合金の製造方法。
7. A rolling finishing temperature range of 710 to 860 ° C.
The method for producing a vibration-damping alloy according to claim 6, wherein hot rolling is performed.
【請求項8】 圧延仕上温度の範囲をAr1 +50℃〜
Ar1 +100℃とする熱間圧延を行うことを特徴とす
る請求項6または7のいずれかに記載の制振合金の製造
方法。
8. The rolling finishing temperature range is Ar 1 + 50 ° C.
The method for producing a vibration damping alloy according to claim 6, wherein hot rolling at Ar 1 + 100 ° C. is performed.
JP31455895A 1995-12-01 1995-12-01 High damping alloy and its production Withdrawn JPH09157792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31455895A JPH09157792A (en) 1995-12-01 1995-12-01 High damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31455895A JPH09157792A (en) 1995-12-01 1995-12-01 High damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH09157792A true JPH09157792A (en) 1997-06-17

Family

ID=18054739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31455895A Withdrawn JPH09157792A (en) 1995-12-01 1995-12-01 High damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH09157792A (en)

Similar Documents

Publication Publication Date Title
US6632295B2 (en) High tensile strength hot-rolled steel sheet and method for manufacturing the same
JP3854807B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JP3548358B2 (en) High-strength and high-toughness damped steel sheet and method for producing the same
JPH09157794A (en) High damping alloy and its production
JPH09143624A (en) Damping alloy and its production
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH09157792A (en) High damping alloy and its production
JPH09143623A (en) Damping alloy and its production
JPH09143622A (en) Damping alloy and its production
JPH09227997A (en) High damping alloy and its production
JPH05279788A (en) Non-heattreated steel for hot forging excellent in strength and toughness
JPS6152317A (en) Manufacture of hot rolled steel plate having superior toughness at low temperature
JPH09104950A (en) High damping alloy and its production
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
JPH08319539A (en) High damping alloy with high strength and high toughness and its production
JPH0317245A (en) High strength non-magnetic stainless steel having excellent machinability
JPH09176780A (en) High strength steel excellent in damping characteristic and its production
JPH06145797A (en) Production of thick silicon steel plate for magnetic shielding structure
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JPH09157793A (en) High damping alloy and its production
JPH09170049A (en) Damping alloy and its production
JP2000096140A (en) Production of high toughness high damping alloy
JP3561922B2 (en) Manufacturing method of soft magnetic stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204