JPH09170049A - Damping alloy and its production - Google Patents

Damping alloy and its production

Info

Publication number
JPH09170049A
JPH09170049A JP32762595A JP32762595A JPH09170049A JP H09170049 A JPH09170049 A JP H09170049A JP 32762595 A JP32762595 A JP 32762595A JP 32762595 A JP32762595 A JP 32762595A JP H09170049 A JPH09170049 A JP H09170049A
Authority
JP
Japan
Prior art keywords
less
diffraction intensity
intensity ratio
vibration damping
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32762595A
Other languages
Japanese (ja)
Inventor
Yukio Tomita
幸男 冨田
Hidesato Mabuchi
秀里 間渕
Tatsuyuki Suyama
竜之 壽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32762595A priority Critical patent/JPH09170049A/en
Publication of JPH09170049A publication Critical patent/JPH09170049A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an alloy simultaneously excellent in damping capacity and toughness by specifying the compsn. of elements and the diffraction intensity ratio. SOLUTION: This alloy has a compsn. contg., by weight, <=0.02% C, 0.01 to 0.5% Si, <0.2% Mn, <=0.01% P, <=0.05% S, 0.5 to 3.5% Cr, 0.002 to 0.06% Al, <0.006% N, and the balance Fe with inevitable impurities, and in which the (200) diffraction intensity ratio is regulated to >=3.0. As for the diffraction intensity ratio, the higher, the better from the viewpoint only of damping capacity, but, from the equilibrium with toughness, in pratical, the upper limit is preferably suppressed to 12.0. As for the production of the alloy, a slab having the above compsn. is subjected to hot rolling in such a manner that the heating temp. is regulated to 1000 to 1150 deg.C, the draft at <=950 deg.C to 30 to 70% and the rolling finishing temp. to <=850 deg.C. After that, it is cooled to a room temp. and is subjected to tempering or annealing at 650 to 1000 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、橋梁、産業
機械、建築用構造材料として高い制振性を有する制振合
金及び高靭性を有する制振合金に係わるものである。
TECHNICAL FIELD The present invention relates to a damping alloy having a high damping property and a damping alloy having a high toughness as a structural material for ships, bridges, industrial machines and constructions.

【0002】[0002]

【従来の技術】最近、船舶、橋梁、産業機械、建築物は
その材料には、構造材料の基本特性である靭性に加え高
い制振性が同時に要求される傾向にある。すなわち、例
えば橋梁上の高速鉄道走行時や大規模土木、建築作業時
の騒音、振動を構造材料そのものの制振効果で抑え、か
つ、構造部材として十分な靭性を有するという課題を解
決しようとするものである。
2. Description of the Related Art Recently, ships, bridges, industrial machines, and buildings tend to be required to have high damping properties at the same time in addition to toughness which is a basic characteristic of structural materials. That is, for example, the problem of suppressing noise and vibration during high-speed railway running on a bridge, large-scale civil engineering, and construction work by the damping effect of the structural material itself, and having sufficient toughness as a structural member is attempted. It is a thing.

【0003】樹脂サンドイッチ型制振鋼板に代わる制振
性を目的とした部材に供される従来の鉄系材料は、振動
による交番応力作用下での磁壁移動の非可逆運動による
ヒステリシスに起因した高い制振性を得るため、フェラ
イトフォーマーを添加して組織をフェライト単相化する
ことをねらい、Al及びSiを添加した材料と、Crを
積極的に添加した材料との2種類に分けられる。
Conventional iron-based materials used as members for the purpose of damping property instead of resin sandwich type damping steel plate are high in hysteresis due to irreversible motion of domain wall movement under the action of alternating stress due to vibration. In order to obtain a damping property, a ferrite former is added to make the structure into a ferrite single phase, and it is divided into two types: a material to which Al and Si are added and a material to which Cr is positively added.

【0004】前者の例としては、特開平4−99148
号公報に記載されるように、Alを最高7.05%及び
Siを最高4.5%まで添加した強磁性型制振合金があ
り、後者の例としては、特開昭52−73118号公報
に記載されるようにCrを8〜30%添加した強磁性制
振合金などがある。
As an example of the former, Japanese Patent Laid-Open No. 4-99148
As disclosed in Japanese Patent Publication No. 52-73118, there is a ferromagnetic damping alloy in which Al is added up to 7.05% and Si is added up to 4.5%. As described in 1), there is a ferromagnetic damping alloy containing 8 to 30% of Cr.

【0005】さらに、特開平6−220583号公報及
び特開平5−302148号公報で、Mnが0.1また
は0.2%以下で、Crを1〜5%を添加した強磁性制
振合金がある。また、発明者らは、特願平6−2589
82号でMnが0.2〜2.5%、Crを1〜5%を添
加した強磁性制振合金を提案した。
Further, in JP-A-6-220583 and JP-A-5-302148, there is disclosed a ferromagnetic damping alloy in which Mn is 0.1 or 0.2% or less and 1 to 5% of Cr is added. is there. In addition, the inventors of the present invention filed Japanese Patent Application No. 6-2589.
No. 82 proposed a ferromagnetic damping alloy in which Mn is added in an amount of 0.2 to 2.5% and Cr is added in an amount of 1 to 5%.

【0006】また、田中良平、制振材料〈その機能と応
用〉広済堂1992年3月発行p192〜197に強磁
性型合金として、外部応力が磁区壁の移動を引き起こし
それによるヒステリシス損で振動エネルギーが吸収され
ることが記述されている。
Ryohei Tanaka, Damping Material <Functions and Applications> Published by Kousendo March 1992, p192 to 197, as a ferromagnetic alloy, external stress causes movement of the magnetic domain wall, which causes hysteresis energy to cause vibration energy. Described to be absorbed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の合金のうち特開平4−99148号公報記載の合金
は、Al及びSi添加量の上限規制が不適当であるた
め、粗大なAl系及びSi系介在物の生成をまねき、こ
れが破壊の発生点として作用するため靭性が低下する。
また、特開昭52−73118号公報記載の合金はCr
添加が過剰なため、上記と同様にCr系介在物による靭
性低下をまねく。
However, among these alloys, the alloy described in Japanese Patent Laid-Open No. 4-99148 has an inappropriate upper limit regulation of the amounts of Al and Si to be added, and therefore the coarse Al-based and Si-based alloys. This causes the formation of inclusions, which act as the starting point of fracture, resulting in a decrease in toughness.
Further, the alloy described in JP-A-52-73118 is Cr
Since the addition is excessive, similarly to the above, the toughness is lowered by the Cr-based inclusions.

【0008】さらに、特開平6−220583号公報及
び特開平5−302148号公報は、積極的な靭性向上
策がなされていないため、靭性が低い。また、特願平6
−258982号は靭性の確保優先で制振性については
不十分である。
Further, in JP-A-6-220583 and JP-A-5-302148, the toughness is low because no aggressive measures for improving the toughness are taken. In addition, Japanese Patent Application Hei 6
No. 258982 has insufficient toughness because it has priority on securing toughness.

【0009】制振材料の文献では、制振合金の機構を書
いたもので、その向上策や具体的な成分系・製造方法あ
るいは制振性に加えて靭性を同時に満足する方法に関す
る記述はない。本発明は優れた制振性及び制振性と高靭
性を有する制振合金を提供することを目的とする。
In the literature of damping materials, the mechanism of damping alloys is written, and there is no description on the improvement method, specific component system, manufacturing method, or method for simultaneously satisfying toughness in addition to damping property. . An object of the present invention is to provide a damping alloy having excellent damping properties and damping properties and high toughness.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は次の通り
である。 (1)重量%で、C:0.02%以下、Si:0.01
%以上、0.5%以下、Mn:0.2%未満、P:0.
010%以下、S:0.005%以下、Cr:0.5%
以上、3.5%以下、Al:0.002%以上、0.0
60%以下、N:0.006%以下を含有し、残部Fe
及び不可避的不純物からなり、(200)回折強度比が
3.0以上であることを特徴とする制振合金。
The gist of the present invention is as follows. (1)% by weight, C: 0.02% or less, Si: 0.01
% Or more and 0.5% or less, Mn: less than 0.2%, P: 0.
010% or less, S: 0.005% or less, Cr: 0.5%
Or more, 3.5% or less, Al: 0.002% or more, 0.0
60% or less, N: 0.006% or less, balance Fe
And a (200) diffraction intensity ratio of 3.0 or more, and a damping alloy.

【0011】(2)重量%で、C:0.02%以下、S
i:0.01%以上、0.5%以下、Mn:0.2%以
上、2.5%以下、P:0.010%以下、S:0.0
05%以下、Cr:0.5%以上、3.5%以下、A
l:0.002%以上、0.060%以下、N:0.0
06%以下を含有し、残部Fe及び不可避的不純物から
なり、(200)回折強度比が2.5以上であることを
特徴とする制振合金。
(2)% by weight, C: 0.02% or less, S
i: 0.01% or more and 0.5% or less, Mn: 0.2% or more and 2.5% or less, P: 0.010% or less, S: 0.0
05% or less, Cr: 0.5% or more, 3.5% or less, A
1: 0.002% or more, 0.060% or less, N: 0.0
A vibration-damping alloy, which contains 06% or less, consists of the balance Fe and unavoidable impurities, and has a (200) diffraction intensity ratio of 2.5 or more.

【0012】(3)重量%で、Cu:0.05〜2.5
%、Ni:0.05〜2.5%、Mo:0.05〜4.
5%、Nb:0.005〜0.2%、V:0.005〜
0.2%、Ti:0.005〜0.1%、B:0.00
03〜0.005%を1種または2種以上含有すること
を特徴とする前記(1)または(2)のいずれかに記載
の制振合金。
(3) Cu: 0.05 to 2.5 by weight%
%, Ni: 0.05-2.5%, Mo: 0.05-4.
5%, Nb: 0.005 to 0.2%, V: 0.005 to
0.2%, Ti: 0.005 to 0.1%, B: 0.00
The vibration damping alloy as described in any one of (1) and (2) above, which contains one or two or more of 03 to 0.005%.

【0013】(4)重量%で、Ca:0.001〜0.
05%、REM:0.001〜0.1%を1種または2
種含有することを特徴とする前記(1)〜(3)のいず
れかに記載の制振合金。 (5)結晶粒径を120μ以下とすることにより高い靭
性を確保したことを特徴とする前記(1)〜(4)のい
ずれかに記載の制振合金。
(4)%: Ca: 0.001 to 0.
05%, REM: 0.001 to 0.1% 1 or 2
The damping alloy according to any one of (1) to (3) above, which contains a seed. (5) The damping alloy according to any one of (1) to (4) above, wherein high toughness is ensured by setting the crystal grain size to 120 μm or less.

【0014】(6)加熱温度が1000〜1150℃、
950℃以下の圧下率が30〜70%、圧延仕上温度が
850℃以下で熱間圧延後、室温まで冷却し、650〜
1000℃で焼戻しまたは焼きなまし熱処理することを
特徴とする前記(1)〜(5)のいずれかに記載の制振
合金の製造方法。
(6) The heating temperature is 1000 to 1150 ° C.,
After the hot rolling at a rolling reduction temperature of 950 ° C or lower at 30 to 70% and a rolling finishing temperature of 850 ° C or lower, it is cooled to room temperature,
The method for producing a vibration damping alloy according to any one of (1) to (5) above, which comprises performing a tempering or an annealing heat treatment at 1000 ° C.

【0015】(7)圧延仕上温度の範囲を650〜85
0℃とする熱間圧延を行うことを特徴とする前記(6)
記載の制振合金の製造方法。 (8)圧延仕上温度の範囲をAr1 −20℃〜Ar1
50℃とする熱間圧延を行うことを特徴とする前記
(6)または(7)のいずれかに記載の制振合金の製造
方法。
(7) Rolling finishing temperature range is 650-85
The above (6), which is characterized in that hot rolling is performed at 0 ° C.
A method for producing the damping alloy described. (8) Roll finishing temperature range is Ar 1 -20 ° C to Ar 1 +
The method for producing a vibration damping alloy as described in any of (6) and (7) above, which comprises performing hot rolling at 50 ° C.

【0016】[0016]

【発明の実施の形態】本発明は上記事情に鑑みなされた
もので、振動による交番応力作用下での磁壁移動の非可
逆運動によるヒステリシスに起因した高い制振性を得る
ために、磁壁移動に有害な各種元素や介在物、析出物の
生成を招き、磁壁移動を妨げ、制振性を大きく損なう元
素を極力低下した純鉄系成分を基本としている。
The present invention has been made in view of the above circumstances, and in order to obtain a high damping property due to the hysteresis due to the irreversible motion of the domain wall movement under the action of alternating stress due to vibration, It is based on pure iron-based components in which the elements that cause harmful harmful elements, inclusions, and precipitates, interfere with domain wall movement, and greatly impair vibration damping are minimized.

【0017】さらに、従来は結晶粒界が磁壁移動を阻害
するため、もっぱら粗粒化することで制振性を向上させ
ていたが、発明者らは種々検討した結果、粗粒化による
制振性向上の方法に代わる方法として、(200)回折
強度を高くすることで、大幅に制振性が向上することを
発見した。(200)回折強度を高くすることで、鋼板
表面に平行な方向の〈100〉方位が強化される。
Further, in the past, since the crystal grain boundary hindered the domain wall movement, the vibration damping property was improved only by coarsening the grain. However, as a result of various studies by the inventors, the vibration damping by the coarsening has been performed. As an alternative to the method for improving the vibration resistance, it has been found that the vibration damping property is significantly improved by increasing the (200) diffraction intensity. By increasing the (200) diffraction intensity, the <100> orientation parallel to the steel sheet surface is strengthened.

【0018】つまり、磁化容易方向が鋼板表面に平行な
方向に強化される。磁化容易方向を強化することで制振
性が向上することは新たな発見である。この(200)
回折強度比を2.5以上にすることで制振性が向上する
ことを見い出した。(200)回折強度比を2.5以上
にすると、制振性の指標である損失係数は0.02以上
確保できて良く、制振性能の観点のみから見ると、(2
00)回折強度比は高いほど良いが、靭性など他の鋼材
特性との兼ね合いから実用上(200)回折強度比は
2.5から12.0の範囲が好ましく、その結果として
0.02〜0.055の損失係数を確保するのが好まし
い。
That is, the easy magnetization direction is strengthened in the direction parallel to the steel plate surface. It is a new discovery that the damping property is improved by strengthening the easy magnetization direction. This (200)
It was found that the vibration damping property is improved by setting the diffraction intensity ratio to 2.5 or more. When the (200) diffraction intensity ratio is 2.5 or more, the loss coefficient, which is an index of damping property, can be secured to be 0.02 or more. From the viewpoint of damping performance, (2
The higher the (00) diffraction intensity ratio, the better, but in view of the balance with other steel material properties such as toughness, the (200) diffraction intensity ratio is preferably in the range of 2.5 to 12.0, resulting in 0.02 to 0. It is preferable to ensure a loss factor of 0.055.

【0019】ここで、(200)回折強度比は、X線回
折により板厚方向4分の1厚み位置における(200)
回折強度を測定し、特定の方位を強化や制御していない
ランダムサンプル材の(200)回折強度に対する比を
求めた。今回検討した結果では、(200)回折強度比
は最大値でも15程度であった。
Here, the (200) diffraction intensity ratio is (200) at a quarter thickness position in the plate thickness direction by X-ray diffraction.
The diffraction intensity was measured and the ratio to the (200) diffraction intensity of the random sample material in which the specific orientation was not strengthened or controlled was determined. As a result of this study, the maximum value of the (200) diffraction intensity ratio was about 15.

【0020】この(200)回折強度比を高くするため
には、低温圧延を行うことが必要で、検討の結果、95
0℃以下の圧下率を30%以上にすることで達成でき
る。低温圧延の温度の上限については合金成分、特にM
nによって制限する必要があり、Mnが0.2%未満の
時は950℃で良いが、Mnが0.2%以上の時は90
0℃にする必要がある。このため、圧延仕上温度は85
0℃以下となる。
In order to increase the (200) diffraction intensity ratio, it is necessary to carry out low temperature rolling, and as a result of examination, 95
This can be achieved by setting the rolling reduction at 0 ° C. or less to 30% or more. Regarding the upper limit of the low temperature rolling temperature, alloy components, especially M
It is necessary to limit by n, and 950 ° C. may be used when Mn is less than 0.2%, but 90 when Mn is 0.2% or more.
Must be 0 ° C. Therefore, the rolling finishing temperature is 85
It will be below 0 ° C.

【0021】但し、Mnが0.2%以上で、かつ900
℃以下で低温圧延した場合の圧延仕上温度は800℃以
下にしなければならない。さらに、制振性向上のため詳
細に検討した結果、圧延仕上温度をAr1 −20℃〜A
1 +50℃にすることで(200)回折強度比がさら
に向上し制振性が一層向上することを見い出した。
However, Mn is 0.2% or more, and 900
The rolling finishing temperature in the case of low-temperature rolling below ℃ must be below 800 ℃. Furthermore, as a result of a detailed study for improving the vibration damping property, the rolling finish temperature was set to Ar 1 -20 ° C to A
It has been found that by setting r 1 + 50 ° C., the (200) diffraction intensity ratio is further improved and the vibration damping property is further improved.

【0022】さらに、制振性、靭性を損なわずに強度を
大幅に上昇させることのできる元素としてMnを見い出
した。Mnを0.2%以上添加することで、制振性と強
度の両立、あるいは制振性、強度と靭性の3つの特性を
向上させることが可能である。
Further, Mn was found as an element capable of significantly increasing the strength without impairing the vibration damping property and the toughness. By adding 0.2% or more of Mn, it is possible to achieve both vibration damping property and strength, or to improve three properties of vibration damping property, strength and toughness.

【0023】次に靭性向上のためには、結晶粒径を12
0μ以下にすることが必要である。上記の(200)回
折強度比を2.5以上にする製造方法のうち圧延仕上温
度が650℃未満では、結晶粒径が120μを超えるこ
とがあるため、圧延仕上温度は650℃以上とする。但
し、Mnが0.2%未満の場合には、圧延仕上げ温度を
700℃以上にしないと結晶粒径が120μを超えるこ
とがあるため、700℃以上にしなければならない。
Next, in order to improve the toughness, the crystal grain size is set to 12
It is necessary to make it 0 μm or less. When the rolling finishing temperature is lower than 650 ° C. in the manufacturing method for setting the (200) diffraction intensity ratio to 2.5 or higher, the crystal grain size may exceed 120 μ, so the rolling finishing temperature is set to 650 ° C. or higher. However, if Mn is less than 0.2%, the grain size may exceed 120μ unless the rolling finishing temperature is 700 ° C or higher, and therefore the temperature must be 700 ° C or higher.

【0024】熱間圧延後、(200)回折強度比を高く
し、圧延によって鋼板中に導入された歪を減少するため
に、焼戻しまたは焼きなまし熱処理が必要であるが、高
温で熱処理すると(200)回折強度比が低くなるた
め、上限温度は1000℃である。但し、Mnが0.2
%以上の場合には、(200)回折強度比が低くなるこ
とがあるため、950℃を上限とするのが良い。
After hot rolling, tempering or annealing heat treatment is necessary in order to increase the (200) diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. The upper limit temperature is 1000 ° C. because the diffraction intensity ratio becomes low. However, Mn is 0.2
When it is at least%, the (200) diffraction intensity ratio may be low, so it is preferable to set 950 ° C. to the upper limit.

【0025】このように、細粒組織でも集合組織を導入
することで制振性が向上するが、さらに一層の制振性向
上の検討を行った。その結果、フェライトフォーマーで
あるCrを添加することで熱間圧延後の歪取り熱処理の
過程で若干の粗粒が達成され、制振性がさらに向上する
ことを見い出した。Crの添加で強度も上昇する。
As described above, the vibration damping property is improved by introducing the texture even in the fine grain structure, and further improvement of the vibration damping property was examined. As a result, it was found that the addition of Cr, which is a ferrite former, achieves some coarse grains in the process of strain relief heat treatment after hot rolling and further improves the vibration damping property. The addition of Cr also increases the strength.

【0026】次に、本発明の限定理由を説明する。Cは
固溶状態でも炭化物として析出しても磁壁移動の障害と
して作用して制振性を低下させるため低いほど好まし
く、上限を0.02%とする。
Next, the reasons for limitation of the present invention will be described. Since C acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or is precipitated as a carbide and reduces the vibration damping property, the lower the C is, the more preferable the upper limit is 0.02%.

【0027】Siは脱酸材として重要であるため、0.
01%以上添加する必要があるが、0.5%を超えて添
加すると固溶状態で磁壁移動の障害として作用して制振
性を低下させるため、上限を0.50%とする。
Since Si is important as a deoxidizing material,
It is necessary to add more than 01%, but if added over 0.5%, it acts as an obstacle to domain wall movement in a solid solution state to lower the vibration damping property, so the upper limit is made 0.50%.

【0028】Mnは固溶体強化元素であり、制振性及び
靭性向上に効果がなく、脱酸に必要な量以上に添加する
ことはコストアップになるだけであるため、特に380
MPa以上の高強度を必要とする場合以外は、0.2%未
満に限定するのが良い。特に380MPa 以上の高強度を
必要とする場合は、Mnは脱酸及びSを固定して粒界脆
化を抑制すると同時に、固溶体強化元素で制振性及び靭
性を劣化させることなく強度を高める元素であるため、
Mnを0.2%以上添加するのが良い。但し、2.5%
を超えて添加すると制振性の低下がおこるため、Mn添
加量の上限は2.5%とする。
Since Mn is a solid solution strengthening element, it has no effect on improving the vibration damping property and toughness, and if it is added in an amount more than necessary for deoxidation, it only increases the cost.
Except when high strength of MPa or more is required, it is preferable to limit it to less than 0.2%. In particular, when high strength of 380 MPa or more is required, Mn is an element that fixes deoxidation and S to suppress grain boundary embrittlement and at the same time enhances strength without degrading vibration damping and toughness with solid solution strengthening elements. Because
It is preferable to add 0.2% or more of Mn. However, 2.5%
If added in excess of 0.1%, the damping property will decrease, so the upper limit for the amount of Mn added is 2.5%.

【0029】P,Sは鋼中において非金属介在物を形成
し、かつ、偏析することにより磁壁の移動を妨げる害を
及ぼし制振性を低下させるので少ないほど良い。このた
め、Pは0.010%以下、Sは0.005%以下とす
る。
P and S form a non-metallic inclusion in the steel and segregate to impede the movement of the magnetic domain wall to lower the vibration damping property. Therefore, P is set to 0.010% or less and S is set to 0.005% or less.

【0030】AlはSiやMnと同様に脱酸材として重
要であるほか、制振性と強度を向上させる重要な元素で
ある。最低0.002%を確保する必要があるが、過剰
添加によりAl2 3 などの介在物のほか、Nと化合し
てAlNなどの析出物を生成し、制振性、靭性の低下を
招くため、上限を0.060%に制限する。
Al, like Si and Mn, is an important element as a deoxidizing material, and is an important element for improving vibration damping property and strength. Although it is necessary to secure at least 0.002%, excessive addition causes inclusions such as Al 2 O 3 and compounding with N to form precipitates such as AlN, resulting in deterioration of vibration damping and toughness. Therefore, the upper limit is limited to 0.060%.

【0031】Crはフェライトフォーマーであり、添加
することにより結晶粒を若干粗大化する元素であり、制
振性を向上させるため0.5%以上添加するが、同時に
靭性の低下を招き、また高価な元素であるため極力添加
量を低減することが好ましいため、上限を3.5%以下
に制限する。
Cr is a ferrite former, which is an element which causes the crystal grains to become slightly coarser when added, and is added in an amount of 0.5% or more in order to improve the vibration damping property, but at the same time, it causes a decrease in toughness. Since it is an expensive element and it is preferable to reduce the added amount as much as possible, the upper limit is limited to 3.5% or less.

【0032】Nは固溶状態でも窒化物として析出しても
磁壁移動の障害として作用して制振性を低下させるため
低いほど好ましく、上限を0.006%とする。さら
に、必要に応じて添加されるCu,Ni,Mo,Nb,
V,Ti,Bは強度上昇に有効な元素であり、その効果
が不足しない範囲として前記の量を下限とし、また制振
性及び靭性が低下しない範囲として、前記の量を上限と
した。
N, which acts as an obstacle to the movement of the domain wall even if it is in a solid solution state or precipitates as a nitride, lowers the vibration damping property, so that it is preferably as low as possible, and the upper limit is made 0.006%. Furthermore, Cu, Ni, Mo, Nb, which is added as necessary,
V, Ti, and B are elements effective in increasing strength, and the above amount was set as the lower limit as a range in which the effect is not insufficient, and the above amount was set as the upper limit as the range in which the vibration damping property and toughness were not deteriorated.

【0033】さらに、必要に応じて添加されるCa,R
EMは靭性向上に有効な元素であり、その効果が不足し
ない範囲として前記の量を下限とし、また靭性がむしろ
低下し制振性が低下しない範囲として、前記の量を上限
とした。
Further, Ca, R added as necessary
EM is an element effective for improving the toughness, and the above amount was set as the lower limit as a range in which the effect was not insufficient, and the above amount was set as the upper limit as the range in which the toughness was not lowered and the vibration damping property was not lowered.

【0034】製造条件については、加熱温度は加熱オー
ステナイト粒を微細にし、(200)回折強度比を高く
するため、1150℃以下とし、さらに、加熱時の鋼板
内温度偏差をなくすため、1000℃以上とする。
Regarding the manufacturing conditions, the heating temperature is 1150 ° C. or lower in order to make the heated austenite grains fine and the (200) diffraction intensity ratio is high, and further 1000 ° C. or higher in order to eliminate the temperature deviation in the steel sheet during heating. And

【0035】圧延条件に関しては、(200)回折強度
比を高くするため、低温圧延し、かつその時の圧下率を
30%以上とすることが必要である。その低温圧延の温
度範囲の上限は、実験結果からMnが0.2%未満の場
合は950℃であり、Mnが0.2%以上の場合にはさ
らに低温の900℃以下で行う必要がある。
Regarding the rolling conditions, in order to increase the (200) diffraction intensity ratio, it is necessary to carry out low-temperature rolling and the rolling reduction at that time to be 30% or more. From the experimental results, the upper limit of the temperature range of the low temperature rolling is 950 ° C. when Mn is less than 0.2%, and it is necessary to carry out at a lower temperature of 900 ° C. or less when Mn is 0.2% or more. .

【0036】これらの温度以下の範囲において圧下率3
0%以上の圧延が必要であるが、圧下率が70%を超え
ると、圧延機に対する負荷が大きくなり、また圧延時間
が長くなりコストアップ要因となるため、上限を70%
とする。
In the range below these temperatures, the rolling reduction is 3
Rolling of 0% or more is required, but if the reduction ratio exceeds 70%, the load on the rolling mill becomes large, and the rolling time becomes long, which causes a cost increase, so the upper limit is 70%.
And

【0037】圧延仕上温度は、上記条件の低温圧延で圧
下率30%以上の圧延を行うため、850℃(Mnが
0.2%以上の場合には800℃)以下となるが、70
0℃(Mnが0.2%以上の場合は650℃)未満では
フェライト域圧延となり、結晶粒径が120μ超となっ
て靭性が低下することがあるため、下限を700℃(M
nが0.2%以上の場合は650℃)とする。さらに、
圧延仕上温度をAr1 −20℃〜Ar1 +50℃にする
ことで(200)回折強度比がさらに向上し制振特性が
一層向上する。
The rolling finishing temperature is 850 ° C. (800 ° C. when Mn is 0.2% or more) because the rolling with a rolling reduction of 30% or more is performed in the low temperature rolling under the above conditions, but 70
If the temperature is lower than 0 ° C (650 ° C when Mn is 0.2% or more), the ferrite region is rolled, the grain size may exceed 120μ, and the toughness may decrease, so the lower limit is 700 ° C (M
If n is 0.2% or more, the temperature is 650 ° C.). further,
Improved finish rolling temperature (200) by the Ar 1 -20 ℃ ~Ar 1 + 50 ℃ diffraction intensity ratio further damping characteristics are further improved.

【0038】熱間圧延後室温まで冷却した後、(20
0)回折強度比をさらに向上させ、圧延によって鋼板中
に導入された歪を減少するために、焼戻しまたは焼きな
まし熱処理が必要であり、Mnが0.2%以上の場合に
は650℃以上、Mnが0.2%未満の場合には700
℃以上の熱処理を行うが、(200)回折強度比は高温
で熱処理すると弱くなるため、上限温度はMnが0.2
%未満の場合に(200)回折強度比を向上させるため
には1000℃(Mnが0.2%以上の場合には950
℃)とする。
After hot rolling and cooling to room temperature, (20
0) Tempering or annealing heat treatment is required to further improve the diffraction intensity ratio and reduce the strain introduced into the steel sheet by rolling. If Mn is 0.2% or more, 650 ° C. or more, Mn Is less than 0.2% 700
Although the heat treatment is performed at a temperature of ℃ or more, the (200) diffraction intensity ratio becomes weak when heat treatment is performed at a high temperature.
In order to improve the (200) diffraction intensity ratio in the case of less than 100%, 1000 ° C. (950 in the case of Mn of 0.2% or more).
° C).

【0039】熱処理の温度範囲と(200)回折強度比
の関係も合金のMn含有量に依存し、Mnが0.2%未
満の場合は700℃以上1000℃以下の温度範囲が良
く、Mnが0.2%以上の場合には、650〜950℃
の温度範囲の熱処理が良い。
The relationship between the heat treatment temperature range and the (200) diffraction intensity ratio also depends on the Mn content of the alloy. When Mn is less than 0.2%, the temperature range of 700 ° C. to 1000 ° C. is good, and Mn is In the case of 0.2% or more, 650 to 950 ° C
The heat treatment in the temperature range is preferable.

【0040】[0040]

【実施例】表1に示す成分範囲の供試合金を作製し、こ
れより元厚×40mm幅×400mm長さの板状試験片を加
工し、機械インピータンス法による制振性測定を行っ
た。表1に示す合金のうち鋼A1〜A5及びB1〜B5
は本発明の成分範囲の合金であり、鋼F1〜F8及びG
1〜G10は本発明の成分範囲外の合金である。A1〜
A5及びF1〜F8は低Mnで0.2%未満のもの、B
1〜B5及びG1〜G10は高Mnで0.2〜2.5%
のものである。これらの鋼について、表2に示す製造条
件で製造したものの各種特性を合わせて表に示す。な
お、板厚6mm以上の各鋼板は熱間圧延後室温まで冷却し
た後、熱処理した。板厚がそれ未満のものは熱間圧延
後、巻取り、その後、熱処理した。
[Examples] Matching alloys having the ranges of components shown in Table 1 were prepared, and a plate-shaped test piece having an original thickness of 40 mm and a width of 400 mm was processed, and the vibration damping property was measured by the mechanical impedance method. . Steels A1 to A5 and B1 to B5 among the alloys shown in Table 1
Is an alloy in the composition range of the present invention, and includes steels F1 to F8 and G.
1 to G10 are alloys outside the composition range of the present invention. A1
A5 and F1 to F8 are low Mn and less than 0.2%, B
1 to B5 and G1 to G10 are high Mn and 0.2 to 2.5%
belongs to. The various properties of these steels produced under the production conditions shown in Table 2 are also shown in the table. Each steel sheet having a thickness of 6 mm or more was hot-rolled, cooled to room temperature, and then heat-treated. Those having a plate thickness less than that were hot-rolled, wound, and then heat-treated.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】例1〜12は本発明例であり、例13〜3
8は比較例である。例1〜3,13〜19は板厚25m
m、例4は板厚2.3mm、例5,6は板厚50mm、例7
〜9,25〜32は板厚24mm、例10は板厚2.2m
m、例11,12は板厚32mm、例20〜24は板厚1
5mmで、例33〜38は板厚18mmである。
Examples 1 to 12 are examples of the present invention, and Examples 13 to 3 are
8 is a comparative example. Examples 1-3 and 13-19 have a plate thickness of 25 m
m, Example 4 is 2.3 mm thick, Examples 5 and 6 are 50 mm thick, Example 7
~ 9,25 ~ 32 is 24mm thick, Example 10 is 2.2m thick
m, Examples 11 and 12 have a plate thickness of 32 mm, Examples 20 to 24 have a plate thickness of 1
5 mm, Examples 33 to 38 have a plate thickness of 18 mm.

【0046】例1〜6の低Mnのものについて見ると、
例1の本発明例は(200)回折強度比が3.0以上
で、高い制振性能(η≧0.025)を有する。例2〜
6はさらに圧延仕上温度が700℃以上で、(200)
回折強度比が3.0以上で、結晶粒径が120μ以下で
あり、高い制振性能(η≧0.025)と高靭性(≧8
0J)を有する。例3,4は、強度上昇に有効な選択元
素を含有するため、さらに高強度で、例5,6は靭性上
昇に有効な選択元素を含有するため、さらに高靭性(≧
100J)である。
Looking at the low Mn materials of Examples 1 to 6,
The inventive example of Example 1 has a (200) diffraction intensity ratio of 3.0 or more and high vibration damping performance (η ≧ 0.025). Example 2
No. 6 has a rolling finish temperature of 700 ° C or higher, and (200)
The diffraction intensity ratio is 3.0 or more, the crystal grain size is 120 μ or less, and high vibration damping performance (η ≧ 0.025) and high toughness (≧ 8
0J). Since Examples 3 and 4 contain the selective element effective for increasing the strength, the strength is higher, and Examples 5 and 6 contain the selective element effective for increasing the toughness, and therefore the higher toughness (≧
100J).

【0047】次に例7〜12の高Mnのものについて見
ると、例7の本発明例は(200)回折強度比が2.5
以上で、高強度(≧380MPa)で、高い制振性能(η≧
0.020)を有する。例8〜12はさらに圧延仕上温
度が650℃以上で、(200)回折強度比が2.5以
上で、結晶粒径が120μ以下であり、高強度(≧38
0MPa)で、高い制振性能(η≧0.020)と高靭性
(≧80J)を有する。
Next, looking at the high Mn materials of Examples 7 to 12, the invention example of Example 7 has a (200) diffraction intensity ratio of 2.5.
With the above, with high strength (≧ 380 MPa), high vibration damping performance (η ≧
0.020). In Examples 8 to 12, the rolling finishing temperature was 650 ° C. or higher, the (200) diffraction intensity ratio was 2.5 or higher, the crystal grain size was 120 μ or less, and the high strength (≧ 38).
It has high vibration damping performance (η ≧ 0.020) and high toughness (≧ 80 J) at 0 MPa.

【0048】例9,10は、強度上昇に有効な選択元素
を含有するため、さらに高強度(≧410MPa)で、例1
1,12は靭性上昇に有効な選択元素を含有するため、
さらに高靭性(≧100J)である。
Since Examples 9 and 10 contain a selective element effective for increasing strength, Example 1 has higher strength (≧ 410 MPa).
Since 1 and 12 contain selective elements effective for increasing toughness,
Further, it has high toughness (≧ 100 J).

【0049】低Mnの比較例13〜24について見る
と、比較例13は(200)回折強度比が3.0以上だ
が、結晶粒径が120μ超で、Cが高く、制振性能と靭
性が低い。例14は(200)回折強度比が3.0以上
で、結晶粒径が120μ以下であるが、Siが低く、制
振性能が低い。
Looking at Comparative Examples 13 to 24 having low Mn, Comparative Example 13 has a (200) diffraction intensity ratio of 3.0 or more, but has a crystal grain size of more than 120 μm, a high C, and is excellent in vibration damping performance and toughness. Low. In Example 14, the (200) diffraction intensity ratio is 3.0 or more and the crystal grain size is 120 μ or less, but Si is low and the vibration damping performance is low.

【0050】例15,16は(200)回折強度比が
3.0以上で、結晶粒径が120μ以下であるが、例1
5はPが高く、例16はSが高く、制振性能が低い。例
17は(200)回折強度比が3.0以上で、結晶粒径
が120μ以下であるが、Crが低く、制振性能が低
い。例18は(200)回折強度比が3.0以上で、結
晶粒径が120μ以下であるが、Crが高く、靭性が低
い。
In Examples 15 and 16, the (200) diffraction intensity ratio is 3.0 or more and the crystal grain size is 120 μ or less.
5 has a high P and Example 16 has a high S, and the vibration damping performance is low. In Example 17, the (200) diffraction intensity ratio is 3.0 or more and the crystal grain size is 120 μ or less, but Cr is low and the vibration damping performance is low. In Example 18, the (200) diffraction intensity ratio is 3.0 or more and the crystal grain size is 120 μ or less, but the Cr content is high and the toughness is low.

【0051】例19は(200)回折強度比が3.0以
上で、結晶粒径が120μ以下であるが、Alが高く、
制振性、靭性が低い。例20は(200)回折強度比が
3.0以上で、結晶粒径が120μ以下であるが、Nが
高く、制振性能が低い。例21は加熱温度が高く、例2
2は950℃以下の圧下率が低く、(200)回折強度
比が低く、結晶粒径が120μ超で、制振性能と靭性が
低い。
In Example 19, the (200) diffraction intensity ratio is 3.0 or more and the crystal grain size is 120 μ or less, but Al is high,
Vibration control and toughness are low. In Example 20, the (200) diffraction intensity ratio is 3.0 or more and the crystal grain size is 120 μ or less, but N is high and the vibration damping performance is low. Example 21 has a high heating temperature, and Example 2
No. 2 has a low rolling reduction at 950 ° C. or lower, a low (200) diffraction intensity ratio, a crystal grain size of more than 120 μm, and low vibration damping performance and toughness.

【0052】例23は熱処理温度が低く、(200)回
折強度比が低く、結晶粒径は120μ以下であるが、制
振性能が低い。例24は熱処理温度が高く、結晶粒径が
120μ以下であるが、(200)回折強度比が低く、
制振性能が低い。
In Example 23, the heat treatment temperature is low, the (200) diffraction intensity ratio is low, and the crystal grain size is 120 μ or less, but the vibration damping performance is low. In Example 24, the heat treatment temperature was high and the crystal grain size was 120 μm or less, but the (200) diffraction intensity ratio was low,
Vibration control performance is low.

【0053】一方、高Mnの比較例について見ると、比
較例25は(200)回折強度比が2.5以上だが、結
晶粒径が120μ超で、Cが高く、制振性能と靭性が低
い。例26は(200)回折強度比が2.5以上で、結
晶粒径が120μ以下であるが、Siが高く、制振性能
が低い。例27は(200)回折強度比が2.5以上
で、結晶粒径が120μ以下であるが、Mnが低く、強
度が低い。
On the other hand, looking at the comparative example of high Mn, the comparative example 25 has a (200) diffraction intensity ratio of 2.5 or more, but has a crystal grain size of more than 120 μ, high C, and low vibration damping performance and toughness. . In Example 26, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 120 μ or less, but Si is high and the vibration damping performance is low. In Example 27, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 120 μ or less, but the Mn is low and the intensity is low.

【0054】例28は(200)回折強度比が2.5以
上で、結晶粒径が120μ以下であるが、Mnが高く、
制振性能が低い。例29,30は(200)回折強度比
が2.5以上で、結晶粒径が120μ以下であるが、例
29はPが高く、例30はSが高く、制振性能が低い。
例31は(200)回折強度比が2.5以上で、結晶粒
径が120μ以下であるが、Crが低く、強度、制振性
能が低い。例32は(200)回折強度比が2.5以上
で、結晶粒径が120μ以下であるが、Crが高く、靭
性が低い。
Example 28 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 120 μ or less, but has a high Mn,
Vibration control performance is low. Examples 29 and 30 have a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 120 μ or less, but Example 29 has a high P, Example 30 has a high S, and the vibration damping performance is low.
In Example 31, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 120 μ or less, but Cr is low and the strength and vibration damping performance are low. Example 32 has a (200) diffraction intensity ratio of 2.5 or more and a crystal grain size of 120 μ or less, but has high Cr and low toughness.

【0055】例33は(200)回折強度比が2.5以
上で、結晶粒径が120μ以下であるが、Alが高く、
靭性が低い。例34は(200)回折強度比が2.5以
上で、結晶粒径が120μ以下であるが、Nが高く、制
振性能が低い。例35は加熱温度が高く、例36は90
0℃以下の圧下率が低く、(200)回折強度比が低
く、結晶粒径が120μ超で、制振性能と靭性が低い。
In Example 33, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 120 μ or less, but Al is high,
Low toughness. In Example 34, the (200) diffraction intensity ratio is 2.5 or more and the crystal grain size is 120 μ or less, but N is high and the vibration damping performance is low. Example 35 has a high heating temperature, and Example 36 has 90
The rolling reduction at 0 ° C. or lower is low, the (200) diffraction intensity ratio is low, the crystal grain size is more than 120 μm, and the vibration damping performance and toughness are low.

【0056】例37は熱処理温度が低く、結晶粒径は1
20μ以下であるが、(200)回折強度比が低く、制
振性能が低い。例38は熱処理温度が高く、結晶粒径が
120μ以下であるが、(200)回折強度比が低く、
制振性能が低い。
In Example 37, the heat treatment temperature was low and the grain size was 1
Although it is 20 μ or less, the (200) diffraction intensity ratio is low and the vibration damping performance is low. In Example 38, the heat treatment temperature was high, the crystal grain size was 120 μm or less, but the (200) diffraction intensity ratio was low,
Vibration control performance is low.

【0057】次に、表3に示す本発明の成分範囲の合金
の鋼P1,P2,Q1,Q2,R1,R2について表4
に示す本発明の製造条件で製造したものの各種特性を合
わせて示す。P1,Q1,R1は0.2%未満の低Mn
鋼、P2,Q2,R2は0.2%以上2.5%以下の高
Mn鋼である。例39〜41、例45〜47は圧延仕上
温度がさらに望ましい範囲にある例である。例39〜4
1の板厚は全て25mm、例45〜47の板厚は全て20
mmである。鋼P1,Q1,R1のAr1 はそれぞれ73
0℃,755℃,725℃で、鋼P2,Q2,R2のA
1 はそれぞれ695℃,700℃,690℃である。
Next, with respect to the steels P1, P2, Q1, Q2, R1 and R2 of the alloys in the composition range of the present invention shown in Table 3, Table 4 is shown.
Various characteristics of the product manufactured under the manufacturing conditions of the present invention shown in are also shown. P1, Q1 and R1 are low Mn less than 0.2%
Steel, P2, Q2 and R2 are high Mn steels of 0.2% or more and 2.5% or less. Examples 39 to 41 and Examples 45 to 47 are examples in which the rolling finishing temperature is in a more desirable range. Examples 39-4
1 has a thickness of 25 mm, and Examples 45 to 47 have a thickness of 20.
mm. Ar 1 of steels P1, Q1 and R1 is 73 respectively.
A of steels P2, Q2 and R2 at 0 ℃, 755 ℃ and 725 ℃
r 1 is 695 ° C., 700 ° C., and 690 ° C., respectively.

【0058】[0058]

【表5】 [Table 5]

【0059】[0059]

【表6】 [Table 6]

【0060】[0060]

【表7】 [Table 7]

【0061】例39〜41及び例45〜47は圧延仕上
温度がAr1 +50℃〜Ar1 −20℃の範囲内にあ
り、(200)回折強度比が4.0以上で、さらに良好
な制振性能(η≧0.03)を有し、圧延仕上温度がA
1 +50℃〜Ar1 −20℃の範囲にない例42〜4
4及び例48〜51に比べより良好な制振性能を有して
いる。
In Examples 39 to 41 and Examples 45 to 47, the rolling finishing temperature was in the range of Ar 1 + 50 ° C. to Ar 1 -20 ° C., and the (200) diffraction intensity ratio was 4.0 or more, and further excellent control was obtained. Vibration performance (η ≧ 0.03) and rolling finish temperature is A
Examples 42 to 4 not in the range of r 1 + 50 ° C. to Ar 1 −20 ° C.
4 and Examples 48 to 51 have better vibration damping performance.

【0062】[0062]

【発明の効果】本発明により、(200)回折強度比が
2.5以上(損失係数0.02以上)の制振性能の優れ
た鋼を提供することが可能となり、さらにこの制振性能
を有する鋼であって、この制振性能に加えてVノッチシ
ャルピー衝撃試験の0℃の吸収エネルギー≧80Jの高
靭性、あるいは引張強度≧380MPa 以上の高強度のい
ずれか1つまたは2つを同時に兼ね備えた船舶、橋梁、
産業機械、建設用構造材料の供給が可能となり、工業界
に与える効果は極めて大きい。
According to the present invention, it is possible to provide a steel having a (200) diffraction intensity ratio of 2.5 or more (loss coefficient of 0.02 or more) and excellent vibration damping performance. In addition to the vibration control performance, the steel has at least one of high toughness of absorbed energy at 0 ° C of ≧ 80 J in V notch Charpy impact test or high strength of tensile strength ≧ 380 MPa or more at the same time. Ships, bridges,
It becomes possible to supply industrial machinery and structural materials for construction, and the effect on the industry is extremely large.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.02%以下、 Si:0.01%以上、0.5%以下、 Mn:0.2%未満、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%以上、3.5%以下、 Al:0.002%以上、0.060%以下、 N :0.006%以下を含有し、残部Fe及び不可避
的不純物からなり、(200)回折強度比が3.0以上
であることを特徴とする制振合金。
1. By weight%, C: 0.02% or less, Si: 0.01% or more, 0.5% or less, Mn: less than 0.2%, P: 0.010% or less, S: 0 0.005% or less, Cr: 0.5% or more, 3.5% or less, Al: 0.002% or more, 0.060% or less, N: 0.006% or less, balance Fe and unavoidable impurities And a (200) diffraction intensity ratio of 3.0 or more.
【請求項2】 重量%で、 C :0.02%以下、 Si:0.01%以上、0.5%以下、 Mn:0.2%以上、2.5%以下、 P :0.010%以下、 S :0.005%以下、 Cr:0.5%以上、3.5%以下、 Al:0.002%以上、0.060%以下、 N :0.006%以下を含有し、残部Fe及び不可避
的不純物からなり、(200)回折強度比が2.5以上
であることを特徴とする制振合金。
2. By weight%, C: 0.02% or less, Si: 0.01% or more, 0.5% or less, Mn: 0.2% or more, 2.5% or less, P: 0.010. % Or less, S: 0.005% or less, Cr: 0.5% or more, 3.5% or less, Al: 0.002% or more, 0.060% or less, N: 0.006% or less, A vibration-damping alloy comprising the balance Fe and unavoidable impurities and having a (200) diffraction intensity ratio of 2.5 or more.
【請求項3】 重量%で、 Cu:0.05〜2.5%、 Ni:0.05〜2.5%、 Mo:0.05〜4.5%、 Nb:0.005〜0.2%、 V :0.005〜0.2%、 Ti:0.005〜0.1%、 B :0.0003〜0.005%を1種または2種以
上含有することを特徴とする請求項1または2のいずれ
かに記載の制振合金。
3. By weight%, Cu: 0.05 to 2.5%, Ni: 0.05 to 2.5%, Mo: 0.05 to 4.5%, Nb: 0.005 to 0. 2%, V: 0.005-0.2%, Ti: 0.005-0.1%, B: 0.0003-0.005%, 1 type (s) or 2 or more types are contained, It is characterized by the above-mentioned. The vibration damping alloy according to item 1 or 2.
【請求項4】 重量%で、 Ca :0.001〜0.05%、 REM:0.001〜0.1%を1種または2種含有す
ることを特徴とする請求項1〜3のいずれかに記載の制
振合金。
4. The composition according to any one of claims 1 to 3, wherein the content of Ca is 0.001 to 0.05%, and REM is 0.001 to 0.1% by weight. Damping alloy described in Crab.
【請求項5】 結晶粒径を120μ以下とすることによ
り高い靭性を確保したことを特徴とする請求項1〜4の
いずれかに記載の制振合金。
5. The vibration damping alloy according to claim 1, wherein a high toughness is ensured by controlling the crystal grain size to 120 μm or less.
【請求項6】 加熱温度が1000〜1150℃、95
0℃以下の圧下率が30〜70%、圧延仕上温度が85
0℃以下で熱間圧延後、室温まで冷却し、650〜10
00℃で焼戻しまたは焼きなまし熱処理することを特徴
とする請求項1〜5のいずれかに記載の制振合金の製造
方法。
6. A heating temperature of 1000 to 1150 ° C., 95
The rolling reduction at 0 ° C or lower is 30 to 70%, and the rolling finishing temperature is 85.
After hot rolling at 0 ° C or lower, cooling to room temperature, 650 to 10
The method for producing a vibration damping alloy according to any one of claims 1 to 5, characterized by performing tempering or annealing heat treatment at 00 ° C.
【請求項7】 圧延仕上温度の範囲を650〜850℃
とする熱間圧延を行うことを特徴とする請求項6記載の
制振合金の製造方法。
7. A rolling finishing temperature range of 650 to 850 ° C.
The method for producing a vibration-damping alloy according to claim 6, wherein hot rolling is performed.
【請求項8】 圧延仕上温度の範囲をAr1 −20℃〜
Ar1 +50℃とする熱間圧延を行うことを特徴とする
請求項6または7のいずれかに記載の制振合金の製造方
法。
8. A rolling finishing temperature in a range of Ar 1 -20 ° C.
The method for producing a vibration damping alloy according to claim 6 or 7, wherein hot rolling is performed at Ar 1 + 50 ° C.
JP32762595A 1995-12-15 1995-12-15 Damping alloy and its production Withdrawn JPH09170049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32762595A JPH09170049A (en) 1995-12-15 1995-12-15 Damping alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32762595A JPH09170049A (en) 1995-12-15 1995-12-15 Damping alloy and its production

Publications (1)

Publication Number Publication Date
JPH09170049A true JPH09170049A (en) 1997-06-30

Family

ID=18201147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32762595A Withdrawn JPH09170049A (en) 1995-12-15 1995-12-15 Damping alloy and its production

Country Status (1)

Country Link
JP (1) JPH09170049A (en)

Similar Documents

Publication Publication Date Title
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP5186753B2 (en) Damping alloy sheet and manufacturing method thereof
JP2002294408A (en) Iron-based vibration damping alloy and manufacturing method therefor
JP4998672B2 (en) Manufacturing method of damping alloy sheet
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JP3492026B2 (en) High-strength high-toughness damping alloy and method for producing the same
JPH09157794A (en) High damping alloy and its production
JPH09170049A (en) Damping alloy and its production
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
JPH09227997A (en) High damping alloy and its production
JPS63166931A (en) Manufacture of high tension hot rolled steel sheet having high magnetic flux density
JPH08260106A (en) Chromium steel sheet excellent in formability
JPH09143624A (en) Damping alloy and its production
JPH09157793A (en) High damping alloy and its production
JPH10140236A (en) Production of high damping alloy
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
JP2718550B2 (en) Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties
JPH09143623A (en) Damping alloy and its production
JPH09104950A (en) High damping alloy and its production
JPH09157792A (en) High damping alloy and its production
KR102087182B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH09143622A (en) Damping alloy and its production
JPH08319539A (en) High damping alloy with high strength and high toughness and its production
JPH09176780A (en) High strength steel excellent in damping characteristic and its production
JP2000096140A (en) Production of high toughness high damping alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304