JPH03183741A - Steel having excellent vibration damping properties and its manufacture - Google Patents
Steel having excellent vibration damping properties and its manufactureInfo
- Publication number
- JPH03183741A JPH03183741A JP32062189A JP32062189A JPH03183741A JP H03183741 A JPH03183741 A JP H03183741A JP 32062189 A JP32062189 A JP 32062189A JP 32062189 A JP32062189 A JP 32062189A JP H03183741 A JPH03183741 A JP H03183741A
- Authority
- JP
- Japan
- Prior art keywords
- vibration damping
- steel
- heat treatment
- temperature
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013016 damping Methods 0.000 title claims abstract description 79
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 65
- 239000010959 steel Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 38
- 230000009466 transformation Effects 0.000 claims abstract description 36
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims description 65
- 230000002829 reductive effect Effects 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 27
- 238000012360 testing method Methods 0.000 description 25
- 229910052742 iron Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000003754 machining Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000009527 percussion Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、構造物の要素部品、機械部品、容器、什器
等に適用された場合に防振・防音に役立つ振動減衰特性
に優れた鋼材及びその製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a steel material with excellent vibration damping properties useful for vibration and soundproofing when applied to structural component parts, machine parts, containers, fixtures, etc. and its manufacturing method.
[従来の技術及び発明が解決しようとする課題]近年、
各種振動や騒音を少しでも軽減しようとする努力が随所
でなされている。防振・防音を目的として構造上の工夫
がなされており、ある程度の効果を得ている。また、振
動減衰特性に優れた素材(以下、制振材と略す)を用い
ることも防振・防音には極めて有効な手段である。[Problems to be solved by conventional techniques and inventions] In recent years,
Efforts are being made everywhere to reduce various vibrations and noises. Structural improvements have been made for the purpose of vibration and soundproofing, and the effects have been achieved to some extent. Furthermore, using a material with excellent vibration damping properties (hereinafter abbreviated as vibration damping material) is also an extremely effective means for vibration and sound insulation.
このことを踏まえて、プラスチック、ゴム等の樹脂系材
料、鋼板と樹脂との複合材、M n −Cu合金、片状
黒鉛鋳鉄、介在物や微細な割れ等の内部欠陥を含む鋼材
、高Crフェライトステンレス、軟鉄等の各種制振材の
検討が数多くなされている。Based on this, we have developed a wide range of products including resin-based materials such as plastics and rubber, composite materials of steel plates and resins, Mn-Cu alloys, flaky graphite cast iron, steel materials with internal defects such as inclusions and minute cracks, and high Cr. Many studies have been conducted on various damping materials such as ferrite stainless steel and soft iron.
これら制振材のうち、鉄系制振材(以下、制振鋼材と記
す)は高強度、高ヤング率、100℃以上の温度でも良
好な振動減衰特性を示すこと、安価であること等の利点
があり、需要が多い。Among these damping materials, iron-based damping materials (hereinafter referred to as damping steel materials) have high strength, high Young's modulus, good vibration damping characteristics even at temperatures of 100°C or higher, and are inexpensive. It has advantages and is in high demand.
これら制振鋼材のうち、高Crフェライトステンレス、
軟鉄等は強磁性を利用した制振材であるが、これらは構
造物や機械部品等へ適用する上で、内部欠陥を含む鋼材
よりもはるかに信頼性が高い。Among these damping steel materials, high Cr ferrite stainless steel,
Soft iron is a damping material that utilizes ferromagnetism, and when applied to structures and mechanical parts, it is much more reliable than steel materials that contain internal defects.
ところで、強磁性型の制振鋼材の振動減衰機構に関して
は、例えば、天野らによる「強磁性型防振合金」材料科
学No、5・6、Vol、115(1978)、第25
ONl:!a載サすテイル。ここには、振動エネルギは
磁歪を介して90°磁壁の移動をもたらし、その結果、
磁気−機械的ヒステリシスを生じ、振動エネルギを熱エ
ネルギに変換して吸収すると示されている。また、この
機能を向上させる手段こして、不純物元素の低減や熱処
理等による内部歪の除去、結晶粒の粗大化、及びこれら
に伴う素材の保磁力の低減や化学組成の調製による磁歪
の増加等により磁壁移動の容易化を図ることが有効であ
ることが示されている。By the way, regarding the vibration damping mechanism of ferromagnetic vibration damping steel materials, for example, Amano et al., "Ferromagnetic vibration damping alloy" Material Science No. 5/6, Vol. 115 (1978), No. 25
ONl:! A-listed tale. Here, the vibration energy causes a 90° domain wall movement through magnetostriction, resulting in
It has been shown to produce magneto-mechanical hysteresis and absorb vibrational energy by converting it into thermal energy. In addition, there are ways to improve this function, such as reducing impurity elements, removing internal strain by heat treatment, coarsening crystal grains, and reducing the coercive force of the material associated with these, and increasing magnetostriction by adjusting the chemical composition. It has been shown that it is effective to facilitate domain wall movement.
強磁性型の制振鋼材の特許も数多く出願されている。特
公昭56−28982、特公昭57−43681、特公
昭59−5653は、軟鋼又は純鉄を基本に振動減衰特
性の向上を図ったものである。この中で、特公昭56−
28982には、侵入型不純物元素の低減と、Si、M
n、AI。Many patents have also been filed for ferromagnetic damping steel materials. Japanese Patent Publication No. 56-28982, Japanese Patent Publication No. 57-43681, and Japanese Patent Publication No. 59-5653 are based on mild steel or pure iron and are designed to improve vibration damping characteristics. Among these, the special public official
28982 includes reduction of interstitial impurity elements, Si, M
n, A.I.
Crの添加とにより磁気−機械的ヒステリシスにより振
動減衰特性を向上させること、及びこれに加えて冷間加
工後の転位の運動により振動減衰特性を向上させるここ
が開示されている。特公昭57−43681、特公昭5
9〜5653はいずれも、脱炭焼鈍を前提に侵入型元素
の低減を図ったものである。It is disclosed that the vibration damping properties are improved by magneto-mechanical hysteresis by addition of Cr, and in addition to this, the vibration damping properties are improved by the movement of dislocations after cold working. Tokuko Sho 57-43681, Tokuko Sho 5
Nos. 9 to 5653 all aimed to reduce interstitial elements on the premise of decarburization annealing.
特公昭57−181360.特公昭582262は、A
1を1,5乃至9.0%含む制振鋼材が開示されている
。ここには、熱処理に関する規定、結晶粗大化について
は示されておらず、不純物を低減すること、及びAl、
Mnの添加により振動減衰特性を損なうことなく引張り
強さの上昇を図ることを発明の主たる目的としている。Special Publication Showa 57-181360. Special Publick Showa 582262 is A
A damping steel material containing 1.5 to 9.0% of 1 is disclosed. There are no regulations regarding heat treatment or coarsening of crystals, and there is no provision for reducing impurities and Al,
The main purpose of the invention is to increase tensile strength without impairing vibration damping properties by adding Mn.
一方、特公昭56−46529には、3%以下のSiと
】%以下のAIとを複合添加し、かつ、冷間加工後に6
50℃以上の温度で歪焼鈍を行うことで結晶粒の粗大化
を図り、もって振動減衰特性を向上させた制振鋼材が開
示されている。この鋼材は、Cff1の上限が0.1%
と高く、そのためA、変態点を十分高温化することが難
しい。従って、その実施例では焼鈍温度の上限が950
℃程度であり、粗大化した結晶粒も高々結晶粒度番号−
2番(J IS GO552)であって、振動減衰特
性が十分とはいえないことがうかがえる。On the other hand, in Japanese Patent Publication No. 56-46529, Si of 3% or less and AI of % or less were added in combination, and 6% was added after cold working.
A vibration-damping steel material is disclosed in which the crystal grains are coarsened by performing strain annealing at a temperature of 50° C. or higher, thereby improving vibration damping characteristics. This steel material has an upper limit of Cff1 of 0.1%.
Therefore, it is difficult to raise the transformation point to a sufficiently high temperature. Therefore, in that example, the upper limit of the annealing temperature is 950.
℃, and the coarse grains also have a grain size number of -
No. 2 (JIS GO552), which indicates that the vibration damping characteristics are not sufficient.
特公昭52−115720、特公昭57−44740等
には、高Cr系制振鋼材が開示されている。特公昭57
−44740中には、高Cr系制振鋼材で良好な振動減
衰特性を得るためには、焼入れ・焼戻し処理に相当する
2段階熱処理を必要とする旨記載されている。Japanese Patent Publication No. 52-115720, Japanese Patent Publication No. 57-44740, etc. disclose high Cr vibration damping steel materials. Special Public Service 1987
-44740 states that in order to obtain good vibration damping characteristics with high Cr vibration damping steel materials, two-stage heat treatment corresponding to quenching and tempering treatments is required.
更に、特公昭52−803、特公昭58−27325等
には、高Al系制振鋼材が開示されている。Furthermore, high Al type vibration damping steel materials are disclosed in Japanese Patent Publication No. 52-803, Japanese Patent Publication No. 58-27325, etc.
しかしながら、上記公報等に開示された割振鋼材の内、
満足な振動減衰特性を示すものは、脱炭処理や2段階熱
処理等の特殊な熱処理を必要とするか、又は合金元素が
多くなければならず、製造コストが高くなってしまう。However, among the distributed steel materials disclosed in the above publications, etc.,
Those that exhibit satisfactory vibration damping properties require special heat treatments such as decarburization or two-step heat treatment, or require a large number of alloying elements, resulting in high manufacturing costs.
この発明は、かかる事情に鑑みてなされたものであって
、低コストな振動減衰特性に優れた鋼材及びその製造方
法を提供するここを目的とする。The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a low-cost steel material with excellent vibration damping properties and a method for manufacturing the same.
[課題を解決するための手段及び作用]この発明に係る
振動減衰特性に優れた鋼材は、重量%で、0.0005
乃至0.01%のC10,0005乃至0.01%のN
、0.001乃至0.25%のSi、0.005乃至0
.20%のMn、0.3乃至1.5%の酸可溶At、残
部Fe及び不可避不純物からなり、フェライト結晶の平
均粒径が0.1■以上であり、歪みのない状態における
保磁力が0.7Oe以下であることを特徴とする特
また、この発明に係る振動減衰特性に優れた鋼材の製造
方法は、重量%で、0.0005乃至0.01%のC,
0,0005乃至0.01%のN、0.001乃至0.
25%のSi。[Means and effects for solving the problem] The steel material having excellent vibration damping characteristics according to the present invention has a weight percentage of 0.0005
0.01% C10,0005 0.01% N
, 0.001-0.25% Si, 0.005-0
.. It consists of 20% Mn, 0.3 to 1.5% acid-soluble At, the balance Fe and unavoidable impurities, the average grain size of the ferrite crystal is 0.1 square or more, and the coercive force in the unstrained state is In particular, the method for producing a steel material having excellent vibration damping properties according to the present invention is characterized in that the carbon content is 0.7 Oe or less.
0,0005-0.01% N, 0.001-0.
25% Si.
0.005乃至0.20%のMn、0.3乃至1.5%
の酸可溶Al、残部Fe及び不可避不純物からなる素材
を、A、変態点が存在しない場合には900℃以上13
00℃以下の温度で、A3変態点が存在する場合には9
00℃以上A3変態点以下の温度で熱処理することを特
徴とする。0.005-0.20% Mn, 0.3-1.5%
A material consisting of acid-soluble Al, the balance Fe and unavoidable impurities is A, and if there is no transformation point, the temperature is 900°C or higher13
9 if the A3 transformation point exists at a temperature below 00°C.
It is characterized in that the heat treatment is carried out at a temperature of 00°C or higher and lower than the A3 transformation point.
振動減衰特性が優れた鋼材を得るためには、純鉄系制振
鋼材に代表されるようにフェライト単相であり、しかも
結晶粒が大きいことが望ましい。In order to obtain a steel material with excellent vibration damping characteristics, it is desirable that the material be a single ferrite phase and have large crystal grains, as typified by pure iron vibration damping steel materials.
このことを前提に、本願発明者らが低コストでかつ優れ
た振動減衰特性を有する鋼材について種々検討を重ねた
結果、以下のような知見を得た。Based on this premise, the inventors of the present application conducted various studies on steel materials that are low in cost and have excellent vibration damping characteristics, and as a result, the following findings were obtained.
■現状の製鉄技術をもって極端なコスト高をもたらさな
い範囲でC,Nの侵入型不純物元素を低減し、かつ、A
Iを含有させた鋼材は、純鉄よりもA、変態点が高くな
る傾向にあり、AI含有量がある量を超えるとA、変態
点が存在しなくなる。■Reducing interstitial impurity elements such as C and N to the extent that does not result in extremely high costs using current steelmaking technology, and
Steel materials containing I tend to have a higher A transformation point than pure iron, and when the AI content exceeds a certain amount, the A transformation point no longer exists.
このことを第1図を参照して説明する。第1図は、横軸
に酸可溶AIの含有量をとり、縦軸に温度をとって、極
低CSN鋼の変態温度に及ぼすAliの影響を示すグラ
フであり、本願発明者らの実験結果を示すものである。This will be explained with reference to FIG. FIG. 1 is a graph showing the influence of Ali on the transformation temperature of ultra-low CSN steel, with the content of acid-soluble AI on the horizontal axis and the temperature on the vertical axis. This shows the results.
なお、ここではCが0.001乃至0.002重量%、
Nが0.0006乃至0.0020重量%の鋼材を用い
た。このグラフから確認されるように、AIを含まない
状態では変態温度が約900”Cであるが、Aljlが
増加するに従って変態温度が上昇する傾向を示し、Al
が0.3%では変態温度が950℃となる。従って、A
Iを0.3%以上にすると、950℃以上という高い温
度で熱処理してもフェライト単相を維持することが可能
となる。また、このグラフからAIを0.9%以上含有
する場合には変態温度が存在せず、全温度領域でフェラ
イト単相となることも確認できる。In addition, here, C is 0.001 to 0.002% by weight,
A steel material containing 0.0006 to 0.0020% by weight of N was used. As confirmed from this graph, the transformation temperature is approximately 900"C in the absence of AI, but as Aljl increases, the transformation temperature tends to increase.
is 0.3%, the transformation temperature is 950°C. Therefore, A
When I is set to 0.3% or more, it becomes possible to maintain the ferrite single phase even if heat treatment is performed at a high temperature of 950° C. or higher. Furthermore, from this graph, it can be confirmed that when 0.9% or more of AI is contained, there is no transformation temperature and a single phase of ferrite occurs in the entire temperature range.
■フェライト結晶粒の粗大化を積極的に図るための熱処
理では、処理温度の上限は通常A、変態点となる。AI
添加量が0.9%未満ではA、変態点が存在するので、
このような熱処理を900℃以上の高い温度で行うため
には、A3変態点を少なくとも900℃以上に保つ必要
がある。そのため、A、変態点を著しく低下させるC、
Nの含有量ぼ特に低減させておくことが必要である。ま
た、AI含有量が0.9%以上であっても、C,Hの含
有量が多い場合には、A3変態点が現出する場合があり
得るので、この意味からもC,N含有量を十分に低減し
ておくことが望ましい。もっとも、C,N含有量が十分
に低減されていて、かつAIを0.9%以上含む場合に
は、前述したように、全温度範囲に亘ってフェライト単
相であるから、冶金学的理由による熱処理温度の上限は
存在しない。(2) In heat treatment to actively coarsen ferrite crystal grains, the upper limit of the treatment temperature is usually A, the transformation point. AI
If the amount added is less than 0.9%, A, a transformation point exists, so
In order to perform such heat treatment at a high temperature of 900°C or higher, it is necessary to maintain the A3 transformation point at least at 900°C or higher. Therefore, A, C significantly lowers the transformation point,
It is necessary to particularly reduce the N content. Furthermore, even if the AI content is 0.9% or more, if the C and H contents are large, the A3 transformation point may appear. It is desirable to sufficiently reduce the However, if the C and N contents are sufficiently reduced and AI is contained at 0.9% or more, the metallurgical reason is that the ferrite is a single phase over the entire temperature range, as described above. There is no upper limit for the heat treatment temperature.
■上述したような、極低C,N及び含AI鋼材は、高温
での熱処理が可能であるため、いかなる加工履歴を経た
場合でも、900℃以上という高い温度で熱処理して結
晶粒を著しく粗大化させることができる。また、このよ
うな熱処理により、同時に振動減衰特性の向上に結び付
く保磁力の低減をも達成することができる。すなわち、
保磁力は組成の他に粒径にも依存するため、極低C,N
及び含AI組成を維持したまま、このように結晶粒を粗
大化することにより保磁力の低下をもたらすことができ
、もって振動減衰特性を良好にすることができる。■As mentioned above, ultra-low C, N and AI-containing steel materials can be heat treated at high temperatures, so no matter what processing history they undergo, heat treatment at temperatures as high as 900°C or higher will significantly coarsen the grains. can be made into In addition, such heat treatment can also reduce coercive force, which leads to improvement in vibration damping characteristics. That is,
Coercive force depends not only on the composition but also on the particle size, so extremely low C, N
By coarsening the crystal grains in this manner while maintaining the Al-containing composition, the coercive force can be lowered, thereby improving vibration damping characteristics.
上記構成を有する本願発明は、本願発明者のこのような
知見に基づいてなされたものである。The present invention having the above configuration has been made based on such knowledge of the present inventor.
以下、本発明について詳細に説明する。The present invention will be explained in detail below.
本発明に係る鋼材は、上述したように、重量%で、0.
0005乃至0.01%のC10,0005乃至0.0
1%のNSO,001乃至0.25%のSi、0.00
5乃至0.20%のMn、0.3乃至1.5%の酸可溶
Al、残部Fe及び不可避不純物で構成されている。As mentioned above, the steel material according to the present invention has a weight percentage of 0.
0005-0.01% C10,0005-0.0
1% NSO, 001-0.25% Si, 0.00
It is composed of 5 to 0.20% Mn, 0.3 to 1.5% acid-soluble Al, and the balance Fe and inevitable impurities.
以下、組成限定理由について説明する。The reasons for limiting the composition will be explained below.
C,Nは、いずれも不純物元素として鉄の結晶格子中へ
侵入して磁気−機械的ヒステリシスに基づく振動減衰特
性を著しく損なう上、A1添加により上昇させるべき変
態温度を著しく低下させてしまう。従って、これらは可
能な限り低減することが望ましい。しかし、現状の製鉄
技術レベルでは、これらを極端に低減することは困難性
を伴うとともに、コスト高をもたらす。このような観点
から、C,Nをいずれも0.0005乃至0.01%の
範囲内に規定する。なお、AI添加量が1%未満の場合
には、変態温度を極力低下させないようにするという観
点から、C及びNの含有量を0.005%以下にするこ
とが好ましい。Both C and N invade the crystal lattice of iron as impurity elements, significantly impairing the vibration damping characteristics based on magneto-mechanical hysteresis, and also significantly lowering the transformation temperature that should be raised by adding A1. Therefore, it is desirable to reduce these as much as possible. However, with the current level of steel manufacturing technology, it is difficult to reduce these to an extreme degree, and it also results in high costs. From this point of view, both C and N are defined within the range of 0.0005 to 0.01%. In addition, when the amount of AI added is less than 1%, the content of C and N is preferably 0.005% or less from the viewpoint of preventing the transformation temperature from decreasing as much as possible.
SiはAIと同様に、フェライト相を安定化し、変態温
度を上昇させる効果を有しているが、その効果はAIよ
りも小さく、この発明ではこの効果をAIで担うので、
積極的なSt添加は不要であり、単にコスト高をもたら
すだけである。一方、St含有量を極端に低減させるこ
ともまたコスト高をもたらすことになる。従って、これ
らを考慮して、Siを0.001乃至0.25%の範囲
内に規定する。Like AI, Si has the effect of stabilizing the ferrite phase and increasing the transformation temperature, but this effect is smaller than that of AI, and in this invention, this effect is carried out by AI.
Aggressive addition of St is unnecessary and simply results in higher costs. On the other hand, extremely reducing the St content also results in higher costs. Therefore, taking these into consideration, Si is defined within the range of 0.001 to 0.25%.
Mnは置換型の不純物元素であり、振動減衰特性及びこ
れと強い相関を持つ保磁力に対する悪影響は少ない。ま
た、熱間加工が施される場合、不可避的に不純物として
混入するSによる割れ発生等の加工劣化を防止する観点
からある程度のMnは必要である。一方、積極的なMn
の添加は材料の機械的強度を上昇させるものの、多すぎ
ると変態温度の低下をまねく虞がある。また、Mn含有
量を極端に低下させることはコストの上昇をもたらす。Mn is a substitutional impurity element, and has little adverse effect on vibration damping characteristics and coercive force, which has a strong correlation therewith. Further, when hot working is performed, a certain amount of Mn is necessary from the viewpoint of preventing processing deterioration such as cracking due to S inevitably mixed in as an impurity. On the other hand, aggressive Mn
Although the addition of Cr increases the mechanical strength of the material, too much Cr may lower the transformation temperature. Furthermore, extremely lowering the Mn content results in an increase in cost.
このような観点からMnを0.005乃至0.20%の
範囲内に既定した。From this point of view, Mn was set within the range of 0.005 to 0.20%.
AIは、主に変態温度を上昇させるために添加される元
素であり、前述したように、0.3%以上添加すること
で変態温度を著しく上昇させることができ、0.9%以
上添加することにより実質的に変態点を消失させること
も可能となる。変態温度が上昇あるいは消失した結果、
高温熱処理や熱間加工時における加熱温度の高温化によ
り結晶粒の粗大化及びこれに伴う保磁力の低下を有効に
図ることができる。一方、1.5%を超えて含有させた
場合には、原料費の増加や耐火物の消耗等の製鋼上のコ
ストの上昇をまねく。従って、AIは、酸可溶AIとし
て0.3乃至1.5%の範囲内に規定する。AI is an element mainly added to increase the transformation temperature, and as mentioned above, adding 0.3% or more can significantly increase the transformation temperature, and adding 0.9% or more This also makes it possible to substantially eliminate the transformation point. As a result of the transformation temperature increasing or disappearing,
By increasing the heating temperature during high-temperature heat treatment or hot working, coarsening of crystal grains and a corresponding decrease in coercive force can be effectively prevented. On the other hand, if the content exceeds 1.5%, steel manufacturing costs such as increased raw material costs and consumption of refractories will increase. Therefore, AI is defined as acid-soluble AI within the range of 0.3 to 1.5%.
この発明では、このような組成限定の他に、フェライト
結晶粒径及び保磁力をも規定している。In addition to such compositional limitations, the present invention also defines the ferrite crystal grain size and coercive force.
前述したように、振動減衰特性を良好なものεするため
には、フェライト結晶粒径を大きく、また保磁力を小さ
くすればよい。従来の純鉄系の制振鋼では、平均結晶粒
径が0.1■、歪みのない状態での保磁力が0.7Oe
程度であるから、フェライトの平均結晶粒径を0.1.
m11以上、歪みのない状態での保磁力を0.7Oe以
下とすることにより、従来の純鉄系制振鋼材よりも良好
な振動減衰特性を得ることができる。なお、−層良好な
振動減衰特性を得るためには、フェライトの平均結晶粒
径を0.2■以上及び保磁力を0.50e以下にするこ
とが好ましい。なお、従来から加工歪みが残存している
状態では振動減衰特性が低下することが知られているの
で、鋼材に加工歪みが残存していないことが好ましい。As mentioned above, in order to obtain good vibration damping characteristics ε, it is sufficient to increase the ferrite crystal grain size and decrease the coercive force. Conventional pure iron vibration damping steel has an average grain size of 0.1■ and a coercive force of 0.7Oe in an unstrained state.
Therefore, the average crystal grain size of ferrite is set to 0.1.
By setting the coercive force at m11 or more and 0.7 Oe or less in a state without distortion, it is possible to obtain better vibration damping characteristics than conventional pure iron vibration damping steel materials. In order to obtain good vibration damping characteristics, it is preferable that the average crystal grain size of the ferrite is 0.2 square or more and the coercive force is 0.50e or less. In addition, since it has been known that vibration damping characteristics deteriorate in a state where machining strain remains, it is preferable that no machining strain remains in the steel material.
しかし、本発明に係る鋼材では、たとえ加工歪みが残存
していても従来の純鉄系制振鋼材と同程度又はそれ以上
の振動減衰特性を得ることができる。However, with the steel material according to the present invention, even if processing strain remains, it is possible to obtain vibration damping characteristics comparable to or higher than that of conventional pure iron vibration damping steel materials.
上述した組成範囲内の鋼材では、従来の純鉄系制振鋼材
よりも熱処理温度を高くするこεができるので、熱処理
や熱間加工を調節することによりフェライト結晶粒を大
きくすることができ、平均粒径0.1mm以上を達成す
ることができる。また、これに伴って、加工歪みのない
状態での保磁力を0.7Oe以下にすることができる。With steel materials within the above composition range, it is possible to increase the heat treatment temperature higher than that of conventional pure iron vibration damping steel materials, so it is possible to increase the size of ferrite grains by adjusting heat treatment and hot working. An average particle size of 0.1 mm or more can be achieved. Further, in conjunction with this, the coercive force in a state without processing distortion can be reduced to 0.7 Oe or less.
以上のような本発明に係る制振鋼材の具体的な製造方法
について説明する。A specific method for manufacturing the damping steel material according to the present invention as described above will be explained.
本発明では、上述の組成範囲内の素材に熱処理を施して
結晶粒の粗大化を図り、もって振動減衰特性を向上させ
る。従って、素材の成形方法は特に限定されるものでは
なく、熱間加工、温間加工、冷間加工のいずれをも適用
することができる。このことは、本発明が対象εする鋼
材が熱間加工鋼材、温間加工鋼材、冷間加工鋼材のいず
れをも含み、また、鋼材の種類として厚板、薄板、条鋼
(型鋼等)、鍛造鋼等を含むことを意味する。In the present invention, a material within the above-mentioned composition range is heat-treated to coarsen the crystal grains, thereby improving vibration damping characteristics. Therefore, the method of forming the material is not particularly limited, and any of hot working, warm working, and cold working can be applied. This means that the steel materials targeted by the present invention include hot-worked steel materials, warm-worked steel materials, and cold-worked steel materials, and the types of steel materials include thick plates, thin plates, long steel (shaped steel, etc.), and forged steel. This means that it includes steel, etc.
熱処理は、フェライト結晶粒を十分粗大化するためにで
きるだけ高温で実施することが好ましい。The heat treatment is preferably carried out at as high a temperature as possible in order to sufficiently coarsen the ferrite crystal grains.
具体的には、A、変態点が存在する場合(すなわちAI
含有量が0.9%より小さい場合)には、900℃以上
、A、変態点以下の温度で実施され、A、変態点が存在
しない場合(すなわちAI含有量が0.9%以上の場合
)には、900℃以上、1300℃以下で実施されるこ
とが好ましい。Specifically, if A, a transformation point exists (i.e., AI
When the AI content is less than 0.9%), it is carried out at a temperature of 900 °C or higher, A, at a temperature below the transformation point, and A, when the transformation point does not exist (i.e., when the AI content is 0.9% or more) ) is preferably carried out at a temperature of 900°C or higher and 1300°C or lower.
A、変態点が存在する場合には、それを超えるとフェラ
イト単相を維持することができなくなり、また、900
℃以下では十分に結晶を粗大化できないと共にAI添加
による変態温度上昇効果を有効に利用できなくなる。A
、変態点が存在しない場合には、冶金学的な熱処理温度
の上限は存在しないが、1300℃を超える高温での熱
処理は非現実的であり、またコスト高になるので、上限
を1300℃に規定する。また、熱処理保持温度は、対
象とする鋼材の熱容量により変化するので特定すること
は困難であるが、一般的に30分間以上保持することが
好ましい。なお、900℃以上で熱間加工し、その後急
冷することなく (好ましくは徐冷により)鋼材を製造
する場合には、結果的に加工中に結晶粒粗大化のための
熱処理が終了したことになる。この場合には、その後に
別設の熱処理を施さなくても良好な振動減衰特性を得る
ことができる。A. If there is a transformation point, beyond which it will be impossible to maintain the ferrite single phase;
If the temperature is below .degree. C., the crystals cannot be sufficiently coarsened, and the effect of increasing the transformation temperature caused by the addition of AI cannot be effectively utilized. A
If there is no transformation point, there is no metallurgical upper limit on the heat treatment temperature, but heat treatment at temperatures higher than 1300°C is unrealistic and will increase costs, so the upper limit is set at 1300°C. stipulate. Further, although it is difficult to specify the heat treatment holding temperature because it changes depending on the heat capacity of the target steel material, it is generally preferable to hold the heat treatment for 30 minutes or more. In addition, when hot working at 900°C or higher and then manufacturing steel products without rapid cooling (preferably by slow cooling), the result is that the heat treatment for grain coarsening is completed during processing. Become. In this case, good vibration damping characteristics can be obtained without performing a separate heat treatment afterwards.
なお、鋳造等、凝固した状態のままにて使用する場合は
、冷却過程で急冷することなく、好ましくは徐冷するこ
とにより、最終的な熱処理を施すことなく、結晶粒を粗
大化することができ、優れた振動減衰特性を得ることが
できる。In addition, when using it in a solidified state, such as by casting, it is possible to coarsen the crystal grains without performing final heat treatment by cooling slowly, preferably without rapid cooling during the cooling process. It is possible to obtain excellent vibration damping characteristics.
このように、本発明では、材料の合金成分を多くするこ
となく、゛また、特殊かつ複雑な熱処理を施すことなく
、振動減衰特性が極めて良好な鋼材を得ることができる
。従って、振動減衰特性に優れた鋼材を低コストで得る
ことができる。As described above, in the present invention, a steel material with extremely good vibration damping characteristics can be obtained without increasing the alloy component of the material and without performing special and complicated heat treatment. Therefore, a steel material with excellent vibration damping characteristics can be obtained at low cost.
[実施例] 以下、この発明の実施例について詳細に説明する。[Example] Examples of the present invention will be described in detail below.
ここでは第1表に示す組成の鋼を溶製し、その後鋳型に
て鋳塊を製造し、これを1100乃至1200℃に加熱
して熱間圧延を施し、厚み12乃至50mmの板材に成
型した試験片を準備し、これを試験に供した。第1表中
、A〜■は本発明の組成範囲内の鋼種、J−Lは本発明
の組成範囲外の比較鋼種である。なお、第1表中、So
l、A Iとあるのは酸可溶AIを示す。Here, steel having the composition shown in Table 1 was melted, and then an ingot was produced in a mold, which was heated to 1100 to 1200°C, hot rolled, and formed into a plate with a thickness of 12 to 50 mm. A test piece was prepared and subjected to the test. In Table 1, A to ■ are steel types within the composition range of the present invention, and J-L are comparative steel types outside the composition range of the present invention. In addition, in Table 1, So
1, AI indicates acid-soluble AI.
第
表
第2表は、上述のようにして作製した板材の熱処理条件
、平均結晶粒径、保磁力及び対数減衰率を示す。第2表
中実験番号1〜9はこの発明に基づ〈実施例、10〜1
3はこの発明の範囲外の比較例である。Table 2 shows the heat treatment conditions, average grain size, coercive force, and logarithmic decay rate of the plate material produced as described above. Experiment numbers 1 to 9 in Table 2 are based on this invention.
No. 3 is a comparative example outside the scope of this invention.
振動減衰特性は、板材から約800ヘルツで振動する音
叉を機械加工により作製し、加振後およそ0.4秒後の
振幅に対し、その後約125回振動させたときの振幅の
対数減衰率で評価した。具体的には、対数減衰率δは以
下の式で示される。The vibration damping characteristics are the logarithmic damping rate of the amplitude when a tuning fork that vibrates at approximately 800 Hz is machined from a plate material and is vibrated approximately 125 times after approximately 0.4 seconds after excitation. evaluated. Specifically, the logarithmic attenuation rate δ is expressed by the following formula.
ただし、n :125
X :加振後0,4秒後の振幅
X′:加振後0,4秒後から125回
振動した後の振幅
熱処理は、基本的に機械加工により音叉を作製後実施し
た。これらは、試験体への加工歪の影響は除去されてい
る。However, n: 125 X: Amplitude after 0.4 seconds after excitation did. In these cases, the influence of processing strain on the test specimen has been removed.
また、保磁力はJIS C2504に基づく方法でδ
きj定し、
平均結晶粒径は顕微鏡写真に基づい
て測定した。In addition, the coercive force is determined by δ using the method based on JIS C2504.
The average crystal grain size was determined based on micrographs.
第
表
第2表から明らかなように、実施例である試験番号1〜
9は、いずれも高い対数減衰率を示している。また、こ
の中では保磁力が低いものほど対数減衰率が高いことが
確認される。As is clear from Table 2, test numbers 1-
No. 9 shows a high logarithmic attenuation rate. It is also confirmed that the lower the coercive force, the higher the logarithmic attenuation rate.
一方、比較例である試験番号10〜】3のうち、試験番
号10.11は、特公昭57−44740に基づくもの
であり、合金成分としてCrが多く含まれた鋼種Jを基
本としている。試験番号10は、特公昭57−4474
0と同様に1000℃焼入れの後、750℃にて焼戻し
処理を施したものであり、試験番号11は1000℃で
の熱処理のみ施したものである。第2表に示すように、
2回の熱処理により試験番号10は比較的良好な振動減
衰特性を示したが、1回の熱処理の試験番号11は、加
工歪みが残存しており、振動減衰特性が不十分となった
。すなわち、特公昭57−44740のような高Crフ
ェライトステンレスでは、本発明のような1回の熱処理
では良好な振動減衰特性が得られず、2回の熱処理を施
しても振動減衰特性自体は実施例のものより低い値であ
ることか確認された。さらに、この高Crフェライトス
テンレスは高価でありコスト的にも不利である。On the other hand, among test numbers 10 to 3 which are comparative examples, test number 10.11 is based on Japanese Patent Publication No. 57-44740, and is based on steel type J containing a large amount of Cr as an alloy component. Test number 10 is Special Publication No. 57-4474
Similarly to Test No. 0, after quenching at 1000°C, tempering treatment was performed at 750°C, and Test No. 11 was subjected to heat treatment only at 1000°C. As shown in Table 2,
Test No. 10 showed relatively good vibration damping characteristics after two heat treatments, but test No. 11, which underwent one heat treatment, had residual machining distortion and had insufficient vibration damping characteristics. In other words, with high Cr ferrite stainless steel such as Japanese Patent Publication No. 57-44740, good vibration damping characteristics cannot be obtained with one heat treatment as in the present invention, and even with two heat treatments, the vibration damping characteristics themselves cannot be achieved. It was confirmed that the value was lower than that of the example. Furthermore, this high Cr ferrite stainless steel is expensive and disadvantageous in terms of cost.
試験番号12.13は、AI添加による変態温度の上昇
が図られておらず、フェライト結晶粒が十分粗大化され
ていないことがわかる。従って、実施例と比較して保磁
力が大きく、また対数減衰率が小さくなっている。It can be seen that in test number 12.13, the transformation temperature was not increased by the addition of AI, and the ferrite crystal grains were not sufficiently coarsened. Therefore, compared to the example, the coercive force is large and the logarithmic attenuation rate is small.
なお、試験番号5,12.13について、あえて熱処理
後に、又は熱処理せずに機械加工して音叉を作製し、加
工歪みを残存させて試験を行った。Regarding test numbers 5, 12.13, tuning forks were fabricated by machining after heat treatment or without heat treatment, and the test was conducted with machining distortion remaining.
これらを夫々、試験番号5−.12”、13−として第
3表に示す。Test number 5-. 12'', 13- in Table 3.
第 3 表
この第3表に示すように、加工歪みが残存することによ
り、いずれも保磁力が上昇し、対数減衰率が低下してい
ることが確認できるが、実施例をベースにした試験番号
5′では従来の純鉄系制振材の試験番号12とほぼ同等
の対数減衰率が得られた。すなわち、本発明の鋼材は、
加工歪みが残存していても高い振動減衰特性を保持して
いることが確認された。Table 3 As shown in Table 3, it can be confirmed that due to residual machining strain, the coercive force increases and the logarithmic attenuation rate decreases. 5', a logarithmic damping factor almost equivalent to test number 12 of the conventional pure iron vibration damping material was obtained. That is, the steel material of the present invention is
It was confirmed that high vibration damping characteristics were maintained even if machining distortion remained.
なお、第2図に実施例である試験番号5の実際の振動減
衰のチャートを、第3図に比較例である試験番号13の
実際の振動減衰のチャートを示す。Note that FIG. 2 shows a chart of actual vibration damping in test number 5, which is an example, and FIG. 3 shows a chart of actual vibration damping in test number 13, which is a comparative example.
これらの図から明らかなように、実施例のものは極めて
良好な振動減衰特性を示しているが、比較例のものは振
動減衰特性が悪い。As is clear from these figures, the example exhibits extremely good vibration damping characteristics, while the comparative example exhibits poor vibration damping characteristics.
第4図はこれらの試験結果に基づいた、保磁力と対数減
衰率との関係を示す図である。図中、黒丸は歪みが無い
状態のものであり、白丸は歪みを残存させたものである
。この図から保磁力が小さいほど対数減衰率が高くなり
、歪みがない状態で保磁力が0.7Oe以上になると、
対数減衰率が100以上という良好な値となることが確
認された。また、歪みが残存した状態では対数減衰率が
低下する傾向にあることがわかる。FIG. 4 is a diagram showing the relationship between coercive force and logarithmic decay rate based on these test results. In the figure, black circles indicate a state in which there is no distortion, and white circles indicate a state in which distortion remains. From this figure, the smaller the coercive force, the higher the logarithmic decay rate, and when the coercive force becomes 0.7 Oe or more in the absence of distortion,
It was confirmed that the logarithmic attenuation rate was a good value of 100 or more. It can also be seen that the logarithmic attenuation rate tends to decrease in a state where distortion remains.
次に、共振周波数が複数の場合の減衰比を測定した。こ
こでは、第1表の鋼E1鋼J1及び綱りについて、外径
43mg+、内径36m−長さ200■のバイブを作製
し、熱処理後、振動減衰特性を測定した。ここでは、打
撃加振法による振動減衰挙動を周波数領域偏分法により
、振動減衰特性を評価した。その結果を第4表に説明す
る。第4表中、試験番号14はこの発明の範囲内の実施
例であり、試験番号15及び16は比較例である。なお
、この中で試験番号15は特公昭57−44740に基
づくものであり、合金成分としてCrが多く含み、熱処
理が複雑でコストが高いものである。ここでは、共振周
波数として5.2キロヘルツ、6.0キロヘルツ、6.
7キロヘルツを用いた。Next, the damping ratio was measured when there were multiple resonance frequencies. Here, a vibrator having an outer diameter of 43 mg+, an inner diameter of 36 m and a length of 200 cm was prepared using Steel E1 and Steel J1 in Table 1, and the vibration damping characteristics were measured after heat treatment. Here, the vibration damping characteristics were evaluated using the frequency domain partial division method for the vibration damping behavior obtained by the percussion excitation method. The results are explained in Table 4. In Table 4, test number 14 is an example within the scope of the present invention, and test numbers 15 and 16 are comparative examples. Among these, test number 15 is based on Japanese Patent Publication No. 57-44740, and contains a large amount of Cr as an alloy component, requiring complicated heat treatment and high cost. Here, the resonance frequencies are 5.2 kHz, 6.0 kHz, 6.
7 kilohertz was used.
第
表
この第4表に示すように、実施例の試験番号14は、比
較例の試験番号16よりも良好な値を示し、コストが高
い試験番号15と同等な特性を示すことが確認された。Table 4 As shown in Table 4, test number 14 of the example showed better values than test number 16 of the comparative example, and it was confirmed that it showed the same characteristics as test number 15, which was more expensive. .
[発明の効果]
この発明によれば、優れた振動減衰特性を保持しつつ、
安価に製造することができる鋼材及びその製造方法が提
供される。このため、この発明は、防音・防振の分野に
おいて極めて有用である。[Effect of the invention] According to the invention, while maintaining excellent vibration damping characteristics,
A steel material that can be manufactured at low cost and a method for manufacturing the same are provided. Therefore, the present invention is extremely useful in the field of soundproofing and vibrationproofing.
第1図はアルミニウム含有量と変態温度との関係を示す
図、第2図はこの発明の実施例に係る鋼材の振動減衰特
性を示す図、第3図は比較例に係る鋼材の振動減衰特性
を示す図、
第4図は鋼材の
保磁力と対数減衰率との関係を示す図である。Fig. 1 is a diagram showing the relationship between aluminum content and transformation temperature, Fig. 2 is a diagram showing the vibration damping characteristics of a steel material according to an example of the present invention, and Fig. 3 is a diagram showing the vibration damping characteristics of a steel material according to a comparative example. FIG. 4 is a diagram showing the relationship between coercive force and logarithmic damping rate of steel material.
Claims (2)
.0005乃至0.01%のN、 0.001乃至0.25%のSi、0.005乃至0.
20%のMn、0.3乃至1.5%の酸可溶Al、残部
Fe及び不可避不純物からなり、フェライト結晶の平均
粒径が0.1mm以上であり、歪みのない状態における
保磁力が0.7Oe以下であることを特徴とする振動減
衰特性に優れた鋼材。(1) 0.0005 to 0.01% C by weight%, 0
.. 0005-0.01% N, 0.001-0.25% Si, 0.005-0.
It consists of 20% Mn, 0.3 to 1.5% acid-soluble Al, the balance Fe and unavoidable impurities, the average grain size of the ferrite crystal is 0.1 mm or more, and the coercive force in the unstrained state is 0. A steel material with excellent vibration damping properties characterized by a vibration damping property of .7 Oe or less.
.0005乃至0.01%のN、0.001乃至0.2
5%のSi、0.005乃至0.20%のMn、0.3
乃至1.5%の酸可溶Al、残部Fe及び不可避不純物
からなる素材を、A_3変態点が存在しない場合には9
00℃以上1300℃以下の温度で、A_3変態点が存
在する場合には900℃以上A_3変態点以下の温度で
熱処理することを特徴とする振動減衰特性に優れた鋼材
の製造方法。(2) C, 0.0005 to 0.01% by weight, 0
.. 0005-0.01% N, 0.001-0.2
5% Si, 0.005-0.20% Mn, 0.3
A material consisting of 1.5% to 1.5% acid-soluble Al, the balance Fe and unavoidable impurities is
A method for producing a steel material with excellent vibration damping properties, characterized in that heat treatment is performed at a temperature of 00°C or more and 1300°C or less, and if an A_3 transformation point exists, a temperature of 900°C or more and A_3 transformation point or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32062189A JPH03183741A (en) | 1989-12-12 | 1989-12-12 | Steel having excellent vibration damping properties and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32062189A JPH03183741A (en) | 1989-12-12 | 1989-12-12 | Steel having excellent vibration damping properties and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03183741A true JPH03183741A (en) | 1991-08-09 |
Family
ID=18123454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32062189A Pending JPH03183741A (en) | 1989-12-12 | 1989-12-12 | Steel having excellent vibration damping properties and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03183741A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4293604C2 (en) * | 1991-10-14 | 1997-04-03 | Nippon Kokan Kk | Soft magnetic steel material and process for its manufacture |
WO2007097217A1 (en) * | 2006-02-21 | 2007-08-30 | Jfe Steel Corporation | Damping alloy sheet and process for producing the same |
WO2007097216A1 (en) * | 2006-02-21 | 2007-08-30 | Jfe Steel Corporation | Damping alloy sheet and process for producing the same |
EP3339459A4 (en) * | 2015-08-17 | 2019-03-20 | Nisshin Steel Co., Ltd. | Vibration-damping ferritic stainless steel material, and production method |
EP3339460A4 (en) * | 2015-08-17 | 2019-03-20 | Nisshin Steel Co., Ltd. | VIBRATION-DAMPING FERRITIC STAINLESS STEEL MATERIAL HAVING HIGH Al CONTENT, AND PRODUCTION METHOD |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53119214A (en) * | 1977-03-29 | 1978-10-18 | Sumitomo Metal Ind Ltd | Silent and damping steel |
-
1989
- 1989-12-12 JP JP32062189A patent/JPH03183741A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53119214A (en) * | 1977-03-29 | 1978-10-18 | Sumitomo Metal Ind Ltd | Silent and damping steel |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4293604C2 (en) * | 1991-10-14 | 1997-04-03 | Nippon Kokan Kk | Soft magnetic steel material and process for its manufacture |
WO2007097217A1 (en) * | 2006-02-21 | 2007-08-30 | Jfe Steel Corporation | Damping alloy sheet and process for producing the same |
WO2007097216A1 (en) * | 2006-02-21 | 2007-08-30 | Jfe Steel Corporation | Damping alloy sheet and process for producing the same |
JP2007224324A (en) * | 2006-02-21 | 2007-09-06 | Jfe Steel Kk | Damping alloy thin sheet and producing method therefor |
KR101029229B1 (en) * | 2006-02-21 | 2011-04-14 | 제이에프이 스틸 가부시키가이샤 | Damping alloy sheet and process for producing the same |
KR101032007B1 (en) * | 2006-02-21 | 2011-05-02 | 제이에프이 스틸 가부시키가이샤 | Damping alloy sheet and process for producing the same |
EP3339459A4 (en) * | 2015-08-17 | 2019-03-20 | Nisshin Steel Co., Ltd. | Vibration-damping ferritic stainless steel material, and production method |
EP3339460A4 (en) * | 2015-08-17 | 2019-03-20 | Nisshin Steel Co., Ltd. | VIBRATION-DAMPING FERRITIC STAINLESS STEEL MATERIAL HAVING HIGH Al CONTENT, AND PRODUCTION METHOD |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011529530A (en) | Bainite steel and manufacturing method thereof | |
JP3204293B2 (en) | Method of manufacturing spheroidal graphite cast iron member | |
US5582658A (en) | High strength steel sheet adapted for press forming and method of producing the same | |
JPH0853714A (en) | Shaft parts for machine structural use excellent in torsional fatigue strength | |
JPH08311607A (en) | Low strain carburized gear excellent in deddendum bending strength and its production | |
EP0649914B1 (en) | An Fe-Mn vibration damping alloy steel and a method for making the same | |
JPH0371503B2 (en) | ||
JPH05255813A (en) | High strength alloy excellent in workability and damping capacity | |
US5634990A (en) | Fe-Mn vibration damping alloy steel and a method for making the same | |
JPS59107063A (en) | Wire rod for bolt and its production | |
JPH03183741A (en) | Steel having excellent vibration damping properties and its manufacture | |
JP2004027334A (en) | Steel for induction tempering and method of producing the same | |
JPS59170244A (en) | Strong and tough co-free maraging steel | |
JPH04214841A (en) | Stainless steel for engine gasket excellent in formability and its manufacture | |
JP4344126B2 (en) | Induction tempered steel with excellent torsional properties | |
JPH01279710A (en) | Manufacture of high strength steel wire having excellent resistance to cracking induced by hydrogen | |
JPS5945748B2 (en) | Damping steel plate for processing and its manufacturing method | |
JPH02267242A (en) | Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture | |
JP2662485B2 (en) | Steel sheet having good low-temperature toughness and method for producing the same | |
JP4023088B2 (en) | Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof | |
JPH02145723A (en) | Manufacture of thick steel material having excellent direct current magnetization characteristics | |
JPH0617186A (en) | Spheroidal graphite cast iron member and manufacture thereof | |
JP2971709B2 (en) | Manufacturing method of mechanical structural parts excellent in vibration damping characteristics and wear resistance | |
JP2000204433A (en) | Steel excellent in cold workability and machine parts | |
JP3965760B2 (en) | Low Young's modulus steel sheet for processing and manufacturing method thereof |