JP4047502B2 - Steel plate for magnetic shield structure and manufacturing method thereof - Google Patents

Steel plate for magnetic shield structure and manufacturing method thereof Download PDF

Info

Publication number
JP4047502B2
JP4047502B2 JP29206599A JP29206599A JP4047502B2 JP 4047502 B2 JP4047502 B2 JP 4047502B2 JP 29206599 A JP29206599 A JP 29206599A JP 29206599 A JP29206599 A JP 29206599A JP 4047502 B2 JP4047502 B2 JP 4047502B2
Authority
JP
Japan
Prior art keywords
less
temperature
magnetic
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29206599A
Other languages
Japanese (ja)
Other versions
JP2001107202A (en
Inventor
達也 熊谷
昌浩 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29206599A priority Critical patent/JP4047502B2/en
Publication of JP2001107202A publication Critical patent/JP2001107202A/en
Application granted granted Critical
Publication of JP4047502B2 publication Critical patent/JP4047502B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、磁気シールド構造用鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、精密測定機器やコンピュータに対する外部からの磁場の影響による問題が増加しており、磁気シールドの重要性はますます高まってきている。機器によっては、微弱な磁界であってもその影響を受けるものもあり、そのような場合には極力低いレベルにまで磁界の強さを低下させることが要求され、磁気シールド材料には高い透磁率が必要となる。それと同時にロットごとのばらつきや、板面内の方向に対する透磁率のばらつきができるだけ少ないことも重要視される。
【0003】
現在このような用途の磁気シールドには、透磁率が高く、板面内の方向による透磁率の変動が少ない、無方向性電磁鋼板が積層されて使われることが多い。市販されている無方向性電磁鋼板の磁気特性はグレードによって異なるが、精密測定機器やコンピュータに対する磁気の影響を考えた場合、磁気シールド材料としての最大透磁率μmax はできれば20,000以上あることが望ましい。また、シールドできる磁場の強さの上限は飽和磁束密度に比例することから、飽和磁束密度もできるだけ高いことが望ましい。
【0004】
磁気シールド効果は透磁率と厚さの積に比例するので、磁界の強さに応じてある程度の厚さが必要なのであるが、無方向性電磁鋼板は冷延で製造されるために板厚が厚くても0.5mm未満程度に限られるので、積層によって必要な厚さを確保することになる。そのため、鋼板が比較的高価であるだけでなく、施工にも手間がかかることから、非常にコストがかかっているのが現状である。
【0005】
また最近では、効率的な磁気シールドを行なうために、個々の設備ごとに磁気シールドをするのではなく、建屋自体を磁気シールドする方法が提案されている。そこで、高い透磁率を有し、かつある程度の厚さのある単板で、構造用材料として少なくとも一般構造用鋼材に近い機械的特性を有する材料が必要とされている。
【0006】
必要板厚は、シールドの対象となる磁場の強さによって決まるが、一方で設計上はできるだけ板厚が薄いほうが有利であることから、1〜6mm程度までの厚さの鋼板に対するニーズが多い。
すなわち、1〜6mm程度の厚さで、一般構造用鋼材並の400MPa以上の強度と十分な靱性とを備え、かつ均質で安定したμmax が20,000以上の高透磁率を有する鋼材により、比較的簡単な施工で建屋自体を磁気シールドすることが可能となり、磁気シールドコストの大幅な低減が期待できる。この鋼材は、コストを考えれば、一般の熱延鋼板の製造ラインで製造できることが望ましいといえる。
【0007】
【発明が解決しようとする課題】
薄鋼板で磁気特性に優れた材料には、例えばJIS C 2504で規定される電磁軟鉄板があるが、構造部材として考慮されているものではないため強度は高くなく、透磁率も不十分である。磁気シールド用熱延鋼板として、特開平1−108315号公報、特開平5−247604号公報、特開平6−306468号公報、特開平8−127817号公報、特開平11−150209号公報などが開示されているが、これらはいずれも本発明用途には透磁率が不十分である。
【0008】
さらに、透磁率の高い磁気シールド用熱延鋼板の製造方法として特開平3−274228号公報、特開平3−274229号公報、特開平3−274230号公報が提案されているが、いずれも結晶粒径については記載がなく、また強度や靱性などは考慮されておらず、構造用途としては使えない。
このように、磁気シールド構造用鋼板として、均質で安定した高透磁率と、十分な強度、靱性とを具備する材料はこれまで得られていない。
【0009】
本発明は、上記問題点を解決し、均質で安定した高透磁率と、強度、靱性を合わせて具備する、優れた磁気シールド構造用鋼板およびその製造方法を提供することを課題としている。
【0010】
【課題を解決するための手段】
本発明は、以上述べた状況を鑑みなされたもので、純鉄系材料の高飽和磁束密度を生かしつつ、均質で安定した高透磁率と、強度、靱性を合わせて具備する、磁気シールド構造用鋼板およびその製造方法を提供するものであって、その要旨とするところは、
(1)重量%で、
C :0.01%以下、 Si:1〜3%、
Mn:0.5%以下、 P :0.05%以下、
S :0.005%以下、 Ni:0.3%超3%以下、
Al:0.2〜0.8%、 N :0.007%以下
を含有し、残部Feおよび不可避的不純物からなり、結晶粒径が200〜500μmであるフェライト単相組織を有し、板厚1〜6mmであることを特徴とする磁気シールド構造用鋼板。
(2)鋼が、重量%で、
Cu:0.2〜0.8%、 Cr:1.0%以下
のうち1種または2種を、さらに含有することを特徴とする前記(1)に記載の磁気シールド構造用鋼板。
(3)最大透磁率が20000以上であることを特徴とする前記(1)または(2)に記載の磁気シールド構造用鋼板。
(4)上記成分を含有する鋼をAc3 点以上1200℃以下の温度に加熱し、Ar3 +50℃〜Ar3 温度での圧下率を30%以上とし、圧延仕上温度がAr1 以上となるように熱間圧延を行い、550℃以下の温度で巻き取った後、圧下率5〜15%の冷間圧延を施して板厚1〜6mmとし、さらに840℃以上990℃以下で、かつ、下記の(1)式で計算される熱処理温度THT±25℃の範囲で、90分以上保持する熱処理を行なうことを特徴とする前記(1)乃至(3)のいずれか1項に記載の磁気シールド構造用鋼板を製造する方法である。
THT(℃)=840+0.76×(Ac1−865)・・・・(1)
【0011】
【発明の実施の形態】
鋼板の透磁率が結晶粒径に大きく依存することは従来から知られている。しかし、鋼の成分組成や、不純物、介在物、結晶方位などの影響もあるので、結晶粒径だけで透磁率が決まるわけではない。本発明者らはまず、各因子の透磁率への影響を明確にし、一定の高透磁率を安定して得るための手段を検討した。その結果、不純物や介在物を大幅に低減したフェライト単相組織鋼に、SiおよびAl量を特定範囲に限定することにより、純鉄の高い飽和磁束密度を維持しながら、非常に高い透磁率を得ることができることを明らかにした。
【0012】
さらに、特定方位への強い集合組織を導入しないようにするならば、本発明の組成範囲では、結晶粒径と透磁率は極めてよく対応し、透磁率はほぼ結晶粒径でのみ決定されることも明らかにした。集合組織については、磁気特性を向上させる手段としても用いられるが、どの方向にも一定の透磁率を得ようとする場合には、特定方位への強い集合組織はかえって害になる場合もあり、むしろ強い集合組織をつくらないほうがよい。
【0013】
優れた磁気シールド効果を発揮するために、最大透磁率μmax ≧20,000を目標値とした場合、本発明の組成範囲においては結晶粒径は200μm以上とすればよく、粗粒ほど透磁率は良くなる。しかし、粗粒になるほど靱性が低下する傾向は避けられない。発明者らはNiを添加することで、このようなフェライト単相組織鋼の靱性を大きく改善できることを見いだした。しかし、結晶粒径500μm超では、靱性確保のために高価なNiを多量に添加する必要もあることから、実際には結晶粒径は500μm以下がよいと考えられる。すなわち、SiおよびAl量をある特定範囲に限定したフェライト単相組織で不純物、介在物を低減し、特定方位への強い集合組織を導入せず、Ni添加を前提としたうえで、結晶粒径を200〜500μmに限定することが、一定の高透磁率を安定して得るための手段である。なお、最大透磁率の測定はJIS C 2550 7.2に規定の直流磁化特性試験に準じて行う。
【0014】
発明者らはさらに、上記強度条件を満たす成分組成の鋼について、前述のような狭い範囲へ鋼板の結晶粒径を制御するため、熱延鋼板の製造プロセス条件を種々検討した。その結果、熱間圧延時の特定温度範囲での圧下率、および巻取り温度をある範囲に限定し、適度な歪量の冷間圧延を行ない、Ac1 温度で決まる特定温度で熱処理を行なえば、鋼板の結晶粒の大きさはほぼいつも同じになることを知見し、本発明に至ったものである。
【0015】
熱間圧延の特定温度範囲での圧下率、および巻取り温度を限定することにより、熱処理前の結晶粒の大きさを比較的微細な一定範囲に制御できる。また、冷間圧延条件を限定することにより、結晶粒成長の駆動力となる圧延歪量を一定範囲に制御することができる。このようにして結晶粒の大きさをある程度微細でかつ均一とし、適度な圧延歪みを導入することにより、その後の熱処理で均一で安定した結晶粒成長が起きるので、結晶粒径の制御が可能となる。
【0016】
AlNは、圧延過程あるいは熱処理過程で微細析出し、ピニング作用により結晶粒径の制御を困難にするが、本発明ではAlを多量に添加することで、AlNを粗大にしてピニング作用をなくし、安定した粒成長を可能にしている。
Siは強度向上効果も顕著であり、本発明がその対象とする組成範囲においては、少なくとも400MPa以上の強度が得られる。
【0017】
発明者らはさらに、本発明鋼のAc1 変態温度と熱処理温度、および得られる結晶粒径との関係を詳細に調査した結果、熱処理前の結晶粒径と圧延歪とが一定範囲にあれば、これらの間には一定の関係があり、THT(℃)=840+0.76×(Ac1−865)の式で計算される温度THTで十分に保持する熱処理を行なうことで、磁気シールド材料に適した大きさの結晶粒径が、均一に安定して得られることを見いだした。具体的には、THT±25℃の温度範囲で熱処理を行なうことで、200〜500μmの範囲の結晶粒径が安定して得られる。この場合のμmax は20,000〜36,000となる。この方法で製造すれば十分に再結晶が行われるため、圧延時にある程度の集合組織が導入された場合にも、熱処理後にはほぼ消滅し、板面内のどの方向で測定してもほぼ同じ透磁率を示す。
【0018】
すなわち本発明によれば、上述の鋼の成分組成を有するとともに、適切な熱間圧延、巻取り、冷間圧延および熱処理条件により、結晶粒径を200〜500μmの範囲に制御すれば、μmax が20,000〜36,000の範囲の均一で高い透磁率を安定して有し、強度、靱性にも優れた磁気シールド構造用鋼板が得られる。
【0019】
次に本発明の限定理由を説明する。
Cは、炭化物を形成し磁気特性、靱性を低下させるので0.01%以下に低減する。
【0020】
Siは、磁気特性を高める重要な元素であり、強化にも有効である。磁気特性、強度ともに本発明の目標値を満足させるためには、1%以上の添加が必要である。しかし3%超では靱性を低下させ、また飽和磁束密度も低下させるので、1%以上、3%以下に限定する。
【0021】
Mnは、強化元素として有効であるが、多く添加すると磁気特性低下の原因となる。本発明は磁気特性を重視することから、Mnは0.5%以下とする。
【0022】
Pは、フェライトフォーマーであり、また切削性改善には有効であるが、非金属介在物を生成し、磁気特性と靱性を低下させるので、添加する場合でも上限を0.05%とする。
【0023】
Sは、非金属介在物を生成して粒成長を阻害し、かつ靱性も低下させるためできるだけ低減することが必要であり、上限は0.005%以下とする。
【0024】
Niは、粗粒のフェライト単相鋼の靱性を向上させるので0.3%超の添加は必須である。しかしその効果は3%程度で飽和し、またオーステナイトフォーマーであるため多く添加すると変態温度が低下して十分に高い焼鈍温度が取れないことがある。さらに高価でもあるので、3%を上限とする。
【0025】
Alは、AlNを粗大にして粗粒化に有害な微細AlN析出を避けるため、0.2%以上添加する。フェライトフォーマーとしても効果が大きい。N固定効果のためには0.2%以上程度で十分であり、また0.8%超ではAc1 が高くなり過ぎ結晶粒制御が困難になることから、上限は0.8%とする。
【0026】
Nは、固溶状態としても窒化物として析出しても磁気特性を低下させるため、できるだけ低減することが望ましく、0.007%以下とする。
【0027】
Cuは、固溶強化により磁気特性を低下させない強化元素であり必要に応じ添加する。0.2%以上で強化作用があるが、0.8%超では析出し、磁気特性を低下させるため、添加する場合は0.2%以上、0.8%以下とする。
【0028】
Crは、強化元素として有効であるが、炭化物を形成することから透磁率に影響するので必要に応じて添加する。磁気特性を低下させないためにはCを非常に低く抑える必要があり、鋼板のコスト増につながるので、添加する場合にも1%以下とする。
【0029】
製造条件については、加熱温度は、通常の熱延鋼板の加熱であるAc3 以上とし、かつ熱延前の結晶粒を粗大化させないために1200℃以下とする。
熱間圧延においてAr3 +50℃〜Ar3 温度での圧下率を30%以上とするのは、結晶粒径をある程度微細均一に制御するためであるが、圧下率が30%未満ではその効果はあまりないので、圧下率は30%以上必要である。またフェライト域で圧延すると、強い集合組織が導入される場合があるため、圧延仕上温度はAr1 以上とする。
熱間圧延後、550℃を超える温度で巻き取ると、巻取り後に結晶粒成長が進行し、結晶粒径制御が不安定になるので、巻取り温度は550℃以下とする。
【0030】
冷間圧延は、結晶粒成長の駆動力となる圧延歪量を一定範囲に制御するために行ない、5%未満では歪み量が不足で粒成長が不十分となり、15%超では歪量が過多となり、まれに異常粒成長が生じるなど結晶粒径制御が不安定になるので、冷間圧延の歪量は5〜15%の範囲に限定する。
【0031】
圧延後の熱処理温度は、本発明の主たる要件のひとつであり、上述のように、熱間圧延および冷間圧延条件を特定して得られる、適度に微細かつ均一な結晶粒径と、適度な圧延歪とを有する鋼板に、THT(℃)=840+0.76×(Ac1−865)の式で計算される温度THT付近で十分に保持する熱処理を行なうことにより、鋼板の成分組成にかかわらず常にほぼ一定の結晶粒径を得ることができるのである。
具体的には、THT±25℃の温度範囲で90分以上保持する熱処理を行なうことで、200〜500μmの範囲の結晶粒径が安定して得られる。この場合のμmax は20,000〜36,000となる。840℃未満では、十分な粒成長は成し得ず、また990℃超では粒成長速度が速くなるために、まれに異常粒成長が生じるなど結晶粒径制御が不安定になるので、熱処理温度範囲は上記関係を満たしつつ、840〜990℃に限定する。
【0032】
【実施例】
表1に示す成分組成の鋼片を作製し、表2に示す製造条件で1〜6mm厚さの鋼板を製造した。表中、下線で示しすものは本発明の範囲を逸脱しているところ、または各特性の目標値に達していないところである。各特性の目標値は、最大透磁率μmax ≧20,000、引張強さ≧400MPa、靱性0℃シャルピー吸収エネルギー≧50J/cm2 とした。
表2に示す厚鋼板のうち1−A〜6−Fは本発明例であり、7−G〜23−Aは比較例である。これらの鋼板について、表2に示す製造条件で製造したものの各種特性を表2に示す。
【0033】
鋼板1−A〜6−Fの本発明実施例は、いずれも結晶粒径が200〜500μmの範囲にあり、μmax も20,000〜36,000の範囲にある。さらに鋼板1−A〜6−Fの本発明実施例は、強度、靱性ともに良好である。
これに対し、比較例7−GはCが高いため、13−MはAlが低いため、15−OはNが高いため、17−QはCrが高いため結晶粒径が小さく、透磁率が低い。8−HはSiが低いため強度が不足しており、透磁率も低い。9−IはSiが高いため、14−NはAlが高いためそれぞれ靱性が低値である。10−JはMnが高いため、11−KはPが高いため、12−LはSが高いためそれぞれ靱性が低値であり、透磁率も低い。16−PはCuが高いため透磁率が低い。
【0034】
また、比較例18−Aは加熱温度がAc3 に達しておらず、19−AはAr3 +50℃〜Ar3 での圧下率が低いため、20−Aは巻取り温度が高すぎるため、21−Aは冷間圧延圧下率が低いため、23−Aは熱処理温度が低いため、それぞれ結晶粒成長が不十分で、透磁率が低い。22−Aは、熱処理温度が高いため、結晶粒が粗大になりすぎ、靱性が低い。
【0035】
【表1】

Figure 0004047502
【0036】
【表2】
Figure 0004047502
【0037】
【発明の効果】
本発明によれば、均質で安定した高透磁率と高飽和磁束密度、構造用鋼として利用できる強度と靱性を備える、板厚1〜6mmの磁気シールド構造用鋼板およびその製造方法が提供でき、その産業上の価値は極めて高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic shield structural steel plate and a method for producing the same.
[0002]
[Prior art]
In recent years, problems due to the influence of external magnetic fields on precision measuring instruments and computers have increased, and the importance of magnetic shielding has been increasing. Depending on the equipment, even a weak magnetic field may be affected, and in such a case, it is required to reduce the magnetic field strength to the lowest possible level. Is required. At the same time, it is important to have as little variation as possible from lot to lot and magnetic permeability in the direction of the plate surface.
[0003]
Currently, non-oriented electrical steel sheets having a high magnetic permeability and a small fluctuation in the magnetic permeability depending on the direction in the plate surface are often used as magnetic shields for such applications. Although the magnetic properties of non-oriented electrical steel sheets on the market vary depending on the grade, when considering the influence of magnetism on precision measuring instruments and computers, the maximum permeability μmax as a magnetic shield material is preferably 20,000 or more if possible. desirable. In addition, since the upper limit of the strength of the magnetic field that can be shielded is proportional to the saturation magnetic flux density, it is desirable that the saturation magnetic flux density be as high as possible.
[0004]
Since the magnetic shielding effect is proportional to the product of permeability and thickness, a certain amount of thickness is required depending on the strength of the magnetic field. Even if it is thick, it is limited to less than about 0.5 mm, so that a necessary thickness is secured by lamination. For this reason, not only is the steel plate relatively expensive, but also the construction is time-consuming, so it is very costly.
[0005]
Recently, in order to perform efficient magnetic shielding, a method of magnetically shielding the building itself has been proposed instead of magnetically shielding each individual facility. Therefore, a material having a high magnetic permeability and a certain thickness and having a mechanical property at least close to that of general structural steel as a structural material is required.
[0006]
The required plate thickness is determined by the strength of the magnetic field to be shielded, but on the other hand, it is advantageous that the plate thickness is as thin as possible in terms of design, so there are many needs for a steel plate having a thickness of about 1 to 6 mm.
That is, a steel material having a thickness of about 1 to 6 mm, a strength equal to or higher than 400 MPa comparable to general structural steel materials and sufficient toughness, and a homogeneous and stable μmax having a high permeability of 20,000 or more is compared. It is possible to magnetically shield the building itself with simple construction, which can be expected to greatly reduce the cost of magnetic shielding. It can be said that it is desirable that this steel material can be manufactured on a general hot-rolled steel sheet manufacturing line in view of cost.
[0007]
[Problems to be solved by the invention]
A thin steel plate having excellent magnetic properties includes, for example, an electromagnetic soft iron plate specified in JIS C 2504. However, since it is not considered as a structural member, its strength is not high and permeability is insufficient. . JP-A-1-108315, JP-A-5-247604, JP-A-6-306468, JP-A-8-127817, JP-A-11-150209, etc. are disclosed as hot-rolled steel sheets for magnetic shields. However, these have insufficient permeability for the present invention.
[0008]
Further, JP-A-3-274228, JP-A-3-274229, and JP-A-3-274230 have been proposed as methods for producing a hot-rolled steel sheet for a magnetic shield having a high magnetic permeability. There is no description about the diameter, and strength and toughness are not considered, and it cannot be used as a structural application.
Thus, no material having a homogeneous and stable high magnetic permeability, sufficient strength and toughness has been obtained as a magnetic shield structural steel plate.
[0009]
An object of the present invention is to solve the above-mentioned problems and to provide an excellent steel sheet for a magnetic shield structure and a method for producing the same, which have a uniform and stable high magnetic permeability, strength and toughness.
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the situation described above, and has a uniform and stable high magnetic permeability, strength, and toughness while utilizing the high saturation magnetic flux density of a pure iron-based material. The present invention provides a steel sheet and a method for producing the same,
(1) By weight%
C: 0.01% or less, Si: 1-3%
Mn: 0.5% or less, P: 0.05% or less,
S: 0.005% or less, Ni: more than 0.3% and 3% or less,
Al: 0.2 to 0.8%, N: 0.007% or less, comprising the balance Fe and inevitable impurities, having a ferrite single phase structure with a crystal grain size of 200 to 500 μm, and plate thickness A steel plate for a magnetic shield structure, which is 1 to 6 mm.
(2) Steel is weight%
The magnetic shield structural steel plate according to (1), further containing one or two of Cu: 0.2 to 0.8% and Cr: 1.0% or less.
(3) The steel sheet for magnetic shield structure according to (1) or (2), wherein the maximum magnetic permeability is 20000 or more.
(4) The steel containing the above components is heated to a temperature not lower than the Ac3 point and not higher than 1200 ° C, the reduction rate at Ar3 + 50 ° C to Ar3 temperature is not less than 30%, and the rolling finish temperature is not less than Ar1. After rolling and winding at a temperature of 550 ° C. or less, cold rolling with a reduction rate of 5 to 15% is performed to obtain a sheet thickness of 1 to 6 mm, and further between 840 ° C. and 990 ° C., and the following (1 The steel sheet for a magnetic shield structure according to any one of (1) to (3), wherein the heat treatment is performed for 90 minutes or more in the range of the heat treatment temperature THT ± 25 ° C. calculated by the formula (1) It is a method of manufacturing.
THT (° C.) = 840 + 0.76 × (Ac1−865) (1)
[0011]
DETAILED DESCRIPTION OF THE INVENTION
It has been conventionally known that the magnetic permeability of a steel plate greatly depends on the crystal grain size. However, the magnetic permeability is not determined only by the crystal grain size because of the influence of the steel component composition, impurities, inclusions, crystal orientation, and the like. The present inventors first clarified the influence of each factor on the magnetic permeability, and studied means for stably obtaining a constant high magnetic permeability. As a result, ferritic single phase steel with significantly reduced impurities and inclusions, by limiting the amount of Si and Al to a specific range, while maintaining a high saturation magnetic flux density of pure iron, extremely high permeability Clarified that you can get.
[0012]
Furthermore, if a strong texture in a specific orientation is not introduced, in the composition range of the present invention, the crystal grain size and the magnetic permeability correspond very well, and the magnetic permeability is determined only by the crystal grain size. Also revealed. For texture, it is also used as a means to improve magnetic properties, but when trying to obtain a certain permeability in any direction, a strong texture in a specific direction may be harmful. Rather, it is better not to create a strong texture.
[0013]
In order to exhibit an excellent magnetic shielding effect, when the maximum magnetic permeability μmax ≧ 20,000 is set as a target value, the crystal grain size may be 200 μm or more in the composition range of the present invention, and the coarser the magnetic permeability, Get better. However, the tendency for the toughness to decrease with increasing coarseness is inevitable. The inventors have found that the toughness of such a ferritic single phase steel can be greatly improved by adding Ni. However, if the crystal grain size exceeds 500 μm, it is necessary to add a large amount of expensive Ni in order to ensure toughness. Therefore, it is considered that the crystal grain size is actually preferably 500 μm or less. In other words, the ferrite single-phase structure in which the Si and Al amounts are limited to a specific range reduces impurities and inclusions, does not introduce a strong texture in a specific orientation, and assumes the addition of Ni. Is a means for stably obtaining a certain high magnetic permeability. The measurement of the maximum magnetic permeability is performed according to the DC magnetization characteristic test specified in JIS C 2550 7.2.
[0014]
The inventors further examined various manufacturing process conditions of the hot-rolled steel sheet in order to control the crystal grain size of the steel sheet to a narrow range as described above with respect to the steel having a component composition that satisfies the above-described strength conditions. As a result, if the rolling reduction in a specific temperature range during hot rolling and the coiling temperature are limited to a certain range, cold rolling with an appropriate amount of strain is performed, and heat treatment is performed at a specific temperature determined by the Ac1 temperature, It has been found that the size of the crystal grains of the steel sheet is almost always the same, and the present invention has been achieved.
[0015]
By limiting the rolling reduction in the specific temperature range of hot rolling and the coiling temperature, the size of the crystal grains before the heat treatment can be controlled to a relatively fine constant range. Further, by limiting the cold rolling conditions, it is possible to control the rolling strain amount serving as the driving force for crystal grain growth within a certain range. In this way, by making the size of the crystal grains fine and uniform to some extent and introducing appropriate rolling strain, uniform and stable crystal grain growth occurs in the subsequent heat treatment, so that the crystal grain size can be controlled. Become.
[0016]
AlN is finely precipitated in the rolling process or heat treatment process, making it difficult to control the crystal grain size due to the pinning effect. However, in the present invention, by adding a large amount of Al, the AlN is coarsened to eliminate the pinning effect and is stable. Enables grain growth.
Si has a remarkable strength improvement effect, and a strength of at least 400 MPa is obtained in the composition range targeted by the present invention.
[0017]
The inventors have further investigated the relationship between the Ac1 transformation temperature and the heat treatment temperature of the steel of the present invention and the crystal grain size obtained, and as a result, if the crystal grain size before heat treatment and the rolling strain are within a certain range, There is a certain relationship between them, and it is suitable for a magnetic shield material by performing a heat treatment sufficiently maintained at a temperature THT calculated by the equation THT (° C.) = 840 + 0.76 × (Ac1-865). It has been found that a large crystal grain size can be obtained uniformly and stably. Specifically, by performing heat treatment in the temperature range of THT ± 25 ° C., a crystal grain size in the range of 200 to 500 μm can be stably obtained. In this case, μmax is 20,000 to 36,000. If this method is used to recrystallize sufficiently, even if a certain amount of texture is introduced during rolling, it almost disappears after heat treatment, and almost the same permeability is obtained regardless of the direction in the plate surface. Indicates magnetic susceptibility.
[0018]
That is, according to the present invention, if the crystal grain size is controlled in the range of 200 to 500 μm by the appropriate hot rolling, coiling, cold rolling and heat treatment conditions, the μmax can be increased. A steel sheet for a magnetic shield structure having a uniform high magnetic permeability in the range of 20,000 to 36,000 and having excellent strength and toughness can be obtained.
[0019]
Next, the reason for limiting the present invention will be described.
C forms carbides and lowers magnetic properties and toughness, so it is reduced to 0.01% or less.
[0020]
Si is an important element that enhances magnetic properties and is also effective for strengthening. In order to satisfy the target values of the present invention for both magnetic properties and strength, addition of 1% or more is necessary. However, if it exceeds 3%, the toughness is lowered and the saturation magnetic flux density is also lowered, so it is limited to 1% or more and 3% or less.
[0021]
Mn is effective as a strengthening element, but if added in a large amount, it causes a decrease in magnetic properties. In the present invention, Mn is set to 0.5% or less because importance is placed on magnetic characteristics.
[0022]
P is a ferrite former and is effective for improving machinability, but generates non-metallic inclusions and lowers magnetic properties and toughness. Therefore, even when added, the upper limit is made 0.05%.
[0023]
S is required to be reduced as much as possible because it forms non-metallic inclusions to inhibit grain growth and lowers toughness, and the upper limit is made 0.005% or less.
[0024]
Since Ni improves the toughness of the coarse-grained ferrite single-phase steel, the addition of more than 0.3% is essential. However, the effect is saturated at about 3%, and since it is an austenite former, if it is added in a large amount, the transformation temperature is lowered and a sufficiently high annealing temperature may not be obtained. Furthermore, since it is expensive, the upper limit is 3%.
[0025]
Al is added in an amount of 0.2% or more in order to coarsen AlN and avoid fine AlN precipitation harmful to coarsening. Effective as a ferrite former. About 0.2% or more is sufficient for the N-fixing effect, and if it exceeds 0.8%, Ac1 becomes too high and control of crystal grains becomes difficult, so the upper limit is made 0.8%.
[0026]
N is desirably reduced as much as possible because it lowers the magnetic properties even when it is in a solid solution state or precipitated as a nitride.
[0027]
Cu is a strengthening element that does not lower the magnetic properties by solid solution strengthening, and is added as necessary. If it is added at 0.2% or more, it has a strengthening action, but if it exceeds 0.8%, it precipitates and lowers the magnetic properties.
[0028]
Cr is effective as a strengthening element, but since it forms carbides and affects the magnetic permeability, it is added as necessary. In order not to deteriorate the magnetic characteristics, C must be kept very low, leading to an increase in the cost of the steel sheet.
[0029]
With respect to the manufacturing conditions, the heating temperature is set to Ac3 or higher, which is normal heating of a hot-rolled steel sheet, and 1200 ° C. or lower in order not to coarsen the crystal grains before hot rolling.
The reason why the rolling reduction at Ar3 + 50 ° C. to Ar3 temperature in hot rolling is 30% or more is to control the crystal grain size to a certain degree of fineness, but if the rolling reduction is less than 30%, the effect is not so much. Therefore, the rolling reduction needs to be 30% or more. Further, when rolling in the ferrite region, a strong texture may be introduced, so the rolling finishing temperature is set to Ar1 or higher.
If it winds up at the temperature exceeding 550 degreeC after hot rolling, since crystal grain growth will progress after winding and crystal grain size control will become unstable, coiling temperature shall be 550 degrees C or less.
[0030]
Cold rolling is performed in order to control the rolling strain amount, which is the driving force for crystal grain growth, within a certain range, and if it is less than 5%, the strain amount is insufficient and grain growth is insufficient, and if it exceeds 15%, the strain amount is excessive. Thus, the crystal grain size control becomes unstable, for example, abnormal grain growth occurs rarely, so the strain amount of cold rolling is limited to a range of 5 to 15%.
[0031]
The heat treatment temperature after rolling is one of the main requirements of the present invention. As described above, a moderately fine and uniform crystal grain size obtained by specifying hot rolling and cold rolling conditions, Regardless of the component composition of the steel sheet, the steel sheet having the rolling strain is always subjected to a heat treatment that is sufficiently maintained in the vicinity of the temperature THT calculated by the formula THT (° C.) = 840 + 0.76 × (Ac1-865). An almost constant crystal grain size can be obtained.
Specifically, a crystal grain size in the range of 200 to 500 μm can be stably obtained by performing heat treatment for 90 minutes or more in the temperature range of THT ± 25 ° C. In this case, μmax is 20,000 to 36,000. If the temperature is lower than 840 ° C., sufficient grain growth cannot be achieved, and if it exceeds 990 ° C., the grain growth rate becomes high, and therefore, the grain size control becomes unstable such as rare grain growth. A range is limited to 840-990 degreeC, satisfy | filling the said relationship.
[0032]
【Example】
Steel pieces having the composition shown in Table 1 were produced, and steel sheets having a thickness of 1 to 6 mm were produced under the production conditions shown in Table 2. In the table, the underlined parts are out of the scope of the present invention or the target values of the respective characteristics are not reached. The target value of each characteristic was set to maximum permeability μmax ≧ 20,000, tensile strength ≧ 400 MPa, toughness 0 ° C. Charpy absorbed energy ≧ 50 J / cm 2 .
Among the thick steel plates shown in Table 2, 1-A to 6-F are examples of the present invention, and 7-G to 23-A are comparative examples. Table 2 shows various characteristics of these steel plates manufactured under the manufacturing conditions shown in Table 2.
[0033]
In the examples of the present invention of the steel plates 1-A to 6-F, the crystal grain size is in the range of 200 to 500 μm, and the μmax is in the range of 20,000 to 36,000. Further, the inventive examples of the steel plates 1-A to 6-F are good in both strength and toughness.
On the other hand, since Comparative Example 7-G has high C, 13-M has low Al, 15-O has high N, 17-Q has high Cr, the crystal grain size is small, and the magnetic permeability is low. Low. Since 8-H has low Si, its strength is insufficient and its magnetic permeability is low. Since 9-I is high in Si and 14-N is high in Al, the toughness is low. 10-J has a high Mn, 11-K has a high P, and 12-L has a high S, so the toughness is low and the magnetic permeability is low. Since 16-P has high Cu, the magnetic permeability is low.
[0034]
Further, in Comparative Example 18-A, the heating temperature did not reach Ac3, 19-A had a low rolling reduction at Ar3 + 50 ° C. to Ar3, and 20-A had a winding temperature too high. Has a low cold rolling reduction, and 23-A has a low heat treatment temperature. Therefore, the crystal grain growth is insufficient and the magnetic permeability is low. Since 22-A has a high heat treatment temperature, the crystal grains become too coarse and the toughness is low.
[0035]
[Table 1]
Figure 0004047502
[0036]
[Table 2]
Figure 0004047502
[0037]
【The invention's effect】
According to the present invention, it is possible to provide a magnetic shield structural steel plate having a thickness of 1 to 6 mm and a method for producing the same, having a uniform and stable high permeability and high saturation magnetic flux density, strength and toughness that can be used as structural steel, Its industrial value is extremely high.

Claims (4)

重量%で、
C :0.01%以下、
Si:1〜3%、
Mn:0.5%以下、
P :0.05%以下、
S :0.005%以下、
Ni:0.3%超3%以下、
Al:0.2〜0.8%、
N :0.007%以下
を含有し、残部Feおよび不可避的不純物からなり、結晶粒径が200〜500μmであるフェライト単相組織を有し、板厚1〜6mmであることを特徴とする磁気シールド構造用鋼板。
% By weight
C: 0.01% or less,
Si: 1-3%
Mn: 0.5% or less,
P: 0.05% or less,
S: 0.005% or less,
Ni: more than 0.3% and 3% or less,
Al: 0.2-0.8%
N: 0.007% or less, a balance of Fe and inevitable impurities, a ferrite single-phase structure with a crystal grain size of 200 to 500 μm, and a plate thickness of 1 to 6 mm Steel plate for shield structure.
鋼が、重量%で、
Cu:0.2〜0.8%、
Cr:1.0%以下
のうち1種または2種をさらに含有することを特徴とする請求項1に記載の磁気シールド構造用鋼板。
Steel is weight percent
Cu: 0.2 to 0.8%,
The magnetic shield structural steel plate according to claim 1, further comprising one or two of Cr: 1.0% or less.
最大透磁率が20000以上であることを特徴とする請求項1または2に記載の磁気シールド構造用鋼板。The magnetic permeability structural steel plate according to claim 1 or 2, wherein the maximum magnetic permeability is 20000 or more. 鋼をAc3 点以上1200℃以下の温度に加熱し、Ar3 +50℃〜Ar3 温度での圧下率を30%以上とし、圧延仕上温度がAr1 以上となるように熱間圧延を行い、550℃以下の温度で巻き取った後、圧下率5〜15%の冷間圧延を施して板厚1〜6mmとし、さらに840℃以上990℃以下で、かつ、下記の式で計算される熱処理温度THT±25℃の範囲で、90分以上保持する熱処理を行なうことを特徴とする請求項1乃至3のいずれか1項に記載の磁気シールド構造用鋼板を製造する方法。
THT(℃)=840+0.76×(Ac1−865)
The steel is heated to a temperature not lower than the Ac3 point and not higher than 1200 ° C, hot rolled so that the rolling reduction at Ar3 + 50 ° C to Ar3 temperature is not less than 30%, and the rolling finishing temperature is not lower than Ar1. After winding at a temperature, cold rolling with a rolling reduction of 5 to 15% is performed to obtain a sheet thickness of 1 to 6 mm. Further, a heat treatment temperature THT ± 25 that is 840 ° C. or more and 990 ° C. or less and calculated by the following formula The method for producing a steel sheet for a magnetic shield structure according to any one of claims 1 to 3, wherein a heat treatment is performed in a range of ° C for 90 minutes or more.
THT (° C.) = 840 + 0.76 × (Ac1−865)
JP29206599A 1999-10-14 1999-10-14 Steel plate for magnetic shield structure and manufacturing method thereof Expired - Fee Related JP4047502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29206599A JP4047502B2 (en) 1999-10-14 1999-10-14 Steel plate for magnetic shield structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29206599A JP4047502B2 (en) 1999-10-14 1999-10-14 Steel plate for magnetic shield structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001107202A JP2001107202A (en) 2001-04-17
JP4047502B2 true JP4047502B2 (en) 2008-02-13

Family

ID=17777090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29206599A Expired - Fee Related JP4047502B2 (en) 1999-10-14 1999-10-14 Steel plate for magnetic shield structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4047502B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939623B2 (en) 2000-12-19 2005-09-06 Posco High strength steel plate having superior electromagnetic shielding and hot-dip galvanizing properties
DE102017216982A1 (en) * 2017-09-25 2019-03-28 Thyssenkrupp Ag Monolithic iron-based shielding products
KR101977507B1 (en) * 2017-12-22 2019-05-10 주식회사 포스코 Steel sheet for magnetic field shielding and method for manufacturing the same
JP7211532B2 (en) * 2019-11-15 2023-01-24 日本製鉄株式会社 Method for manufacturing non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2001107202A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6390876B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
KR20170032429A (en) Non-oriented electromagnetic steel sheet having excellent magnetic characteristics
WO2019132363A1 (en) Double oriented electrical steel sheet and method for manufacturing same
JP2002294408A (en) Iron-based vibration damping alloy and manufacturing method therefor
KR20150016434A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4047502B2 (en) Steel plate for magnetic shield structure and manufacturing method thereof
EP0897993A2 (en) Electromagnetic steel sheet having excellent magnetic properties and production method thereof
KR101665950B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR102241985B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2000234152A (en) Steel for magnetic shielding structure and production of thick steel plate thereof
JPS6361800B2 (en)
JP2001107201A (en) Steel sheet for magnetic shield structure and its production method
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JP2000064000A (en) Soft magnetic stainless steel sheet and its production
KR102271303B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102328127B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JPH024920A (en) Manufacture of thick electrical plate for d.c. magnetization
JPH03134140A (en) Silicon steel sheet for magnetic shielding and its manufacture
JP2503111B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties
JPH0753887B2 (en) Method for manufacturing cold rolled steel sheet with excellent magnetic properties and formability
JP2000234127A (en) Production of hot rolled steel sheet for magnetic shield
KR20150126331A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2503123B2 (en) Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4047502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees