EP3541969B1 - Procédé de fabrication d'une bande en alliage co-fe, bande en alliage co-fe et paquet de tôles - Google Patents

Procédé de fabrication d'une bande en alliage co-fe, bande en alliage co-fe et paquet de tôles Download PDF

Info

Publication number
EP3541969B1
EP3541969B1 EP17811215.7A EP17811215A EP3541969B1 EP 3541969 B1 EP3541969 B1 EP 3541969B1 EP 17811215 A EP17811215 A EP 17811215A EP 3541969 B1 EP3541969 B1 EP 3541969B1
Authority
EP
European Patent Office
Prior art keywords
strip
thickness
less
temperature
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17811215.7A
Other languages
German (de)
English (en)
Other versions
EP3541969A1 (fr
Inventor
Niklas Volbers
Jan Frederik Fohr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP3541969A1 publication Critical patent/EP3541969A1/fr
Application granted granted Critical
Publication of EP3541969B1 publication Critical patent/EP3541969B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Definitions

  • the invention relates to a method for manufacturing a CoFe alloy strip and a CoFe alloy strip.
  • Soft magnetic cobalt-iron alloys with a Co content of 49% are used due to their high saturation polarization.
  • One class of CoFe alloys has a composition of 49% Fe, 49% Co and 2% V by weight, which may also contain additions of Ni, Nb, Zr, Ta or B. With such a composition, a saturation polarization of about 2.3 T is achieved with a sufficiently high electrical resistance of 0.4 ⁇ m at the same time.
  • Such alloys are used, for example, as highly saturating flux guides or for applications in electrical machines.
  • stators or rotors are typically manufactured in the form of laminated packages. The material is used in strip thicknesses ranging from 0.50 mm to very thin dimensions of 0.050 mm.
  • the material is subjected to a heat treatment, also known as final magnetic annealing.
  • This heat treatment takes place above the recrystallization temperature and below the ⁇ / ⁇ phase transition, usually in the range from 700°C to 900°C.
  • strip made of CoFe is typically not offered in a final annealed condition.
  • Final annealed strip is soft due to a recrystallized structure and at the same time brittle due to the adjustment of order and can therefore only be punched inadequately.
  • cutting or stamping processes lead to a significant deterioration in the magnetic properties. For this reason, CoFe sheets undergo final annealing after shaping, either on sheet metal panels, on individual laminations or on finished sheet metal packages.
  • the magnetic final annealing also changes the dimensions of the sheet. This increase in length is in the range of 0.03% to 0.20%.
  • the pamphlet JP S62 188756 A discloses a foil having a composition (Fe 1-a Co a ) 100-x M x , where M is one or more of Ti, V, Cr, Mn, Si, Zr, Nb, Mo, Sn, Pb, Zn, Ta , W, Ni, and Al, a denotes the ratio of Co to Fe of 0.2-0.6, and x is 0.05-10% by weight.
  • the object is therefore to specify a strip made from a CoFe alloy and a method for producing a strip made from a CoFe alloy which exhibits reduced growth after the final magnetic anneal.
  • a method of manufacturing CoFe alloy ribbon comprising the following. First, a melt consisting of 35% by weight ⁇ Co ⁇ 55% by weight, 0% by weight ⁇ V ⁇ 3% by weight, 0% by weight ⁇ Ni ⁇ 2% by weight, 0% by weight % ⁇ Nb ⁇ 0.50 wt%, 0 wt% ⁇ Zr + Ta ⁇ 1.5 wt%, 0 wt% ⁇ Cr ⁇ 3 wt%, 0 wt% % ⁇ Si ⁇ 3 wt%, 0 wt% ⁇ Al ⁇ 1 wt%, 0 wt% ⁇ Mn ⁇ 1 wt%, 0 wt% ⁇ B ⁇ 0.25 wt% .-%, 0 wt .-% ⁇ C ⁇ 0.1 wt .-%, remainder Fe and up to 1 wt .-% impurities provided, the impurities one or
  • the hot-rolled strip is then quenched from a temperature above 700°C to a temperature below 200°C.
  • the hot-rolled strip is cold-rolled to form an intermediate strip with a thickness D 2 , the intermediate strip is subjected to intermediate annealing at a temperature above 700° C. and cooled to a temperature of above 700° C. to a temperature below 200° C. in a gaseous medium.
  • Intermediate annealing is carried out continuously at a speed of 1 m/min to 10 m/min, the time the strip stays in the heating zone of the continuous furnace at a temperature of 700°C to 1100°C, preferably 800°C to 1000°C between 30 seconds and 5 minutes and the intermediate annealing of the intermediate strip takes place in a continuous process at a temperature of 800°C to 900°C or 1000°C to 1100°C.
  • the heat-treated intermediate strip is cold-rolled with a metallically bright surface to a strip with a thickness D 3 , the degree of cold deformation (D 2 -D 3 )/D 2 being ⁇ 80%, preferably ⁇ 60% and 0.05 mm ⁇ D 3 ⁇ is 0.5mm.
  • the heat-treated intermediate strip After the continuous intermediate annealing of the cold-rolled intermediate strip, no quenching and pickling is carried out, so that the heat-treated intermediate strip has a bright metallic surface.
  • the heat-treated intermediate strip is further processed with this metallically bright surface by further cold rolling.
  • the manufacturing process is simplified.
  • the degree of cold deformation of the last cold rolling step is limited, which allows the resulting strip to have a growth dl/l 0 in the longitudinal direction of the strip less than 0.08%, preferably 0.06% and/or in the cross direction of the tape less than 0.08%, preferably 0.06%.
  • l 0 denotes the initial length before final annealing
  • dl the absolute change in length after final annealing
  • dl/l 0 the relative change in length based on the initial length.
  • the final magnetic annealing of this CoFe alloy takes place above the recrystallization temperature and below the ⁇ / ⁇ phase transition.
  • the recrystallization temperature and the temperature at which the ⁇ / ⁇ phase transition takes place depends on the composition of the CoFe alloy.
  • the magnetic Final annealing carried out in the range from 700°C to 900°C.
  • an adjustment of order takes place, ie a B2 superstructure is formed. Due to the magnetic final annealing and the associated adjustment of order, there is a permanent change in the dimensions of the sheet at room temperature or a permanent increase in length.
  • a strip with an initial length l 0 at room temperature before the final anneal thus has a length l 0 + dl after the final anneal and at the same room temperature. In some embodiments, dl is greater than 0.
  • the permanent growth dl/l 0 in the longitudinal direction of the strip is less than 0.08%, preferably 0.06% and/or in the transverse direction of the strip is less than 0.08%, preferably 0.06%.
  • This small permanent growth is not achieved in CoFe alloy strip produced with any of the cold working ratios of the final cold rolling step greater than 80%.
  • the thickness of the strip which is achieved by hot rolling and/or cold rolling, as well as the thickness of the strip on which the intermediate annealing is carried out, can be defined more precisely.
  • the strip may have a thickness D 1 of 1.0 mm ⁇ D 1 ⁇ 2.5 mm after hot rolling, and a thickness D 2 of 0.1 mm ⁇ D 2 ⁇ 1.0 mm before intermediate annealing second cold rolling, the strip has a thickness D 3 of 0.05 mm ⁇ D 3 ⁇ 0.5 mm.
  • the thickness of the hot-rolled strip is reduced from D 1 to D 2 by means of cold rolling and/or the thickness of the intermediate strip is reduced from D 2 to D 3 reduced by cold rolling. No further intermediate annealing is therefore carried out.
  • the conditions of the intermediate anneal in the pass are selected so that the strip can be cold rolled after the intermediate anneal.
  • the intermediate strip after the intermediate annealing, has a structure in which a ferritically recrystallized portion has an average grain size of less than 10 ⁇ m and/or a ferritically recrystallized portion has no grains larger than 10 ⁇ m.
  • This structure can be created, for example, by a temperature of 800°C to 900°C.
  • the intermediate strip has a bending number before fracture of at least 20 after the intermediate annealing in a reverse bending test.
  • the flex fatigue test can be used to determine the cold formability of the strip.
  • Intermediate continuous annealing is carried out at a speed of 1 m/min to 10 m/min, and the residence time of the strip in the heating zone of the continuous furnace with the temperature of 700°C to 1100°C, preferably 800°C to 1000°C is between 30 seconds and 5 minutes.
  • the intermediate strip is continuously annealed at a temperature of 800°C to 900°C or 1000°C to 1100°C.
  • the annealing temperature and belt speed parameters can be adjusted in order to set the properties shown here.
  • the strip may have essentially a deformation microstructure or a mixed microstructure with portions of a former ⁇ -phase in a matrix of an ⁇ -phase.
  • a deformation structure can be achieved at a temperature of 800°C to 900°C.
  • a mixed structure with portions of a former ⁇ -phase in a matrix of an ⁇ -phase can be achieved at a temperature of 1000°C to 1100°C.
  • the intermediate annealing can be carried out under an inert gas or a dry hydrogen-containing atmosphere with a dew point lower than -30°C.
  • the intermediate strip is cooled to a temperature lower than 200°C in a gaseous medium such as an inert gas or a dry hydrogen-containing atmosphere.
  • a gaseous medium such as an inert gas or a dry hydrogen-containing atmosphere.
  • the intermediate strip is not quenched, for example in water.
  • the hot rolling strain rate is adjusted so that the cold rolling strain rate remains below a predetermined limit in order to keep the elongation after the final magnetic anneal low.
  • This method of manufacturing a CoFe alloy includes the following. A melt consisting of 35% by weight ⁇ Co ⁇ 55% by weight, 0% by weight ⁇ V ⁇ 3% by weight, 0% by weight ⁇ Ni ⁇ 2% by weight, 0% by weight % ⁇ Nb ⁇ 0.50 wt%, 0 wt% ⁇ Zr + Ta ⁇ 1.5 wt%, 0 wt% ⁇ Cr ⁇ 3 wt%, 0 wt% ⁇ Si ⁇ 3 wt%, 0 wt% ⁇ Al ⁇ 1 wt%, 0 wt% ⁇ Mn ⁇ 1 wt%, 0 wt% ⁇ B ⁇ 0.25 wt% %, 0% by weight ⁇ C ⁇ 0.1% by weight, remainder Fe and up to 1% by weight impurities is provided
  • the melt is cast under vacuum and then solidified into a cast block.
  • the ingot is hot rolled into a slab and then into a strip having a thickness D 1 where 1 mm ⁇ D 1 ⁇ 2 mm.
  • the strip is then quenched from a temperature above 700°C to a temperature below 200°C.
  • the strip is cold rolled and the thickness reduced from D 1 to a thickness D 2 , the degree of cold deformation (D 1 -D 2 )/D 1 being ⁇ 80%, preferably ⁇ 60%.
  • the final thickness D 2 is 0.05 mm ⁇ D 2 ⁇ 0.5 mm.
  • the degree of deformation during hot rolling and thus the thickness D 1 of the strip after hot rolling and before cold rolling is adjusted in such a way that the desired final thickness D 2 can be achieved with a degree of deformation of less than 80%, preferably less than 60% .
  • the degree of deformation of hot rolling is increased and the degree of deformation of cold rolling is correspondingly reduced.
  • the heat treatment of the ribbon can take place under a dry atmosphere containing hydrogen.
  • Both alternative methods may further include forming at least one sheet from the strip.
  • the sheet metal can be stamped from the strip.
  • a plurality of laminations can be joined to form a lamination stack.
  • the strip or the sheet or the laminated core can also be heat-treated at a temperature between 700°C and 900°C, i.e. a final magnetic anneal can be carried out. This heat treatment takes place above the recrystallization temperature and below the temperature of the phase transition ⁇ / ⁇ , mostly in the range of 700°C to 900°C.
  • the order is adjusted, i.e. a B2 superstructure is formed, and the desired magnetic properties, for example a saturation polarization of around 2.3 T and an electrical resistance of 0.4 ⁇ m, are generated.
  • a growth dl/l 0 in the longitudinal direction of the strip is less than 0.08% and/or in the transverse direction of the strip is less than 0.08% and/or a difference between the longitudinal growth and the transverse direction growth of the tape less than 0.06%, preferably less than 0.04%.
  • l 0 denotes the initial length before final annealing
  • dl the absolute change in length after final annealing
  • dl/l 0 the relative change in length based on the initial length.
  • a strip with an initial length l 0 at room temperature before final annealing thus has a length l 0 + dl after final annealing and at the same room temperature.
  • a strip made of a CoFe alloy which has a composition consisting of 35% by weight ⁇ Co ⁇ 55% by weight, 0% by weight ⁇ V ⁇ 3% by weight, 0% by weight ⁇ Ni ⁇ 2 wt%, 0 wt% ⁇ Nb ⁇ 0.50 wt%, 0 wt% ⁇ Zr + Ta ⁇ 1.5 wt%, 0 wt% ⁇ Cr ⁇ 3 wt%, 0 wt% ⁇ Si ⁇ 3 wt%, 0 wt% ⁇ Al ⁇ 1 wt%, 0 wt% ⁇ Mn ⁇ 1 wt%, 0 Wt of the groups O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W.
  • the tape has a thickness d, where 0.05 mm ⁇ d ⁇ 0.5 mm, a Vickers hardness greater than 300 and an elongation at break less than 5%.
  • the strip After heat treatment of the strip at a temperature between 700°C and 900°C, the strip has a growth dl/l 0 in the longitudinal direction of the strip less than 0.08%, preferably 0.06% and/or in the transverse direction of the strip less than 0.08%, preferably 0.06%.
  • This strip thus has mechanical properties that are present in a cold-rolled condition, namely an elongation at break of less than 5% and a Vickers hardness greater than 300.
  • This strip can be further processed, for example to form sheets from the strip and to cut the sheets a laminated core that is heat treated to adjust the magnetic properties.
  • This heat treatment of the strip is referred to as a final magnetic anneal because it serves to adjust the magnetic properties and can be carried out at a temperature between 700°C and 900°C.
  • a strip with an initial length l 0 at room temperature before final annealing thus has a length l 0 + dl after final annealing and at the same room temperature.
  • dl is greater than 0.
  • the strip according to the invention makes it possible to produce sheet metal sections, to subject them to final annealing in order to set an optimal magnetic field and then to obtain a sufficiently high dimensional accuracy so that further correction of the geometry can be dispensed with.
  • the possible disadvantages of subsequent correction of the geometry eg by grinding, are a deterioration in the magnetic permeability at these points, the risk of eddy currents, since grinding processes can result in smearing of the lamellae, and higher costs.
  • low Air gaps are set, which leads to improved efficiency of the electric machine.
  • the band may have a reduced thickness, for example a thickness of 0.05 mm ⁇ d ⁇ 0.356 mm. Furthermore, a multiplicity of laminations can form a laminated core.
  • a difference between the permanent growth in the longitudinal direction and the permanent growth in the transverse direction of the ribbon is less than 0.06%, preferably less than 0.04%.
  • the CoFe ribbon according to the invention with significantly reduced growth has the further advantage that a stamping tool can be designed in such a way that it can be used both for other alloys such as SiFe and for CoFe. Given the high costs for such a tool, this leads to an economic advantage.
  • CoFe-based alloys are available under the trade names VACOFLUX 50, VACOFLUX 48, VACODUR 49, VACODUR 50, VACODUR S Plus, Rotelloy, HIPERCO 50, Permendur, AFK and 1J22.
  • the impurities can contain one or more of the group O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo and W.
  • figure 1 shows a graph of measured average growth dl/l0 after a final anneal in % in the longitudinal direction on the 50% CoFe materials VACOFLUX 50 (49Fe-49Co-2V) and as a comparative example HIPERCO 50 (49Fe-49Co-2V).
  • VACOFLUX 50 49Fe-49Co-2V
  • HIPERCO 50 49Fe-49Co-2V
  • the samples examined had a gauge after hot rolling of 2mm or greater, and are cold rolled to different final gauges and thus undergo different degrees of cold working.
  • l 0 denotes the initial length before final annealing
  • dl the absolute change in length after final annealing
  • dl/l 0 the relative change in length based on the initial length.
  • This change in length or growth is a permanent change in length or growth that is caused by the final magnetic annealing and the associated adjustment of order.
  • a sample with an initial length l 0 at room temperature before the final annealing thus has a length of l 0 + dl after the final annealing and at the same room temperature.
  • the permanent change in elongation can be reduced if the degree of cold working is reduced.
  • the degree of cold working can be reduced by performing an intermediate anneal between two cold working steps, each with a smaller cold working degree. Due to the adjustment of order through intermediate annealing, however, a CoFe alloy is subsequently brittle and can no longer be processed. Consequently, the brittleness is conventionally eliminated again by a subsequent quenching process.
  • this quenching process is complex and associated with technical disadvantages and high costs.
  • the reduction in the degree of cold deformation for a given final thickness is achieved by introducing intermediate annealing or by reducing the hot-rolled thickness.
  • intermediate annealing is carried out in a continuous process in such a way that the strain hardening caused by rolling is reduced and at the same time, by avoiding coarse-grained ferrite, a structure that can be rolled is created despite the brittle adjustment of order. Furthermore, after the intermediate annealing, the strip is not quenched, for example in water or oil, and is not pickled, so that the strip is cold-rolled with a bright metallic surface. As a result, the process is simpler and less expensive to carry out.
  • the cold deformation should be at most 80%, preferably up to 60%, as illustrated by the following examples and test results.
  • Table 1 intermediate anneal to thickness final thickness no 1.0mm 0.5mm 0.35mm 0.20mm 0.10mm 0.35mm 83% 65% (*) 30% (*) - - - 0.20mm 90% 80% (*) 60% (*) 43% (*) - - 0.10mm 95% 90% 80% (*) 71% (*) 50% (*) - 0.05mm 98% 95% 90% 86% 75% (*) 50% (*)
  • Table 1 shows the degree of cold working as a function of the final thickness and intermediate annealing. A hot-rolled thickness of 2 mm was assumed. The states marked with (*) represent states according to the invention.
  • a strip of the VACODUR 49 alloy was used as the material, with a composition of 48.6% by weight Co, 1.86% by weight V, 0.09% by weight Nb, C ⁇ 0.0070% by weight. %, balance Fe and impurities.
  • the strip was hot-rolled to a thickness of 2 mm and then quenched in an ice-salt water bath at a temperature above 700°C. The strip could then be cold-rolled to a thickness of 0.35 mm.
  • Table 2 shows the measured mechanical properties of the continuously annealed strips of variants 1 to 5.
  • the tensile specimens were taken along the direction of rolling.
  • the bending cycles were determined on strips (longitudinal/transverse to the rolling direction).
  • a bend test 900°C 6m/min transverse was not available.
  • figure 2 shows a graph of yield point R p0.2 and tensile strength R m of the tensile specimens versus the temperature T of the continuous annealing at 6 m/min.
  • the condition Ref. denotes the condition of a sample without continuous annealing and thus a comparative condition.
  • a metallographic examination shows that the different variants have very different structures, which can be divided into three groups.
  • an intermediate annealing in the two-phase area ⁇ / ⁇ leads to a mixed structure with parts of the former ⁇ -phase in an ⁇ -matrix.
  • the present structure was achieved at a temperature of 1000°C.
  • figure 3 shows optical images of the structures of three samples after intermediate annealing at different temperatures.
  • Variant 1 was heat treated at 850°C 6m/min and shows good rollability, N > 20, a deformation structure and the beginning of recrystallization.
  • Variant 4 was heat-treated at 1000°C at 6 m/min and shows good rollability, N > 20, a non-uniform ferrite, mixed structure with portions of the former ⁇ -phase in an ⁇ -matrix.
  • Table 3 shows the influence of additional cold working on the mechanical properties of continuously annealed VACODUR 49. All annealed strips were rolled on a commercial 20-high mill. A strong Hardening of the material is shown as early as the first stitch, indicating that the material is in the ordered state.
  • variants 1, 4 and 5 were manufactured according to variants 1, 4 and 5, could be rolled up to a thickness of 0.10 mm.
  • variants 2 and 3 showed strong brittleness and were sensitive to tension. Therefore, the material of variant 2 could not be rolled and the material of variant 3 could only be rolled to a limited extent.
  • Table 4 shows the growth in length (measured in longitudinal direction) after final magnetic annealing of VACODUR 49, hot-rolled thickness 2 mm. Both variants, ie variants 1 and 4, therefore exhibit significantly reduced growth with a small strip thickness.
  • the tape obtained in this way was characterized with regard to length growth with an intermediate thickness of 0.25 mm and with different final thicknesses of 0.20 mm and 0.10 mm.
  • the measurement was carried out on individual strips with a length of 165 mm, the length of which was measured exactly before and after the final annealing (6h 880°C under H 2 ).
  • the change in length dl can be determined from the difference in the measured lengths. If you put this in relation to the initial length l 0 , you get the relative increase in length dl/l 0 .
  • the measurements listed in Table 4 were always carried out in the longitudinal direction, ie the growth was determined along the direction of rolling.
  • the increase in length at a thickness of 0.35 mm is already 0.129%.
  • the growth increases up to 0.195% at a thickness of 0.10 mm.
  • variant 1 according to the invention has a significantly reduced change in length at the final thickness of 0.10 mm. So was post on the tape the final magnetic anneal at 0.10 mm measured an average growth dl/l 0 in the longitudinal direction of 0.054%.
  • Variant 4 tape also showed reduced growth.
  • An average growth dl/l 0 in the longitudinal direction of 0.000% was measured, with the individual values being between +0.013% and -0.010%.
  • the anisotropy of the growth i.e. the difference between the growth in length along and across the ribbon, is examined.
  • Table 5 shows the growth in length of the VACODUR 49 samples after additional final annealing of 6 hours at 880°C, measured on tensile samples or longitudinal strips 165 mm x 20 mm.
  • Variant 1 of Table 5 shows the advantageous property that growth in the longitudinal and transverse directions is almost identical.
  • , is only 0.002% for a strip thickness of 0.10 mm. It is thus possible to stock punching tools symmetrically. Stamped round parts remain round after final annealing.
  • Variant 4 of Table 5 still has a slight anisotropy, but also shows a clearly small increase in length in terms of absolute value.
  • is, at about 0.06% of the original length, much less than the difference observed in conventionally manufactured tape, which is about 0.10%.
  • both variants show properties in the final thickness that correspond to what is obtained in the starting material with a thickness of 0.35 mm without continuous annealing.
  • the following figure shows the new curves after final magnetic annealing for different strip thicknesses.
  • figure 4 shows magnetization curves and the influence of further cold working on the new curve B(H) of continuously annealed strip (850°C, 1050°C; 6 m/min each). The measurements were carried out on stamped rings after a final anneal of 6 hours at 880°C in a dry H 2 atmosphere.
  • the second approach according to the invention is to reduce the hot rolling gauge so that with a final gauge of 0.50 mm or thinner, the cold working on the final gauge is a maximum of 80%.
  • the thickness of the hot-rolled strip is typically 2 mm to 4 mm. With a final thickness of 0.35 mm, a reduction to 1 mm can reduce the degree of cold deformation and thus the growth in length.
  • Hot-rolled strips were produced in the thicknesses according to Table 6 (WW thickness) and cold-rolled to different final thicknesses.
  • Table 6 final thickness WW thickness 3.5 mm WW thickness 2.0 mm WW thickness 1.5 mm WW thickness 1.0 mm 0.35mm 90% 83% 77% (*) 65% (*) 0.20mm 94% 90% 87% 80% (*) 0.10mm 97% 95% 93% 90% 0.05mm 99% 98% 97% 95%
  • Table 6 shows degree of cold working as a function of final gauge and hot-rolled gauge (without intermediate annealing).
  • the states marked with (*) represent tapes according to the invention.
  • figure 5 shows a graph of growth in length (dl/l 0 ) of strips of different hot-rolled gauges made of VACOFLUX 50 along the rolling direction after final annealing versus the degree of cold deformation (D 1 -D 2 )/D 1 .
  • the change in length in the rolling direction versus the degree of cold deformation is shown for two different samples A and B after final magnetic annealing.
  • D 2 With a constant cold-rolled thickness D 2 of 0.35 mm, the hot-rolled thickness D 1 was varied between 1.0 mm and 3.5 mm. For each data point, the associated hot rolled thickness (WW thickness) is marked with an arrow.
  • continuous annealing can also be dispensed with as long as cold working is up to 80%, preferably up to 60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Claims (15)

  1. Procédé de production d'une bande constituée à partir d'un alliage CoFe selon la revendication 13, consistant à :
    préparer une fonte constituée de 35 % en poids ≤ Co ≤ 55 % en poids, 0 % en poids ≤ V ≤ 3 % en poids, 0 % en poids ≤ Ni ≤ 2 % en poids, 0 % en poids ≤ Nb ≤ 0,50 % en poids, 0 % en poids ≤ Zr +Ta ≤ 1,5 % en poids, 0 % en poids ≤ Cr ≤ 3 % en poids, 0 % en poids ≤ Si ≤ 3 % en poids, 0 % en poids ≤ Al ≤ 1 % en poids, 0 % en poids ≤ Mn ≤ 1 % en poids, 0 % en poids ≤ B ≤ 0,25 % en poids, 0 % en poids ≤ C ≤ 0,1 % en poids,
    le reste étant Fe ainsi que jusqu'à 1% en poids d'impuretés, les impuretés pouvant présenter un ou plusieurs parmi les groupes O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo et W,
    faire couler la fonte sous vide et ensuite la faire solidifier en lingot,
    laminer à chaud le lingot en une brame et ensuite en une bande laminée à chaud ayant une épaisseur D1, puis refroidir la bande d'une température inférieure à 700°C à une température inférieure à 200°C,
    laminer à froid la bande laminée à chaud en une bande intermédiaire ayant une épaisseur D2,
    procéder au recuit intermédiaire de la bande intermédiaire au passage à une température inférieure à 700°C, la bande intermédiaire étant refroidie d'une température inférieure à 700°C jusqu'à une température inférieure à 200°C dans un milieu gazeux, le recuit intermédiaire étant réalisé en passage continu à une vitesse allant de 1 m/min à 10 m/min, la durée de séjour de la bande dans la zone de chauffage du four à passage continu à la température allant de 700°C à 1 100°C, de préférence de 800°C à 1 000°C est comprise entre 30 secondes et 5 minutes et le recuit intermédiaire de la bande intermédiaire en passage continu s'effectue à une température allant de 800°C à 900°C ou de 1 000°C à 1 100°C,
    laminer à froid de la bande intermédiaire traitée thermiquement au moyen d'une surface métallique à nu en une bande ayant une épaisseur D3, le degré de déformation à froid est (D2-D3)/D2 ≤ 80 %, de préférence ≤ 60 %, et D3 est 0,05 mm ≤ D3 ≤ 0,5 mm.
  2. Procédé selon la revendication 1, dans lequel 1,0 mm ≤ D1 ≤ 2,5 mm et/ou 0,1 mm ≤ D2 ≤ 1,0 mm.
  3. Procédé selon la revendication 1 ou la revendication 2, dans lequel après le recuit intermédiaire la bande intermédiaire présente une structure dont une proportion recristallisée en phase ferritique présente une granulométrie moyenne inférieure à 10 µm ou dont une proportion recristallisée en phase ferritique présente aucun grain ayant une taille supérieure à 10 µm.
  4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel après le recuit intermédiaire la bande présente sensiblement une structure de déformation ou une structure mixte avec des proportions d'une ancienne phase y dans une matrice α.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel après le recuit intermédiaire la bande intermédiaire est refroidie en passage continu à l'air à une température inférieure à 200°C.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le recuit intermédiaire est effectué sous un gaz inerte ou sous atmosphère d'hydrogène sèche.
  7. Procédé de fabrication d'une bande constituée à partir d'un alliage CoFe selon la revendication 13, consistant à :
    préparer une fonte constituée de 35 % en poids ≤ Co ≤ 55 % en poids, 0 % en poids ≤ V ≤ 3 % en poids, 0 % en poids ≤ Ni ≤ 2 % en poids, 0 % en poids ≤ Nb ≤ 0,50 % en poids, 0 % en poids ≤ Zr +Ta ≤ 1,5 % en poids, 0 % en poids ≤ Cr ≤ 3 % en poids, 0 % en poids ≤ Si ≤ 3 % en poids, 0 % en poids ≤ Al ≤ 1 % en poids, 0 % en poids ≤ Mn ≤ 1 % en poids, 0 % en poids ≤ B ≤ 0,25 % en poids, 0 % en poids ≤ C ≤ 0,1 % en poids, le reste étant Fe et jusqu'à 1% en poids d'impuretés, les impuretés pouvant présenter un ou plusieurs parmi les groupes O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo et W,
    faire couler la fonte sous vide et ensuite la faire solidifier en lingot, laminer à chaud le lingot en une brame et ensuite en une bande ayant
    une épaisseur D1, 1 mm ≤ D1 ≤ 2 mm, suivi par le refroidissement de la bande d'une température supérieure à 700°C à une température inférieure à 200°C,
    laminer à froid la bande et réduire l'épaisseur de D1 à une épaisseur D2, le degré de déformation (D1-D2)/D1≤ 80 %, de préférence ≤ 60 %, et 0,05 mm ≤ D2 ≤ 0,5 mm.
  8. Procédé selon l'une quelconque des revendications 1 à 7, qui consiste en outre à :
    former au moins une tôle à partir de la bande.
  9. Procédé selon la revendication 7 ou la revendication 8 qui consiste en outre à :
    assembler une pluralité de tôle pour former un paquets de tôles.
  10. Procédé selon l'une quelconque des revendications 1 à 9, qui consiste en outre à :
    traiter thermiquement la bande à une température comprise entre 700°C et 900°C.
  11. Procédé selon la revendication 10, dans lequel après le traitement thermique de la bande, une croissance restante dl/l0 dans la direction longitudinale de la bande est inférieure à 0,08 % et/ou dans la direction transversale de la bande est inférieure à 0,08 %, l0 représentant la longueur de sortie avant le traitement thermique, dl représentant l'allongement absolu après le traitement thermique et dl/l0 représente l'allongement relatif par rapport à la longueur de sortie ou après le traitement thermique de la bande une différence entre la croissance restante dans la direction longitudinale et la croissance restante dans la direction transversale de la bande étant inférieure à 0,06 %, de préférence inférieure à 0,04 %.
  12. Procédé selon la revendication 10 ou la revendication 11, dans lequel le traitement thermique de la bande a lieu sous atmosphère d'hydrogène sèche.
  13. Bande constituée d'un alliage CoFe,
    qui est constituée de 35 % en poids ≤ Co ≤ 55 % en poids, 0 % en poids ≤ V ≤ 3 % en poids, 0 % en poids ≤ Ni ≤ 2 % en poids, 0 % en poids ≤ Nb ≤ 0,50 % en poids, 0 % en poids ≤ Zr +Ta ≤ 1,5 % en poids, 0 % en poids ≤ Cr ≤ 3 % en poids, 0 % en poids ≤ Si ≤ 3 % en poids, 0 % en poids ≤ Al ≤ 1 % en poids, 0 % en poids ≤ Mn ≤ 1 % en poids, 0 % en poids ≤ B ≤ 0,25 % en poids, 0 % en poids ≤ C ≤ 0,1 % en poids, le reste étant Fe et jusqu'à 1% en poids d'impuretés, les impuretés pouvant présenter un ou plusieurs parmi les groupes O, N, S, P, Ce, Ti, Mg, Be, Cu, Mo et W, la bande présentant une épaisseur d, 0,05 ≤ d ≤ 0,5 mm, une dureté de Vickers HV10 supérieure à 300 et un allongement après rupture inférieur à 5 % et après un traitement thermique de la bande à une température comprise entre 700°C et 900°C une croissance restante dl/l0 dans la direction longitudinale de la bande est inférieure à 0,08 %, de préférence 0,06 % et/ou dans la direction transversale de la bande est inférieure à 0,08 %, de préférence 0,06 %, l0 représentant la longueur de sortie avant le traitement thermique, dl représentant l'allongement absolu après le traitement thermique et dl/l0 représentant l'allongement relatif par rapport à la longueur de sortie.
  14. Bande selon la revendication 13, dans laquelle 0,05 mm ≤ d ≤ 0,356 mm.
  15. Paquet de tôles qui comprend une pluralité de tôles, qui forment le paquet de tôle, les tôles étant formées à partir de la bande selon la revendication 13 ou la revendication 14.
EP17811215.7A 2016-11-18 2017-11-17 Procédé de fabrication d'une bande en alliage co-fe, bande en alliage co-fe et paquet de tôles Active EP3541969B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016222805.6A DE102016222805A1 (de) 2016-11-18 2016-11-18 Halbzeug und Verfahren zum Herstellen einer CoFe-Legierung
PCT/EP2017/079682 WO2018091694A1 (fr) 2016-11-18 2017-11-17 PROCÉDÉ DE FABRICATION D'UNE BANDE EN ALLIAGE CoFe ET DEMI-PRODUIT CONTENANT LADITE BANDE

Publications (2)

Publication Number Publication Date
EP3541969A1 EP3541969A1 (fr) 2019-09-25
EP3541969B1 true EP3541969B1 (fr) 2023-06-28

Family

ID=60627588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17811215.7A Active EP3541969B1 (fr) 2016-11-18 2017-11-17 Procédé de fabrication d'une bande en alliage co-fe, bande en alliage co-fe et paquet de tôles

Country Status (4)

Country Link
US (1) US20190360065A1 (fr)
EP (1) EP3541969B1 (fr)
DE (1) DE102016222805A1 (fr)
WO (1) WO2018091694A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019107422A1 (de) * 2019-03-22 2020-09-24 Vacuumschmelze Gmbh & Co. Kg Band aus einer Kobalt-Eisen-Legierung, Blechpaket und Verfahren zum Herstellen eines Bands aus einer Kobalt-Eisen-Legierung
EP3957757B1 (fr) * 2020-08-18 2023-03-01 Vacuumschmelze GmbH & Co. KG Procédé de production d'une bande et d'un feuilletage d'alliage cofe
US11827961B2 (en) 2020-12-18 2023-11-28 Vacuumschmelze Gmbh & Co. Kg FeCoV alloy and method for producing a strip from an FeCoV alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065118A (en) * 1959-01-16 1962-11-20 Gen Electric Treatment of iron-cobalt alloys
US3024141A (en) * 1960-08-02 1962-03-06 Allegheny Ludlum Steel Processing magnetic material
DE1180954B (de) * 1961-12-09 1964-11-05 Vacuumschmelze Ag Verfahren zur Verbesserung der magnetischen Eigenschaften von Eisen-Kobalt-Legierungen
US3634072A (en) * 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
JPS62188756A (ja) * 1986-02-13 1987-08-18 Kawasaki Steel Corp 方向性高飽和磁束密度薄帯およびその製造方法
IL128067A (en) * 1998-02-05 2001-10-31 Imphy Ugine Precision Iron-cobalt alloy
US6685882B2 (en) * 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
DE10320350B3 (de) * 2003-05-07 2004-09-30 Vacuumschmelze Gmbh & Co. Kg Hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierung
DE102005034486A1 (de) 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Verfahren zur Herstellung eines weichmagnetischen Kerns für Generatoren sowie Generator mit einem derartigen Kern
US9243304B2 (en) * 2011-07-01 2016-01-26 Vacuumschmelze Gmbh & Company Kg Soft magnetic alloy and method for producing a soft magnetic alloy
WO2017016604A1 (fr) * 2015-07-29 2017-02-02 Aperam Tôle ou bande en alliage feco ou fesi ou en fe et son procédé de fabrication, noyau magnétique de transformateur réalisé à partir d'elle et transformateur le comportant
JP2019537664A (ja) * 2016-10-21 2019-12-26 シーアールエス ホールディングス, インコーポレイテッドCrs Holdings, Incorporated 軟磁性Fe−Co合金における規則成長の減少

Also Published As

Publication number Publication date
US20190360065A1 (en) 2019-11-28
DE102016222805A1 (de) 2018-05-24
EP3541969A1 (fr) 2019-09-25
WO2018091694A1 (fr) 2018-05-24

Similar Documents

Publication Publication Date Title
EP3712283B1 (fr) Procédé de fabrication d'une bande d'alliage fer-cobalt
EP2612942B1 (fr) Bande ou tôle électrique non orientée vers la corne, composant ainsi fabriqué et procédé de production d'une bande ou tôle électrique non orientée vers la corne
DE102011053722B3 (de) Verfahren zum Herstellen eines höherfesten Elektrobandes, Elektroband und dessen Verwendung
EP3971919B1 (fr) Procédé de fabrication d'un alliage magnétique tendre à perméabilité élevée
EP1918407B1 (fr) Alliage légèrement magnétique à base de fer et de cobalt ainsi que son procédé de fabrication
DE102017208146B4 (de) NO-Elektroband für E-Motoren
EP3730286A1 (fr) Paquet de tôles et procédé de fabrication d'un alliage magnétique souple à haute perméabilité
EP2840157B1 (fr) Bande ou tôle électrique à grains non orientés et procédé de production d'une bande ou tôle électrique à grains non orientés
DE19934989B4 (de) Magnetisches Verbundelement, Verfahren zum Herstellen des ferromagnetischen Teils desselben sowie Verfahren zum Herstellen des unmagnetischen Teils desselben
EP3541969B1 (fr) Procédé de fabrication d'une bande en alliage co-fe, bande en alliage co-fe et paquet de tôles
DE10320350B3 (de) Hochfeste weichmagnetische Eisen-Kobalt-Vanadium-Legierung
AT394581B (de) Verfahren zur herstellung eines ni-fe-legierungsbleches mit ausgezeichneten gleichstrommagnetischen und wechselstrommagnetischen eigenschaften
WO2020078529A1 (fr) Procédé de fabrication d'une bande en acier électrique à grains non orientés dotée d'une épaisseur intermédiaire
WO2020094230A1 (fr) Bande ou tôle électrique pour applications de moteur électrique haute fréquence présentant une polarisation améliorée et de faibles pertes par inversion magnétique
DE102012105605A1 (de) Weichmagnetische Legierung und Verfahren zur Herstellung einer weichmagnetischen Legierung
EP4027357A1 (fr) Alliage de fecov et procédé de fabrication d'une bande à partir d'alliage de fecov
DE60103933T2 (de) Magnetisches stahlblech mit nicht orientierten körnern, verfahren zur herstellung von stahlplatten und dabei erhaltene stahlplatten
EP3960886A1 (fr) Produit plat métallique à grains non orientés, son procédé de fabrication ainsi que son utilisation
DE102022129243A1 (de) Nicht kornorientiertes metallisches Elektroband oder -blech sowie Verfahren zur Herstellung eines nicht kornorientierten Elektrobands
DE102012105606A1 (de) Weichmagnetische Legierung und Verfahren zur Herstellung einer weichmagnetischen Legierung
DE2537092B2 (de) Material für den Rotor eines schneilauf enden Hysteresemotors und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200923

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017014985

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038100000

Ipc: C22C0030000000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C22C0038100000

Ipc: C22C0030000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALI20221220BHEP

Ipc: C21D 8/12 20060101ALI20221220BHEP

Ipc: C21D 1/18 20060101ALI20221220BHEP

Ipc: C22C 19/07 20060101ALI20221220BHEP

Ipc: C22C 38/12 20060101ALI20221220BHEP

Ipc: H01F 1/147 20060101ALI20221220BHEP

Ipc: C22C 38/10 20060101ALI20221220BHEP

Ipc: C22F 1/10 20060101ALI20221220BHEP

Ipc: C22C 30/00 20060101AFI20221220BHEP

INTG Intention to grant announced

Effective date: 20230118

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FOHR, JAN FREDERIK

Inventor name: VOLBERS, NIKLAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582762

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017014985

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 7

Ref country code: DE

Payment date: 20231127

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017014985

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

26N No opposition filed

Effective date: 20240402