JP4658840B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4658840B2
JP4658840B2 JP2006076311A JP2006076311A JP4658840B2 JP 4658840 B2 JP4658840 B2 JP 4658840B2 JP 2006076311 A JP2006076311 A JP 2006076311A JP 2006076311 A JP2006076311 A JP 2006076311A JP 4658840 B2 JP4658840 B2 JP 4658840B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
annealing
oriented electrical
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006076311A
Other languages
Japanese (ja)
Other versions
JP2007247047A (en
Inventor
吉宏 有田
穣 松本
沙緒理 原中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006076311A priority Critical patent/JP4658840B2/en
Publication of JP2007247047A publication Critical patent/JP2007247047A/en
Application granted granted Critical
Publication of JP4658840B2 publication Critical patent/JP4658840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、電気機器の鉄心材料として使用される無方向性電磁鋼板の製造方法に関するものである。特に高効率モータ用素材として最適な無方向性電磁鋼板の製造方法に関するものである。 The present invention relates to a method for producing a non-oriented electrical steel sheet used as an iron core material for electrical equipment. In particular, the present invention relates to a method for producing a non-oriented electrical steel sheet that is optimal as a material for a high-efficiency motor.

近年、世界的な電気機器の省エネルギー化の高まりにより、回転機の鉄心材料として用いられる無方向性電磁鋼板に対しても、より低鉄損が要求されてきている。   2. Description of the Related Art In recent years, due to an increase in energy saving of electric appliances worldwide, lower iron loss has been demanded for non-oriented electrical steel sheets used as iron core materials for rotating machines.

周知の通り、SiやAl含有量を増加させて固有抵抗を高め、かつ結晶粒径を大きくすることは低鉄損を図る主要な方法である。近年、コンプレッサーモータや電気自動車用モータ等ではSi:3.0%程度、Al:0.5〜1.2%程度添加したハイグレード鋼種が使用されるようになってきた。   As is well known, increasing the Si and Al contents to increase the specific resistance and increasing the crystal grain size are the main methods for reducing the iron loss. In recent years, high-grade steel grades with Si: about 3.0% and Al: about 0.5-1.2% have been used in compressor motors and electric vehicle motors.

このようなSiとAlを多量に添加した鋼板について、打ち抜き性やかしめ性といった顧客での加工性を改善するための方法として、以下の提案がなされている。特許文献1ではAl/Siを0.7〜1.4としてビッカース硬度を130〜210とする方法、特許文献2ではSi≦3×Alとしてビッカース硬度が200を超えないようにする方法である。いずれもAlがSiとほぼ同等の固有抵抗を有していながら、硬度の上昇代がSiより小さい点に着目したものである。すなわち、従来材よりもSi量を減らしてAl量を増やすことで、高い固有抵抗を維持したままで材質硬度を低下させて加工性を改善しようとするものである。   The following proposals have been made as methods for improving the workability at the customer, such as punchability and caulking properties, for such steel sheets containing a large amount of Si and Al. Patent Document 1 is a method in which Al / Si is 0.7 to 1.4 and Vickers hardness is 130 to 210, and Patent Document 2 is a method in which Si ≦ 3 × Al and Vickers hardness does not exceed 200. In both cases, Al has a specific resistance substantially equal to that of Si, but pays attention to the fact that the increase in hardness is smaller than that of Si. That is, by reducing the Si amount and increasing the Al amount as compared with the conventional material, the material hardness is lowered while maintaining a high specific resistance to improve workability.

ところで鉄損は渦電流損とヒステリシス損に分離される。渦電流損は板厚の2乗に比例し、固有抵抗に反比例するため、先述の提案によって固有抵抗を高めることは有効な方法である。一方、ヒステリシス損は無方向性電磁鋼板では結晶粒径を粗大化することで低減することが知られており、ハイグレードでは結晶粒径を100〜150μm程度まで粗大化させるのが一般的である。エアコン用コンプレッサーや電気自動車用の高性能モータはインバータ制御によって、400Hz付近の高周波鉄損を低減することが求められ、高固有抵抗化と薄手化が進んできている。ただしヒステリシス損の低減については結晶粒径の粗大化を除き、十分な改善がなされていないのが現状である。   By the way, iron loss is separated into eddy current loss and hysteresis loss. Since the eddy current loss is proportional to the square of the plate thickness and inversely proportional to the specific resistance, it is an effective method to increase the specific resistance by the above proposal. On the other hand, hysteresis loss is known to be reduced by coarsening the crystal grain size in non-oriented electrical steel sheets, and it is common to coarsen the crystal grain size to about 100 to 150 μm in high grades. . High-performance motors for air-conditioning compressors and electric vehicles are required to reduce high-frequency iron loss around 400 Hz by inverter control, and high specific resistance and thinning are progressing. However, at present, the hysteresis loss has not been sufficiently improved except for the coarsening of the crystal grain size.

さらにSiとAlを多量に添加すると、鋼板製造時に割れや破断が生じやすくなって、生産性や歩留まりを悪化させるという問題が、需要の拡大とともに顕在化してきた。   Furthermore, when Si and Al are added in a large amount, cracks and fractures are likely to occur during the production of steel sheets, and the problem of worsening productivity and yield has become apparent as demand increases.

特開2001-59145号公報Japanese Patent Laid-Open No. 2001-59145 特開2001-73098号公報JP 2001-73098 A

本発明は、Si,Alの含有比率や不純物量、熱延板焼鈍板の延性を制御することによって、高周波鉄損の低減と鋼板の生産性を両立させた無方向性電磁鋼板を提供するものである。   The present invention provides a non-oriented electrical steel sheet that achieves both high-frequency iron loss reduction and steel sheet productivity by controlling the content ratio of Si, Al, the amount of impurities, and the ductility of the hot-rolled sheet annealed sheet. It is.

(1)質量%で、C: 0.0005%以上0.0020%以下、Si:1.5%以上3.5%以下、Mn:0.1%以上1.5%以下、Al:0.6%以上3.0%以下、Ti:0.0005%以上0.0020%以下、As: 0.0005%以上0.0050%以下を含有し、残部Fe及び不可避不純物からなり、Al/(Si+Al)が0.3以上0.5以下、固有抵抗が55μΩcm以上でかつ、歪取焼鈍後の高周波鉄損W10/400(W/kg)が板厚t(mm)の式として、W10/400≦40t+2を満たす無方向性電磁鋼板を製鋼、熱延、熱延板焼鈍、酸洗、冷延、仕上焼鈍からなる工程で製造する方法において、熱延板焼鈍板の衝撃試験における遷移温度が6 0℃以下であることを特徴とする無方向性電磁鋼板の製造方法。
(2)更に、質量%で、Sn:0.0050%以上0.20%以下を含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。
(3)熱延板焼鈍板における断面の平均結晶粒径D(μm)とビッカース硬度Hが、D≦4.5×(225-H)の式を満たすことを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。
(1) By mass%, C: 0.0005% to 0.0020%, Si: 1.5% to 3.5%, Mn: 0.1% to 1.5%, Al: 0.6% to 3.0%, Ti: 0.0005% to 0.0020% In the following, As: Containing 0.0005% or more and 0.0050% or less, remaining Fe and inevitable impurities, Al / (Si + Al) is 0.3 or more and 0.5 or less, the specific resistance is 55μΩcm or more, and the high-frequency iron after strain relief annealing Non-oriented electrical steel sheet satisfying W10 / 400 ≦ 40t + 2 as steel sheet, hot-rolled, hot-rolled sheet annealing, pickling, cold-rolling, finishing, with loss W10 / 400 (W / kg) as thickness t (mm) A method for producing a non-oriented electrical steel sheet, wherein a transition temperature in an impact test of a hot-rolled sheet annealed plate is 60 ° C. or less in the method of producing in a process comprising annealing.
(2) The method for producing a non-oriented electrical steel sheet according to claim 1, further comprising Sn: 0.0050% to 0.20% by mass%.
(3) Average crystal grain of the cross section of the hot-rolled sheet annealing plate diameter D ([mu] m) and Vickers hardness H is, according to claim 1 or 2, characterized by satisfying the expression D ≦ 4.5 × (225-H ) The manufacturing method of the non-oriented electrical steel sheet described in 1.

本発明は、鋼板の生産性を損なうことなく、高周波鉄損を改善せしめるもので、コスト増加や生産性低下の問題がない。   The present invention improves high-frequency iron loss without impairing the productivity of the steel sheet, and there are no problems of cost increase and productivity decrease.

本発明者らは、鋼に添加するSiとAlについて、固有抵抗を高める効果のみならず、ヒステリシス損への影響について詳細に研究を進めてきた。その結果、SiとAlの添加総量に占めるAl添加量の割合、すなわちAl/(Si+Al)について、ヒステリシス損が著しく低減する最適範囲を見出した。さらに歪取焼鈍時にTiおよびAsの析出物が結晶粒界に析出し、歪取焼鈍後のヒステリシス損に影響を及ぼしていることを知見した。さらに生産性の改善とは前述の通り、鋼板製造時の割れや破断を抑制することであるが、特に熱延板焼鈍を施した熱延板は結晶粒成長しており、かつ鋼板厚みが2〜3mm程度と製品板に比べて厚いため、これまで有効な対策が提案されていなかった。   The inventors of the present invention have made a detailed study on the effect on hysteresis loss as well as the effect of increasing the specific resistance of Si and Al added to steel. As a result, the optimum range in which the hysteresis loss is remarkably reduced was found for the ratio of the Al addition amount to the total addition amount of Si and Al, that is, Al / (Si + Al). In addition, it was found that Ti and As precipitates were precipitated at the grain boundaries during strain relief annealing, affecting the hysteresis loss after strain relief annealing. Further, as described above, the improvement in productivity is to suppress cracking and breakage during the production of the steel sheet. In particular, the hot-rolled sheet subjected to the hot-rolled sheet annealing has grown crystal grains, and the thickness of the steel sheet is 2 Since it is about 3 mm thicker than the product plate, no effective countermeasure has been proposed so far.

そこで、本発明者らは熱延板焼鈍板の特性について詳細に研究を進めてきたところ、熱延板焼鈍板における衝撃特性、および結晶粒径と硬度の関係を規定することで、鋼板の生産性が著しく改善することを知見し、本発明を完成させた。   Therefore, the present inventors have conducted detailed research on the characteristics of the hot-rolled sheet annealed sheet, and by specifying the impact characteristics in the hot-rolled sheet annealed sheet and the relationship between the crystal grain size and the hardness, As a result, the present invention was completed.

以下に本発明で規定した鋼板の成分組成の数値限定理由について述べる。なお、成分組成の含有量は質量%である。   The reason for limiting the numerical values of the component composition of the steel sheet defined in the present invention will be described below. In addition, content of a component composition is the mass%.

Cは歪取焼鈍時にTi炭化物を生成し、歪取焼鈍後の鉄損を悪化させることをことから、0.0020%以下に規定した。下限は脱ガス処理の生産性を考慮して0.0005%とした。   C is defined as 0.0020% or less because Ti carbide is generated during stress relief annealing and iron loss after stress relief annealing is deteriorated. The lower limit is set to 0.0005% in consideration of the productivity of degassing treatment.

Siは電気抵抗を増加させるために有効な元素であるが、過度に添加すると冷延性を著しく悪くするため3.5%を上限とした。また鉄損低減の観点から下限を1.5%とした。   Si is an effective element for increasing the electric resistance, but if added excessively, the cold rolling property is remarkably deteriorated, so the upper limit was made 3.5%. From the viewpoint of reducing iron loss, the lower limit was set to 1.5%.

MnはSi同様に電気抵抗を増加させるために有効な元素であるが、1.5%を超えて添加すまたSを確実に無害化(MnS化)する観点から下限を0.1%とした。   Mn is an element effective for increasing electrical resistance like Si, but is added in excess of 1.5%, and the lower limit is set to 0.1% from the viewpoint of detoxifying S (MnS).

AlはSi同様に電気抵抗を増加させるのに有効な元素であるが、添加量が3.0%を超えると鋳造性を悪化させるため、生産性を考慮して3.0%を上限とした。また鉄損低減の観点から下限を0.6%とした。ると飽和磁束密度の低下が著しくなって磁気特性が悪化することから1.5%を上限とした。   Al, like Si, is an element effective for increasing electrical resistance. However, if the added amount exceeds 3.0%, the castability deteriorates. Therefore, considering the productivity, the upper limit was set to 3.0%. From the viewpoint of reducing iron loss, the lower limit was made 0.6%. In this case, the saturation magnetic flux density is significantly reduced and the magnetic properties are deteriorated.

Al/(Si+Al)はSiとAlの添加総量に占めるAl添加量の割合である。ヒステリシス損が最小化する範囲として、0.3以上0.5以下に規定した。   Al / (Si + Al) is the ratio of the amount of Al added to the total amount of Si and Al added. The range in which the hysteresis loss is minimized is defined as 0.3 or more and 0.5 or less.

Tiは歪取焼鈍時に炭化物を生成して歪取焼鈍による鉄損の改善代を目減りさせてしまうことから、0.0020%以下に規定した。下限は製鋼処理の生産性を考慮して0.0005%とした。   Ti is defined as 0.0020% or less because it generates carbides during strain relief annealing and reduces the cost of iron loss improvement by strain relief annealing. The lower limit was set to 0.0005% in consideration of the productivity of the steelmaking process.

Asは一般的には析出物を生成せず、鋼板に固溶している元素であるが、歪取焼鈍時にTi炭化物と一緒に析出して歪取焼鈍による鉄損の改善代を目減りさせてしまうことを新たに知見した。この影響を受けない範囲として0.0050%以下に規定した。下限は製鋼処理の生産性を考慮して0.0005%とした。   As is generally an element that does not produce precipitates and is dissolved in the steel sheet, but precipitates together with Ti carbide during strain relief annealing, reducing the cost of iron loss improvement by strain relief annealing. I found out that it was new. The range not affected by this is defined as 0.0050% or less. The lower limit was set to 0.0005% in consideration of the productivity of the steelmaking process.

Snは集合組織の改善効果および焼鈍時の窒化や酸化防止効果が知られており、これらの目的のために積極的に添加してもよい。その場合、効果が得られる0.0050%を下限、効果が飽和する0.20%を上限として規定した。   Sn is known to improve the texture and to prevent nitriding and oxidation during annealing, and may be positively added for these purposes. In that case, 0.0050% at which the effect was obtained was defined as the lower limit, and 0.20% at which the effect was saturated was defined as the upper limit.

固有抵抗については高周波鉄損の低減のため、55μΩcm以上に規定した。   The specific resistance was specified to be 55 μΩcm or more in order to reduce high-frequency iron loss.

歪取焼鈍後の高周波鉄損(W10/400)については板厚に応じた値でなければならない。その理由は、薄手化によって高周波鉄損の約半分を占める渦電流損が低減するからである。よって板厚を考慮した鉄損改善としてW10/400≦40t+2と規定した。   The high-frequency iron loss (W10 / 400) after strain relief annealing must be a value corresponding to the plate thickness. This is because eddy current loss, which accounts for about half of high-frequency iron loss, is reduced by thinning. Therefore, W10 / 400 ≦ 40t + 2 was specified as iron loss improvement considering the plate thickness.

次に本発明における製造条件の限定理由を示す。   Next, the reasons for limiting the manufacturing conditions in the present invention will be described.

熱延板焼鈍板の衝撃試験における遷移温度であるが、割れや破断が生じた鋼板では遷移温度が高く、製造そのものが脆性領域であったこと、さらに成分や焼鈍条件を調整して延性領域で製造するようにしたところ、割れや破断が生じないことを知見した。割れや破断が生じうる酸洗、冷延、仕上焼鈍の製造工程において、70℃の鋼板温度は確保できることから、遷移温度はこれより低ければ問題なく、したがって遷移温度の上限を60℃に規定した。もちろん更に安定的に通板するためには遷移温度は常温であることが好ましい。ここで規定した遷移温度とはJISに規定されている通り、試験温度と延性破面率の関係を示す遷移曲線において延性破面率50%と内挿できる温度である。または延性破面率0%と100%となる温度の吸収エネルギーの平均値を算出しても構わない。なお試験片はJISに規定されたサイズを基本とするが、試験片の幅については熱延板の厚みとする。従ってサイズとしては圧延方向に長さ55mm、高さ10mm、幅は熱延板の厚みに応じて1.5〜3.0mm程度である。さらに試験に際しては試験片を複数本重ね、正規の試験条件である厚み10mmに近づける方が好ましい。   It is the transition temperature in the impact test of hot-rolled sheet annealed plate, but the transition temperature is high in the steel plate with cracks and fractures, the manufacturing itself was a brittle region, and further in the ductile region by adjusting the components and annealing conditions As a result of production, it was found that no cracks or breaks occur. In the manufacturing process of pickling, cold rolling, and finish annealing that may cause cracking and breaking, a steel plate temperature of 70 ° C can be secured, so there is no problem if the transition temperature is lower than this, so the upper limit of the transition temperature is defined as 60 ° C . Of course, the transition temperature is preferably room temperature in order to pass the plate more stably. The transition temperature specified here is a temperature that can be interpolated with a ductile fracture surface ratio of 50% in the transition curve showing the relationship between the test temperature and the ductile fracture surface ratio, as defined in JIS. Alternatively, an average value of absorbed energy at a temperature at which the ductile fracture surface ratio is 0% and 100% may be calculated. The test piece is basically the size specified by JIS, but the width of the test piece is the thickness of the hot-rolled sheet. Accordingly, the size is 55 mm in length in the rolling direction, the height is 10 mm, and the width is about 1.5 to 3.0 mm depending on the thickness of the hot-rolled sheet. Further, in the test, it is preferable to stack a plurality of test pieces and bring them closer to a normal test condition of 10 mm in thickness.

熱延板焼鈍板の結晶粒径とビッカース硬度については、結晶粒径を小さくすることでビッカース硬度が高くても延性が確保できることを知見した。そのしきい値を示す関係式として、D≦4.5×(225-H)と規定した。   Regarding the crystal grain size and Vickers hardness of the hot-rolled sheet annealing plate, it was found that ductility can be ensured by reducing the crystal grain size even if the Vickers hardness is high. As a relational expression indicating the threshold value, D ≦ 4.5 × (225−H) was defined.

ここで熱延板焼鈍板とは、熱延板焼鈍を施した熱延板のことであるが、熱延板焼鈍後に酸洗を施した鋼板でも構わない。   Here, the hot-rolled sheet annealed plate is a hot-rolled sheet that has been subjected to hot-rolled sheet annealing, but may be a steel sheet that has been pickled after hot-rolled sheet annealing.

<実施例1>
実験室の真空溶解炉にて、質量%で、C:0.0015%、Si:2.1〜3.0%、Mn:0.25%、Al:0.6〜2.5%、S:0.0010%、Ti:0.0013%、As:0.0038%、Sn:0.05%を含有した鋼片を作製した。これらの鋼片に対し、1100℃で60分の加熱を施した後、直ちに熱延して板厚2.0mmとし、900℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.30mmとした。こうして得られた冷延板に1050℃で30秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。表1に示す通り、本発明の条件を満たす試料1,5,6において、良好な高周波鉄損が得られ、かつ割れや破断等の生産性の問題が生じなかった。なお試料2,3,4ではAl/(Si+Al)が0.5を超えるために鉄損が悪く、試料7では遷移温度が70℃と高いために冷延で割れが発生し、更に遷移温度および粒径が規定を満たさない試料8では酸洗で破断した。さらに試料9,10ではAl/(Si+Al)が0.3未満で鉄損が悪く、試料11,12では遷移温度および粒径が規定外のために冷延で破断した。
<Example 1>
In a laboratory vacuum melting furnace, by mass%, C: 0.0015%, Si: 2.1-3.0%, Mn: 0.25%, Al: 0.6-2.5%, S: 0.0010%, Ti: 0.0013%, As: 0.0038 Steel pieces containing 0.05% Sn and 0.05% were prepared. These steel slabs were heated at 1100 ° C for 60 minutes, then immediately hot rolled to a thickness of 2.0mm, annealed at 900 ° C for 60 seconds, and then cold-rolled once. The plate thickness was 0.30 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 1050 ° C. for 30 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. As shown in Table 1, in Samples 1, 5, and 6 that satisfy the conditions of the present invention, good high-frequency iron loss was obtained, and productivity problems such as cracking and fracture did not occur. Samples 2 and 3 have poor iron loss because Al / (Si + Al) exceeds 0.5, and sample 7 has a high transition temperature of 70 ° C., which causes cracking due to cold rolling. Sample 8 whose particle size did not meet the requirements was broken by pickling. Further, in Samples 9 and 10, Al / (Si + Al) was less than 0.3 and the iron loss was poor, and in Samples 11 and 12, the transition temperature and grain size were not specified, and fractured by cold rolling.

Figure 0004658840
Figure 0004658840

<実施例2>
実験室の真空溶解炉にて、質量%で、C:0.0010〜0.0025%、Si:2.4%、Mn:0.25%、Al:1.8%、S:0.0015%、Ti:0.0011〜0.0034%、As:0.0024%を含有した鋼片を作製した。これらの鋼片に対し、1100℃で60分の加熱を施した後、直ちに熱延して板厚2.0mmとし、900℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.35mmとした。こうして得られた冷延板に1025℃で30秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。表2に示す通り、本発明の条件を満たすC:0.0020%以下でかつTi:0.0020%以下の試料1,2,4,5において、良好な高周波鉄損が得られた。
<Example 2>
In a laboratory vacuum melting furnace, in mass%, C: 0.0010-0.0025%, Si: 2.4%, Mn: 0.25%, Al: 1.8%, S: 0.0015%, Ti: 0.0011-0.0034%, As: 0.0024 Steel pieces containing% were prepared. These steel slabs were heated at 1100 ° C for 60 minutes, then immediately hot rolled to a thickness of 2.0mm, annealed at 900 ° C for 60 seconds, and then cold-rolled once. The plate thickness was 0.35 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 1025 ° C. for 30 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. As shown in Table 2, good high-frequency iron loss was obtained in samples 1, 2, 4, and 5 with C: 0.0020% or less and Ti: 0.0020% or less satisfying the conditions of the present invention.

Figure 0004658840
Figure 0004658840

<実施例3>
実験室の真空溶解炉にて、質量%で、C:0.0016%、Si:2.2%、Mn:0.2%、Al:1.5%、S:0.0017%、Ti:0.0018%、As:0.0024〜0.0089%を含有した鋼片を作製した。これらの鋼片に対し、1050℃で60分の加熱を施した後、直ちに熱延して板厚2.3mmとし、1000℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.35mmとした。こうして得られた冷延板に1000℃で30秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。表3に示す通り、本発明の条件を満たすAs:0.0050%以下の試料1〜3において、良好な高周波鉄損が得られた。
<Example 3>
In the laboratory vacuum melting furnace, by mass%, C: 0.0016%, Si: 2.2%, Mn: 0.2%, Al: 1.5%, S: 0.0017%, Ti: 0.0018%, As: 0.0024-0.0089% The contained steel pieces were produced. These steel slabs were heated at 1050 ° C for 60 minutes, then immediately hot rolled to a sheet thickness of 2.3 mm, hot rolled at 1000 ° C for 60 seconds, and cold-rolled once. The plate thickness was 0.35 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 1000 ° C. for 30 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. As shown in Table 3, good high-frequency iron loss was obtained in Samples 1 to 3 with As: 0.0050% or less satisfying the conditions of the present invention.

Figure 0004658840
Figure 0004658840

<実施例4>
実験室の真空溶解炉にて、質量%で、C:0.0015%、Si:2.7%、Mn:0.5%、Al:1.4%、S:0.0014%、Ti:0.0016%、As:0.0023%を含有した鋼片を作製した。これらの鋼片に対し、1120℃で60分の加熱を施した後、直ちに熱延して板厚2.3mmとし、850〜1100℃で60秒の熱延板焼鈍を施し、一回の冷延にて板厚0.50mmとした。こうして得られた冷延板に1030℃で40秒間の仕上焼鈍を施した後、750℃で2時間の歪取焼鈍を行なった。表4に示す通り、本発明の条件を満たす試料1から4において、良好な高周波鉄損が得られ、かつ割れや破断等の生産性の問題が生じなかった。なお試料5,6では熱延板焼鈍の遷移温度が70℃以上と高いために冷延で破断した。
<Example 4>
In a laboratory vacuum melting furnace, by mass%, C: 0.0015%, Si: 2.7%, Mn: 0.5%, Al: 1.4%, S: 0.0014%, Ti: 0.0016%, As: 0.0023% A steel piece was prepared. These steel slabs were heated at 1120 ° C for 60 minutes, then immediately hot rolled to a sheet thickness of 2.3 mm, subjected to hot rolled sheet annealing at 850-1100 ° C for 60 seconds, and then cold-rolled once. The plate thickness was 0.50 mm. The cold-rolled sheet thus obtained was subjected to finish annealing at 1030 ° C. for 40 seconds and then subjected to strain relief annealing at 750 ° C. for 2 hours. As shown in Table 4, in Samples 1 to 4 that satisfy the conditions of the present invention, good high-frequency iron loss was obtained, and productivity problems such as cracking and fracture did not occur. Samples 5 and 6 were fractured by cold rolling because the transition temperature of hot-rolled sheet annealing was as high as 70 ° C or higher.

Figure 0004658840
Figure 0004658840

Claims (3)

質量%で、C: 0.0005%以上0.0020%以下、Si:1.5%以上3.5%以下、Mn:0.1%以上1.5%以下、Al:0.6%以上3.0%以下、Ti:0.0005%以上0.0020%以下、As: 0.0005%以上0.0050%以下を含有し、残部Fe及び不可避不純物からなり、Al/(Si+Al)が0.3以上0.5以下、固有抵抗が55μΩcm以上でかつ、歪取焼鈍後の高周波鉄損W10/400(W/kg)が板厚t(mm)の式として、W10/400≦40t+2を満たす無方向性電磁鋼板を製鋼、熱延、熱延板焼鈍、酸洗、冷延、仕上焼鈍からなる工程で製造する方法において、熱延板焼鈍板の衝撃試験における遷移温度が6 0℃以下であることを特徴とする無方向性電磁鋼板の製造方法。 In mass%, C: 0.0005% to 0.0020%, Si: 1.5% to 3.5%, Mn: 0.1% to 1.5%, Al: 0.6% to 3.0%, Ti: 0.0005% to 0.0020%, As : Containing 0.0005% or more and 0.0050% or less, consisting of remaining Fe and inevitable impurities, Al / (Si + Al) being 0.3 or more and 0.5 or less, specific resistance being 55μΩcm or more, and high-frequency iron loss after strain relief annealing W10 / Non-oriented electrical steel sheet satisfying W10 / 400 ≦ 40t + 2 as steel sheet, hot-rolled, hot-rolled sheet annealing, pickling, cold-rolling, and finish-annealing, where 400 (W / kg) is the thickness t (mm) formula In the method manufactured in a process, the transition temperature in the impact test of a hot-rolled sheet annealing board is 60 degrees C or less, The manufacturing method of the non-oriented electrical steel sheet characterized by the above-mentioned. 更に、質量%で、Sn:0.0050%以上0.20%以下を含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。2. The method for producing a non-oriented electrical steel sheet according to claim 1, further comprising Sn: 0.0050% or more and 0.20% or less by mass%. 熱延板焼鈍板における断面の平均結晶粒径D(μm)とビッカース硬度Hが、D≦4.5×(225-H)の式を満たすことを特徴とする請求項1または2に記載の無方向性電磁鋼板の製造方法。 Hot-rolled sheet the mean grain diameter D of the cross section of the annealed sheet ([mu] m) and Vickers hardness H is, according to claim 1 or 2, characterized by satisfying the expression D ≦ 4.5 × (225-H ) A method for producing a non-oriented electrical steel sheet.
JP2006076311A 2006-03-20 2006-03-20 Method for producing non-oriented electrical steel sheet Active JP4658840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076311A JP4658840B2 (en) 2006-03-20 2006-03-20 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076311A JP4658840B2 (en) 2006-03-20 2006-03-20 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2007247047A JP2007247047A (en) 2007-09-27
JP4658840B2 true JP4658840B2 (en) 2011-03-23

Family

ID=38591661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076311A Active JP4658840B2 (en) 2006-03-20 2006-03-20 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4658840B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457755B1 (en) 2009-03-13 2014-11-03 신닛테츠스미킨 카부시키카이샤 Non-oriented magnetic steel sheet and method for producing the same
JP5533958B2 (en) * 2012-08-21 2014-06-25 Jfeスチール株式会社 Non-oriented electrical steel sheet with low iron loss degradation by punching
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
US11396681B2 (en) 2015-03-17 2022-07-26 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing thereof
CN108474070B (en) * 2015-12-28 2021-01-12 杰富意钢铁株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
WO2018164185A1 (en) * 2017-03-07 2018-09-13 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
JP6738047B2 (en) 2017-05-31 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108149A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Production of nonoriented silicon steel sheet extremely excellent in core loss after consumer annealing
JPH0888114A (en) * 1994-09-19 1996-04-02 Sumitomo Metal Ind Ltd Manufacture of nonoriented flat rolled magnetic steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06108149A (en) * 1992-09-29 1994-04-19 Nippon Steel Corp Production of nonoriented silicon steel sheet extremely excellent in core loss after consumer annealing
JPH0888114A (en) * 1994-09-19 1996-04-02 Sumitomo Metal Ind Ltd Manufacture of nonoriented flat rolled magnetic steel sheet

Also Published As

Publication number Publication date
JP2007247047A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
KR101508082B1 (en) Method of producing non-oriented electrical steel sheet
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5194535B2 (en) High strength non-oriented electrical steel sheet
EP2278034B1 (en) High-strength non-oriented electrical steel sheet and method of manufacturing the same
JP5223190B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4658840B2 (en) Method for producing non-oriented electrical steel sheet
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5146169B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
JP5119710B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP5130637B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP2007023351A (en) Method for producing non-oriented magnetic steel sheet for rotor
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP4740400B2 (en) Non-oriented electrical steel sheet
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP2003105508A (en) Nonoriented silicon steel sheet having excellent workability, and production method therefor
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JPS6237341A (en) Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JP7469694B2 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same
JP3737558B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5088144B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
US20230139246A1 (en) Non-oriented electrical steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4658840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350