JPH0543944A - Manufacture of low iron loss grain-oriented silicon steel sheet - Google Patents

Manufacture of low iron loss grain-oriented silicon steel sheet

Info

Publication number
JPH0543944A
JPH0543944A JP22852591A JP22852591A JPH0543944A JP H0543944 A JPH0543944 A JP H0543944A JP 22852591 A JP22852591 A JP 22852591A JP 22852591 A JP22852591 A JP 22852591A JP H0543944 A JPH0543944 A JP H0543944A
Authority
JP
Japan
Prior art keywords
steel sheet
electron beam
silicon steel
iron loss
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22852591A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22852591A priority Critical patent/JPH0543944A/en
Publication of JPH0543944A publication Critical patent/JPH0543944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a low iron loss grain-oriented silicon steel sheet having good product properties by positioning the focus of electron beams to the place farther than the surface of a steel sheet in the case the electron beams are perpendicularly made incident on the surface of the steel sheet. CONSTITUTION:The surface of a grain-oriented silicon steel sheet K subjected to finish annealing or after the formation of an insulated film is irradiated with electron beams in such a manner that they scan in a direction crossing the rolling direction of the steel sheet K to manufacture a grain-oriented silicon steel sheet. In this case, the focus of the electron beams is positioned to the place farther than the surface O of the steel sheet K in the case the electron beams are perpendicularly made incident on the surface of the steel sheet K. In this way, the low iron loss grain-oriented silicon steel sheet having good product properties in the breadthwise direction of the steel sheet can stably be obtd. by a simple method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】一方向性けい素鋼板は、一般に製
品の二次再結晶粒をゴス方位に高度に集積させ、その鋼
板表面上にフォルステライト質の被膜を、さらにその上
に熱膨張係数の小さい絶縁被膜を被成したもので、厳格
な制御を必要とする複雑、多岐にわたる工程を経て製造
される。このような一方向性けい素鋼板は、主として変
圧器、そのた電気機器の鉄心として使用されていて、磁
気特性として製品の磁束密度(B8 値で代表される)が
高く、鉄損(W17/50値で代表される)が低いこと、さら
に表面性状の良好な絶縁被膜を有することが要求されて
いる。近年では特にエネルギー危機を境にして電力損失
の低減を至上とする要請が著しく強まり、変圧器用鉄心
材料として鉄損がより低い一方向性けい素鋼板の必要性
はますます重要なものとなってきている。この発明は、
低鉄損一方向性けい素鋼板の製造方法に関し、鋼板幅方
向にわたって良好な製品特性を特に簡便な方法によって
安定して得ようとするものである。
[Industrial application] In unidirectional silicon steel sheets, generally, the secondary recrystallized grains of the product are highly integrated in the Goss direction, and a forsterite coating is formed on the surface of the steel sheet, and thermal expansion is further formed on it. It is an insulating coating with a low coefficient, and is manufactured through complicated and diverse processes that require strict control. Such a unidirectional silicon steel sheet is mainly used as an iron core of transformers and other electric equipment, and has a high magnetic flux density (represented by a B 8 value) of a product as a magnetic characteristic, and an iron loss (W (Represented by 17/50 value) is low, and further, it is required to have an insulating coating having good surface properties. In recent years, especially as the energy crisis has become a borderline, the demand for reducing power loss has increased remarkably, and the need for unidirectional silicon steel sheets with lower iron loss as an iron core material for transformers has become increasingly important. ing. This invention is
The present invention relates to a method for producing a low iron loss unidirectional silicon steel sheet, which is intended to stably obtain good product characteristics in the steel sheet width direction by a particularly simple method.

【0002】[0002]

【従来の技術】 .さて一方向性
けい素鋼板の鉄損改善のため、従来からゴス方位二次再
結晶組織の改善に努力が払われ、このような二次再結晶
粒を制御する方法として、AlN 、MnS 及びMnSe等の一次
再結晶粒成長抑制剤、いわゆるインヒビターを含有させ
てゴス方位二次再結晶粒を優先成長させる方法が実施さ
れてきた。
2. Description of the Related Art In order to improve the iron loss of unidirectional silicon steel sheets, efforts have conventionally been made to improve the goth-oriented secondary recrystallized structure.As a method of controlling such secondary recrystallized grains, AlN, MnS, and MnSe are used. A method of preferentially growing the goth-oriented secondary recrystallized grains by incorporating a primary recrystallized grain growth inhibitor, so-called inhibitor, etc. has been carried out.

【0003】また近年に至ってはこのような二次再結晶
集合組織を制御する方法とは別の手法として、鋼板表面
にレーザ照射(例えば市山 正:鉄と鋼,69 (1983) p.8
95、特公昭57-2252 号、同57-53419号、同58-24605号、
同58-24606号各公報参照)、又はプラズマ照射(例えば
特開昭62-96617号、同62-151511 号、同62-151516号及
び同62-151517 号各公報参照)を施すことにより、鋼板
表面に局部微小歪を導入して磁区を細分化し、もって鉄
損を低下させる画期的な方法が提案されている。しかし
ながらこれらの方法は、いずれもエネルギー効率が5〜
20%と低いため、鉄損を低下させるのに著しいコストア
ップを招くという問題がある。
Further, in recent years, as a method different from the method for controlling such secondary recrystallization texture, the surface of the steel sheet is irradiated with laser (for example, Tadashi Ichiyama: Iron and Steel, 69 (1983) p. 8).
95, Japanese Patent Publication No. 57-2252, 57-53419, 58-24605,
No. 58-24606), or plasma irradiation (see, for example, JP-A Nos. 62-96617, 62-151511, 62-151516, and 62-151517). An epoch-making method has been proposed in which local microstrain is introduced into the surface to subdivide the magnetic domains, thereby reducing the iron loss. However, all of these methods have energy efficiency of 5 to 5.
Since it is as low as 20%, there is a problem that a significant increase in cost is required to reduce iron loss.

【0004】かかるレーザ照射、プラズマ照射とは別の
手法として発明者らは、磁区細分化のために加速電圧:
65kV〜500kV の高電圧で、電流:0.01〜5mAの低電流で
発生させた電子ビームを照射することを先に特開昭63-1
86826 号、特開平2-118022号、特開平2-277780 号公
報にて提案した。すなわちかかる電子ビームは、 (1) 磁区細分化に有効 (2) エネルギー効率が良い (3) ビームの走査が容易でかつ侵入深さが深い という利点を有することから、セラミック被膜をそなえ
るけい素鋼板の磁区細分化の手段として特に有利であ
る。しかしながら、かかる電子ビーム照射における板幅
方向への走査は、通常、この鋼板表面上の幅方向中央部
の一点に電子ビームの焦点を合わせて、この状態で鋼板
幅方向に電子ビームを偏向させるものであった。かかる
電子ビームの走査によれば、幅方向中央ではちょうど電
子ビームの焦点が合っているために十分な製品特性を得
ることができるが、幅方向両端部では電子ビームの焦点
が外れるために電子ビームの強度が低下して、照射効果
が中央部よりも小さくなって、製品特性向上効果が小さ
くなるという問題があった。
As a method different from the laser irradiation and the plasma irradiation, the inventors have used an accelerating voltage:
Irradiation with an electron beam generated at a high voltage of 65 kV to 500 kV and a low current of 0.01 to 5 mA is disclosed in Japanese Patent Laid-Open No. 63-1.
No. 86826, JP-A-2-118022, and JP-A-2-277780. That is, such an electron beam has the advantages of (1) effective for subdivision of magnetic domains, (2) good energy efficiency, and (3) easy beam scanning and a deep penetration depth. Is particularly advantageous as a means for subdividing the magnetic domains. However, the scanning in the plate width direction in such electron beam irradiation is usually such that the electron beam is focused on one point in the width direction central portion on the surface of the steel plate and the electron beam is deflected in the plate width direction in this state. Met. With such electron beam scanning, sufficient product characteristics can be obtained because the electron beam is exactly focused at the center in the width direction, but the electron beam is defocused at both ends in the width direction, so the electron beam is defocused. However, there was a problem that the irradiation effect was reduced and the irradiation effect was smaller than that in the central part, and the product characteristic improvement effect was reduced.

【0005】かかる問題に関し、上掲特開平2-118022
号公報で発明者らは、電子ビームの照射領域が変わって
も常に同等のピーク強度となるように、電子ビームの焦
点距離を適宜補正しながら基板の板幅方向にわたる照射
(ダイナミックフォーカス法)を行い、製品特性のより
一層の改善を図った電子ビーム照射方法を提案している
が、かように電子ビームの焦点距離を補正しながら板幅
方向にわたって均一に照射しようとする方法は、電子ビ
ームが基板幅方向に走査される速度に対応して焦点距離
を変化させる必要があり、ダイナミックフォーカス制御
装置等が必要となって装置が複雑化するばかりか、かか
るフォーカス制御を安定して行うことが難しいところに
問題を残していた。
With respect to such a problem, the above-mentioned Japanese Patent Laid-Open No. 2-118022
In the publication, the inventors of the present invention perform irradiation (dynamic focus method) in the plate width direction of the substrate while appropriately correcting the focal length of the electron beam so that the peak intensity is always the same even if the irradiation region of the electron beam changes. We have proposed an electron beam irradiation method that aims to improve the product characteristics even further, but the method of uniformly irradiating the plate width direction while correcting the focal length of the electron beam is the electron beam irradiation method. It is necessary to change the focal length according to the speed of scanning in the substrate width direction, which requires a dynamic focus control device and the like, which complicates the device and enables stable focus control. I left a problem in a difficult place.

【0006】また最近米国特許4199733 号及び同419575
0 号において、かかる電子ビーム照射をけい素鋼板表面
上に行う際の条件として、歪取り焼鈍を施さない積鉄心
用のけい素鋼板には60 J/in2以上のエネルギー密度が、
一方歪取り焼鈍を行う巻き鉄心用けい素鋼板には150 〜
4000J/in2 以上のエネルギー密度がそれぞれ必要である
ことをが開示されている。この方法は、電子ビームの種
類、照射方法に依存してエネルギー密度が大きく変化す
るため、実際の方向性けい素鋼板に適用し難い。
Recently, US Pat.
In No. 0, as a condition for performing such electron beam irradiation on the surface of a silicon steel sheet, an energy density of 60 J / in 2 or more was obtained for a silicon steel sheet for a laminated core without strain relief annealing.
On the other hand, 150-
It is disclosed that an energy density of 4000 J / in 2 or more is required for each. This method has a large change in energy density depending on the type of electron beam and irradiation method, and is therefore difficult to apply to an actual grain-oriented silicon steel sheet.

【0007】[0007]

【発明が解決しようとする課題】上記の問題を有利に解
決し、極めて安定した電子ビーム照射を用いる磁区細分
化法により鋼板幅方向にわたって良好な製品特性を有す
る低鉄損一方向性けい素鋼板を特に簡便な方法によって
安定して得ることのできる製造方法を提案することがこ
の発明の目的である。
A low iron loss unidirectional silicon steel sheet which solves the above problems advantageously and has good product characteristics in the steel sheet width direction by a magnetic domain refining method using extremely stable electron beam irradiation. It is an object of the present invention to propose a production method capable of stably obtaining the compound by a particularly simple method.

【0008】[0008]

【課題を解決するための手段】この発明は、仕上げ焼鈍
後又は絶縁被膜の形成後の一方向性けい素鋼板表面上に
電子ビームを、該鋼板の圧延方向を横切る向きに走査さ
せて照射する、一方向性けい素鋼板の製造方法におい
て、上記電子ビームの焦点を、鋼板表面に垂直に電子ビ
ームが入射する場合における該鋼板表面よりも遠くに位
置させることを特徴とする低鉄損一方向性けい素鋼板の
製造方法である。
According to the present invention, the surface of a unidirectional silicon steel sheet after finish annealing or after formation of an insulating coating is irradiated with an electron beam while scanning it in a direction transverse to the rolling direction of the steel sheet. In the method for manufacturing a unidirectional silicon steel sheet, the focal point of the electron beam is located farther than the steel sheet surface when the electron beam is perpendicularly incident on the steel sheet surface. It is a manufacturing method of a silicon carbide steel plate.

【0009】[0009]

【作用】以下、図面を用いてこの発明を具体的に説明す
る。図1にこの発明に従う方法に実施に用いて好適な電
子ビーム照射装置の一例を示す。図中番号1は排気口1
a,1bを有し真空槽を形成するためのケーシング、2は
電子ビームBを射出する電子銃であって、この電子銃2
は高圧インシュレータ2a、電子を放出するフィラメント
2b、放出された電子を加速するための陽極2c及び電子線
発生部を常に真空にするためのコラム弁からなる。また
3は電子銃2より射出された電子ビームBを集束するた
めの集束コイル、4は集束させた電子ビームの進行方向
を変化させ基板の所定領域への照射を担う偏向コイルで
あり、符号Bは電子ビーム、Kは電子ビーム照射の被処
理板である鋼板を示す。
The present invention will be described in detail below with reference to the drawings. FIG. 1 shows an example of an electron beam irradiation apparatus suitable for use in carrying out the method according to the present invention. Number 1 in the figure is exhaust port 1
A casing 2 for forming a vacuum chamber having a and 1b is an electron gun for emitting an electron beam B.
Is a high-voltage insulator 2a, a filament that emits electrons
2b, an anode 2c for accelerating the emitted electrons, and a column valve for constantly keeping the electron beam generating section in a vacuum. Further, 3 is a focusing coil for focusing the electron beam B emitted from the electron gun 2, and 4 is a deflection coil for changing the traveling direction of the focused electron beam and irradiating a predetermined region of the substrate with a symbol B. Represents an electron beam, and K represents a steel plate which is a target plate for electron beam irradiation.

【0010】かかる装置を用いたこの発明に従う電子ビ
ームパターンを図2に模式的に示す。集束コイル、偏向
コイルを経た電子ビームは、鋼板表面で焦点を結び、偏
向コイル位置Wから鋼板Kの幅方向に偏向されて鋼板幅
方向に走査される。
An electron beam pattern according to the present invention using such an apparatus is schematically shown in FIG. The electron beam that has passed through the focusing coil and the deflection coil is focused on the surface of the steel sheet, is deflected from the deflection coil position W in the width direction of the steel sheet K, and is scanned in the width direction of the steel sheet.

【0011】従来、この鋼板Kに電子ビームを照射する
際は、鋼板Kの表面上の一点O(幅方向中央)に電子ビ
ームを集束させて、この状態で鋼板幅方向に電子ビーム
を偏向させて鋼板幅方向にわたり電子ビームを照射して
いた。かかる電子ビームの鋼板幅方向への走査によれ
ば、幅方向中央である点Oではちょうど電子ビームの焦
点が合っているために十分な製品特性を得ることができ
る。しかし幅方向両端部である点Q、Q′においては電
子ビームの焦点が図中の点線Uで示す円弧上にあるた
め、電子ビームの強度が低下して、照射効果が中央部O
よりも小さくなって、板幅方向で特性値の著しい変化が
生じる。
Conventionally, when irradiating the steel sheet K with an electron beam, the electron beam is focused on a point O (center in the width direction) on the surface of the steel sheet K, and in this state, the electron beam is deflected in the width direction of the steel sheet. The electron beam was irradiated across the width of the steel sheet. According to the scanning of the electron beam in the width direction of the steel sheet, the electron beam is exactly focused at the point O which is the center of the width direction, so that sufficient product characteristics can be obtained. However, at the points Q and Q ′ at both ends in the width direction, the focus of the electron beam is on the arc indicated by the dotted line U in the figure, so the intensity of the electron beam is reduced and the irradiation effect is at the central portion O.
As a result, the characteristic value significantly changes in the plate width direction.

【0012】これに対してこの発明では電子ビームの集
束を、通常のO点よりもさらに遠く、図中に示すS点さ
らにはP点の位置とし、例えば図中の実線Tに示す円弧
上に焦点が合うようにして電子ビームを板幅方向に走査
させることによって、板幅方向にわたって均一照射が可
能になり、優れた低鉄損化を板幅方向のばらつきが少な
くして安定して得られるのである。
On the other hand, in the present invention, the focusing of the electron beam is made farther than the normal O point, and the positions of S point and P point shown in the figure are set, for example, on an arc indicated by a solid line T in the figure. By scanning the electron beam in the plate width direction so that it is in focus, uniform irradiation can be performed across the plate width direction, and excellent iron loss can be stably obtained with little variation in the plate width direction. Of.

【0013】この場合、電子ビームの焦点を、電子ビー
ムが基板表面に垂直に入射する場合における該基板表面
(図1の点O)よりも少しでも遠くに位置させれば、目
的とする板幅方向にわたった均一照射が可能になる。一
方、全幅にわたって電子ビームの焦点を鋼板表面よりも
遠い位置にすることはなく、良好な製品特性を得るため
には、鋼板幅の半分程度が電子ビームの焦点位置よりも
遠い状況であることが好ましい。
In this case, if the focal point of the electron beam is located at a distance a little further than the substrate surface (point O in FIG. 1) when the electron beam is perpendicularly incident on the substrate surface, the target plate width is obtained. It enables uniform irradiation across directions. On the other hand, the focus of the electron beam is not placed farther than the surface of the steel plate over the entire width, and in order to obtain good product characteristics, it is necessary that about half the width of the steel plate is far from the focus position of the electron beam. preferable.

【0014】この発明の電子ビームとしては、電圧:65
kV〜500kV の高電圧でかつ電流:5mA以下の低電流で発
生させた電子ビームを用いる。かかる電子ビームは、ビ
ーム径を細く絞ることが可能であり、かつ電子ビームの
焦点深度が深くなっているため、電子ビーム焦点を点S
や点Pに集束させることによって板幅方向にわたって均
一な電子ビーム照射が可能になるのである。
The electron beam of the present invention has a voltage of 65.
An electron beam generated at a high voltage of kV to 500 kV and a low current of 5 mA or less is used. Since the electron beam can be narrowed down and the depth of focus of the electron beam is deep, the electron beam is focused at the point S.
By focusing on the point P or the point P, uniform electron beam irradiation in the plate width direction becomes possible.

【0015】以下この発明を具体的実験により説明す
る。C:0.046 wt%、Si:3.40wt%、Mn:0.072 wt%、
Se:0.021 wt%、Sb:0.026 wt%及びMo:0.013 wt%を
含有し、残部は実質的にFeの組成になるけい素鋼スラブ
を、1340℃で4時間加熱した後、熱間圧延を施して厚み
2.4 mmの熱延板とした。その後中間焼鈍をはさんで2回
の冷間圧延を施して、幅150 mm、厚み0.23mmの最終冷延
板とした。その後湿水素中で830 ℃、3分間の脱炭・一
次再結晶焼鈍を行ったのち、850℃で50時間の二次再結
晶焼鈍を行い、次いで1200℃で5時間の純化焼鈍を行っ
た。その後鋼板表面にりん酸塩とコロイダルシリカを主
成分とする絶縁被膜を塗布形成した後、図1に示す電子
ビーム照射装置により鋼板表面に向けて電子ビーム照射
を行った。この電子ビーム照射の際の照射条件は加速電
圧:150 kV、電流:0.6 mA、走査速度:0.014cm/20s =
700cm/s 、電子ビームスポット間隔:6mm、偏向コイル
位置から鋼板表面までの距離:500 mmで、図2に示すよ
うに電子ビームの焦点を次の4種の位置、すなわち X点(鋼板より5mm上) O点(鋼板表面上) S点(鋼板より5mm下) P点(鋼板より10mm下) の条件となるように図1の集束コイル3のコイル電流を
変化させることにより焦点距離を変化させて行った。か
くして得られた製品板の磁気特性を表1に、電子ビーム
の無照射材と比較して示す。
The present invention will be described below by concrete experiments. C: 0.046 wt%, Si: 3.40 wt%, Mn: 0.072 wt%,
A silicon steel slab containing Se: 0.021 wt%, Sb: 0.026 wt% and Mo: 0.013 wt% and the balance being substantially Fe composition was heated at 1340 ° C for 4 hours and then hot-rolled. Give thickness
It was a 2.4 mm hot rolled sheet. After that, cold rolling was performed twice with intermediate annealing interposed therebetween to obtain a final cold-rolled sheet having a width of 150 mm and a thickness of 0.23 mm. After that, decarburization / primary recrystallization annealing was performed in wet hydrogen at 830 ° C. for 3 minutes, secondary recrystallization annealing was performed at 850 ° C. for 50 hours, and then purification annealing was performed at 1200 ° C. for 5 hours. After that, an insulating film mainly containing phosphate and colloidal silica was applied and formed on the surface of the steel sheet, and then electron beam irradiation was performed toward the surface of the steel sheet by the electron beam irradiation apparatus shown in FIG. The irradiation conditions for this electron beam irradiation are: acceleration voltage: 150 kV, current: 0.6 mA, scanning speed: 0.014 cm / 20 s =
700 cm / s, electron beam spot interval: 6 mm, distance from deflection coil position to steel plate surface: 500 mm, and electron beam focus is at the following four positions, as shown in Fig. 2, namely X point (5 mm from steel plate). Top) O point (on the surface of the steel plate) S point (5 mm below the steel plate) P point (10 mm below the steel plate) The focal length is changed by changing the coil current of the focusing coil 3 in FIG. I went. The magnetic properties of the product plate thus obtained are shown in Table 1 in comparison with the electron beam non-irradiated material.

【0016】 [0016]

【0017】表1から明らかなように、比較例と
比べて、〜の条件が電子ビーム照射による磁区細分
化効果が大きく、特に及びにおいて鉄損の向上度が
大きいことがわかる。
As is clear from Table 1, under the conditions (1) to (4), the effect of electron beam irradiation for domain segmentation is large, and the degree of improvement in iron loss is large in comparison with the comparative example.

【0018】このような高電圧、低電流で発生させた電
子ビームは焦点深度が深いため、その焦点をO点からS
点やP点に変更し、すなわち鋼板の下側にしたとき、鋼
板の板幅方向にわたって効果的に磁区細分化が可能であ
ることをこの発明では発見したものであって、このよう
な新事実は従来の公知文献には全くないものである。
Since the electron beam generated with such a high voltage and a low current has a deep depth of focus, its focus is from point O to point S.
The present invention has discovered that it is possible to effectively subdivide magnetic domains in the width direction of the steel sheet when the points are changed to points or P points, that is, when the steel sheet is located on the lower side of the steel sheet. Is completely absent from the conventional publicly known documents.

【0019】かかる電子ビーム照射を施す一方向性けい
素鋼板に関しては、絶縁被膜の有無にかかわらず、この
発明が有効である。またかかる電子ビームの焦点位置を
採用することによって、鋼板へのビーム効率が向上し、
また製品の特性が向上するのが特徴であり、例えば電子
ビーム照射による絶縁被膜の破壊度が少なくなるととも
に照射による板そりも少なくなるため、板形状度の向上
を図ることができるのである。
The present invention is effective for the unidirectional silicon steel sheet subjected to the electron beam irradiation regardless of the presence or absence of the insulating coating. Also, by adopting such a focal position of the electron beam, the beam efficiency to the steel plate is improved,
Further, the characteristic of the product is improved. For example, since the degree of destruction of the insulating coating due to electron beam irradiation is reduced and the plate warpage due to irradiation is also reduced, the plate shape can be improved.

【0020】[0020]

【実施例】成分の異なる2種の鋼板、すなわち(a) C:
0.063 wt%、Si:3.26wt%、Mn:0.082 wt%、Al:0.02
6wt%、Se:0.020 wt%及びSb:0.026 wt%を含有し、
残部は実質的にFeの組成、及び(b) C:0.049 wt%、S
i:3.32wt%、Mn:0.069 wt%、Se:0.021 wt%、Sb:
0.025 wt%及びMo:0.012 wt%を含有し、残部は実質的
にFeの組成になる熱延板を、980 ℃、3分間の中間焼鈍
をはさんで2回の冷間圧延を施し、厚み0.23mm、幅180m
mの最終冷延板とした。その後湿水素中で830 ℃、3分
間の脱炭・一次再結晶焼鈍を行ったのち、830℃から昇
温速度5℃/hで昇温して1050℃まで昇温してゴス方位二
次再結晶粒を発達させた後、1200℃の乾水素中で5時間
の純化焼鈍を行った。その後鋼板表面にりん酸塩とコロ
イダルシリカを主成分とする絶縁被膜を塗布形成した
後、図1に示す電子ビーム照射装置により鋼板表面に向
けて電子ビーム照射を行った。この電子ビーム照射の際
の照射条件は加速電圧:150 kV、電流:0.7 mA、走査速
度:1000cm/s、電子ビームスポット間隔:7mm、偏向コ
イル位置から鋼板表面までの距離:500mm で、図2に示
すS点(鋼板より5mm下)に焦点が合うように図1の集
束コイル3のコイル電流を調整して行った。かくして得
られた製品板の磁気特性は、 (a) :B8 =1.94(T)、W17/50=0.76(W/kg) (無照射材:B8 =1.94(T)、W17/50=0.93(W/kg)) (b) :B8 =1.92(T)、W17/50=0.77(W/kg) (無照射材:B8 =1.92(T)、W17/50=0.91(W/kg)) であり、良好な磁気特性を示した。このとき、絶縁被膜
に破壊部分を生じる事はなく、また鋼板の板形状も良好
であった。
EXAMPLE Two kinds of steel plates having different components, namely (a) C:
0.063 wt%, Si: 3.26 wt%, Mn: 0.082 wt%, Al: 0.02
6 wt%, Se: 0.020 wt% and Sb: 0.026 wt%,
The balance is substantially Fe composition, and (b) C: 0.049 wt%, S
i: 3.32 wt%, Mn: 0.069 wt%, Se: 0.021 wt%, Sb:
A hot-rolled sheet containing 0.025 wt% and Mo: 0.012 wt% with the balance being essentially Fe composition was cold-rolled twice with an intermediate annealing at 980 ° C for 3 minutes to obtain a thickness. 0.23mm, width 180m
It was the final cold-rolled sheet of m. After that, decarburization and primary recrystallization annealing were performed in wet hydrogen at 830 ° C for 3 minutes, and then the temperature was raised from 830 ° C at a heating rate of 5 ° C / h to 1050 ° C and the Goss orientation secondary recrystallization was performed. After developing the crystal grains, purification annealing was carried out in dry hydrogen at 1200 ° C. for 5 hours. After that, an insulating film mainly containing phosphate and colloidal silica was applied and formed on the surface of the steel sheet, and then electron beam irradiation was performed toward the surface of the steel sheet by the electron beam irradiation apparatus shown in FIG. The irradiation conditions for this electron beam irradiation are: acceleration voltage: 150 kV, current: 0.7 mA, scanning speed: 1000 cm / s, electron beam spot interval: 7 mm, distance from deflection coil position to steel plate surface: 500 mm. The coil current of the focusing coil 3 in FIG. 1 was adjusted so that the point S (5 mm below the steel plate) shown in FIG. The magnetic properties of the product plate thus obtained are (a): B 8 = 1.94 (T), W 17/50 = 0.76 (W / kg) (unirradiated material: B 8 = 1.94 (T), W 17 / 50 = 0.93 (W / kg) ) (b): B 8 = 1.92 (T), W 17/50 = 0.77 (W / kg) ( no irradiation member: B 8 = 1.92 (T) , W 17/50 = 0.91 (W / kg)), indicating good magnetic properties. At this time, no broken portion was produced in the insulating film, and the plate shape of the steel plate was good.

【0021】[0021]

【発明の効果】この発明の一方向性けい素鋼板の製造方
法は、電子ビーム照射を用いる磁区細分化法において、
電子ビームの焦点を、鋼板表面に垂直に電子ビームが入
射する場合における該鋼板表面よりも遠くに位置させる
ことから、幅方向にわたって良好な製品特性を有する低
鉄損一方向性けい素鋼板を特に簡便な方法によって安定
して得ることができる。
The method for manufacturing a unidirectional silicon steel sheet according to the present invention is a magnetic domain subdivision method using electron beam irradiation,
Since the focal point of the electron beam is located farther than the steel plate surface when the electron beam is perpendicularly incident on the steel plate surface, a low iron loss unidirectional silicon steel plate having good product characteristics in the width direction is particularly preferable. It can be stably obtained by a simple method.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、この発明に従う方法に実施に用いて好
適な電子ビーム照射装置の一例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of an electron beam irradiation apparatus suitable for use in carrying out a method according to the present invention.

【図2】図2は、この発明に従う電子ビームパターンを
示す模式図である。
FIG. 2 is a schematic diagram showing an electron beam pattern according to the present invention.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 電子銃 3 集束コイル 4 偏向コイル B 電子ビーム K 鋼板 1 casing 2 electron gun 3 focusing coil 4 deflection coil B electron beam K steel plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 仕上げ焼鈍後又は絶縁被膜の形成後の一
方向性けい素鋼板表面上に電子ビームを、該鋼板の圧延
方向を横切る向きに走査させて照射する、一方向性けい
素鋼板の製造方法において、 上記電子ビームの焦点を、鋼板表面に垂直に電子ビーム
が入射する場合における該鋼板表面よりも遠くに位置さ
せることを特徴とする低鉄損一方向性けい素鋼板の製造
方法。
1. A unidirectional silicon steel sheet, which comprises irradiating a surface of a unidirectional silicon steel sheet after finish annealing or after formation of an insulating film with an electron beam while scanning the steel sheet in a direction transverse to a rolling direction of the steel sheet. A method of manufacturing a low iron loss unidirectional silicon steel sheet, characterized in that the focus of the electron beam is located farther than the steel sheet surface when the electron beam is perpendicularly incident on the steel sheet surface.
JP22852591A 1991-08-15 1991-08-15 Manufacture of low iron loss grain-oriented silicon steel sheet Pending JPH0543944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22852591A JPH0543944A (en) 1991-08-15 1991-08-15 Manufacture of low iron loss grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22852591A JPH0543944A (en) 1991-08-15 1991-08-15 Manufacture of low iron loss grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH0543944A true JPH0543944A (en) 1993-02-23

Family

ID=16877785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22852591A Pending JPH0543944A (en) 1991-08-15 1991-08-15 Manufacture of low iron loss grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0543944A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036442A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Oriented electromagnetic steel plate
JP2012177163A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for manufacturing directional magnetic steel sheet
WO2013099160A1 (en) * 2011-12-26 2013-07-04 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
WO2013099219A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
JP2013159845A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
WO2020116188A1 (en) 2018-12-05 2020-06-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and production method therefor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799432B2 (en) 2010-08-06 2017-10-24 Jfe Steel Corporation Grain oriented electrical steel sheet
JP2012036442A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Oriented electromagnetic steel plate
JP2012177163A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Method for manufacturing directional magnetic steel sheet
WO2013099160A1 (en) * 2011-12-26 2013-07-04 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet
US9875832B2 (en) 2011-12-26 2018-01-23 Jfe Steel Corporation Grain-oriented electrical steel sheet
CN107012309B (en) * 2011-12-27 2020-03-10 杰富意钢铁株式会社 Apparatus for improving iron loss of grain-oriented electromagnetic steel sheet
US10745773B2 (en) 2011-12-27 2020-08-18 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
CN107012309A (en) * 2011-12-27 2017-08-04 杰富意钢铁株式会社 The iron loss of orientation electromagnetic steel plate improves device
CN104011231A (en) * 2011-12-27 2014-08-27 杰富意钢铁株式会社 Device For Improving Core Loss In Grain-Oriented Electrical Steel Sheet
JPWO2013099219A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 Iron loss improvement device for grain-oriented electrical steel sheet
WO2013099219A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
US11377706B2 (en) 2011-12-27 2022-07-05 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
JP2013159845A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP6747627B1 (en) * 2018-12-05 2020-08-26 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing the same
KR20210088666A (en) 2018-12-05 2021-07-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
CN113226617A (en) * 2018-12-05 2021-08-06 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
EP3892413A4 (en) * 2018-12-05 2022-01-19 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and production method therefor
US20220020514A1 (en) * 2018-12-05 2022-01-20 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same
WO2020116188A1 (en) 2018-12-05 2020-06-11 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and production method therefor
CN113226617B (en) * 2018-12-05 2022-08-05 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US11923116B2 (en) * 2018-12-05 2024-03-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same

Similar Documents

Publication Publication Date Title
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
US4554029A (en) Local heat treatment of electrical steel
JP2012052233A (en) Method for producing grain-oriented electromagnetic steel sheet
JP2022027234A (en) Directional electromagnetic steel plate
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
US5296051A (en) Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics
US11459633B2 (en) Low-iron-loss grain-oriented electrical steel sheet and production method for same
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JPH0543944A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
EP0367467B1 (en) Low iron loss grain oriented silicon steel sheets and method of producing the same
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPS6249322B2 (en)
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JP3174451B2 (en) Method for producing low iron loss oriented silicon steel sheet and plasma generator
EP0611829B1 (en) Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH03260022A (en) Method for radiating linear eb
JP5845848B2 (en) Method for producing grain-oriented electrical steel sheet
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH0551645A (en) Manufacture of low core loss grain-oriented silicon steel sheet
JPH04202627A (en) Method for irradiating electron beam
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing