JPH03260022A - Method for radiating linear eb - Google Patents
Method for radiating linear ebInfo
- Publication number
- JPH03260022A JPH03260022A JP2056333A JP5633390A JPH03260022A JP H03260022 A JPH03260022 A JP H03260022A JP 2056333 A JP2056333 A JP 2056333A JP 5633390 A JP5633390 A JP 5633390A JP H03260022 A JPH03260022 A JP H03260022A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- scanning
- iron loss
- electron beam
- silicon steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 51
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 43
- 239000010959 steel Substances 0.000 claims abstract description 43
- 229910052742 iron Inorganic materials 0.000 claims abstract description 23
- 229910000976 Electrical steel Inorganic materials 0.000 claims abstract description 20
- 238000000137 annealing Methods 0.000 claims abstract description 20
- 238000005096 rolling process Methods 0.000 claims abstract description 17
- 229910052839 forsterite Inorganic materials 0.000 claims abstract description 12
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000010894 electron beam technology Methods 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 230000005381 magnetic domain Effects 0.000 abstract description 9
- 230000002542 deteriorative effect Effects 0.000 abstract 2
- 239000011162 core material Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Soft Magnetic Materials (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、鉄損の低い一方向性珪素鋼板に関し、とく
に鋼板表面上の被膜を地鉄に圧入することによって磁区
の細分化をはかり、鉄損を低減しようとするものである
。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a unidirectional silicon steel plate with low core loss, and in particular, subdivides magnetic domains by press-fitting a coating on the surface of the steel plate into a base steel. The aim is to reduce iron loss.
(従来の技術)
一方向性珪素鋼板は製品の2次再結晶粒をゴス方位に高
度に集積させ、また鋼板表面上にはフォルステライト質
被膜を形成し、さらにその上に熱膨張係数の小さい絶縁
被膜を被放したもので、厳格な制御を必要とする複雑、
多岐にわたる工程を経て製造される。(Prior technology) Unidirectional silicon steel sheets have secondary recrystallized grains of the product highly concentrated in the Goss orientation, and a forsterite film is formed on the surface of the steel sheet, which has a small coefficient of thermal expansion. It has an exposed insulation coating and is complex and requires strict control.
It is manufactured through a wide variety of processes.
このような一方向性珪素鋼板は、主として変圧器、その
他電気機器の鉄心として使用されており、磁気特性とし
て製品の磁束密度(Boo値で代表される)が高く、鉄
損(W、7.、。値で代表される)が低いこと、さらに
表面性状が良好な絶縁被膜を有することが要求されてい
る。Such unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetic properties include high magnetic flux density (represented by the Boo value) and iron loss (W, 7. , (represented by .), and an insulating film with good surface properties.
とくにエネルキー危機を境にして電力損失の低減を特徴
とする請が著しく強まり、変圧器用鉄心材料としての鉄
損のより低い一方向性珪素鋼板の必要性は増々重要なも
のとなってきている。Particularly in the wake of the energy crisis, demand for features such as reduced power loss has become significantly stronger, and the need for unidirectional silicon steel sheets with lower iron loss as core materials for transformers has become increasingly important.
さて一方向性珪素鋼板の鉄損改善の歴史は、ゴス方位2
次再結晶集合組織の改善の歴史であると言っても過言で
はない。このような2次再結晶粒を制御する方法として
、AIN、MnS及びMnSe等の1次再結晶粒成長抑
制剤、いわゆるインヒビターを用いてゴス方位2次再結
晶粒を優先成長させる方法が実施されている。Now, the history of iron loss improvement of unidirectional silicon steel sheets is based on Goss direction 2.
It is no exaggeration to say that this is a history of improvements in the secondary recrystallization texture. As a method for controlling such secondary recrystallized grains, a method has been implemented in which primary recrystallized grain growth inhibitors such as AIN, MnS, and MnSe are used to preferentially grow Goss-oriented secondary recrystallized grains. ing.
一方これら2次再結晶集合組織を制御する方法とは全く
異なる方法、すなわち鋼板表面にレーザー照射(重心
正:鉄と鋼、 69(1983)、P、895、特公昭
57−2252号、同57−53419号、同58〜2
4605号、同58−24606号各公報参照)又はプ
ラズマ照射(特開昭62−9661.7号、同62−1
51511号、同62151516号および同62−1
51517号各公報参照)により局部微小歪を導入して
磁区を細分化し、もって鉄損を低下する画期的な方法か
提案された。しかしながらこれらの方法により得られた
鋼板は、高温域まで加熱すると微小歪が消失するため、
高温の歪取り焼鈍を施す巻鉄心トランス用材料には使用
できないという欠点がある。On the other hand, a completely different method is used to control the secondary recrystallization texture, namely laser irradiation on the steel sheet surface (center of gravity).
Correct: Tetsu to Hagane, 69 (1983), P, 895, Special Publication No. 57-2252, No. 57-53419, No. 58-2
4605, 58-24606) or plasma irradiation (JP-A-62-9661.7, JP-A-62-1
No. 51511, No. 62151516 and No. 62-1
No. 51517) proposed an innovative method of introducing local microstrain to subdivide magnetic domains and thereby reduce iron loss. However, when steel plates obtained by these methods are heated to a high temperature range, minute strains disappear, so
It has the disadvantage that it cannot be used as a material for wound core transformers that undergoes high-temperature strain relief annealing.
このような高温の歪取り焼鈍を施しても鉄損が劣化しな
い方法が提案されている。例えば、仕上焼鈍板の表面に
溝もしくはセレーションを形成する方法(特公昭50−
35679号、特開昭59−28525号及び同59−
197520号各公報参照)、仕上焼鈍板の表面に微再
結晶粒領域を形成する方法(特開昭56−130454
号公報参照)、フォルステライト質被膜に異厚或いは欠
損領域を形成する方法(特開昭60−92479号、同
60−92480号、同60−92481号及び同60
−258479号各公報参照)、地鉄中、フォルステラ
イト質被膜中又は張力絶縁被膜中に異組成領域を形成す
る方法(特開昭60−103124号及び同60−10
3182号各公報参照)、等である。A method has been proposed in which iron loss does not deteriorate even when such high-temperature strain relief annealing is performed. For example, a method of forming grooves or serrations on the surface of a finish annealed plate (Japanese Patent Publication No. 1983-
35679, JP-A No. 59-28525 and JP-A-59-28525
197520), a method for forming finely recrystallized grain regions on the surface of a finish annealed plate (Japanese Patent Laid-Open No. 130454/1983)
JP-A-60-92479, JP-A-60-92480, JP-A-60-92481 and JP-A-60-60
-258479), a method of forming different compositional regions in the steel base, in the forsterite coating, or in the tension insulation coating (JP-A-60-103124 and JP-A-60-10).
3182), etc.
しかしながらこれらの方法はいずれも工程が複雑となる
わりには鉄損の低減効果は少なく、また製造コストが高
いこともあって、工業的に採用されるには至っていない
。However, these methods have not been adopted industrially because the process is complicated, the effect of reducing iron loss is small, and the manufacturing cost is high.
(発明が解決しようとする課題)
この発明は、磁区細分化によって低減された鉄損が歪取
り焼鈍を施しても劣化することのない、そして安定した
製造が可能な低鉄損一方向性珪素鋼板、さらにこの鋼板
を有利に製造する方法について提案することを目的とす
る。(Problems to be Solved by the Invention) The present invention provides low core loss unidirectional silicon in which the core loss reduced by magnetic domain refining does not deteriorate even after strain relief annealing, and which can be stably manufactured. The purpose of this invention is to propose a steel plate and a method for advantageously manufacturing this steel plate.
(課題を解決するための手段)
この発明は、仕上焼鈍を施したフォルステライト質被膜
付、又はフォルステライト質被膜上にさらに絶縁被膜を
そなえる一方向性珪素鋼板につき、その表面上に、高電
圧、小電流にて発生させた電子ビームを局所的に照射す
るに当たり、鋼板の圧延方向と交わる向きに行う電子ビ
ームの走査を、その走査方向を同一にして圧延方向へ繰
り返し、鋼板表面上の被膜を地鉄に圧入することを特徴
とする低鉄損一方向性珪素鋼板の製造方法である。(Means for Solving the Problems) The present invention provides a unidirectional silicon steel plate with a finish annealed forsterite coating or an insulating coating on the forsterite coating. When locally irradiating an electron beam generated with a small current, scanning of the electron beam in a direction crossing the rolling direction of the steel plate is repeated in the same direction in the rolling direction to form a coating on the surface of the steel plate. This is a method for producing a low core loss unidirectional silicon steel sheet, which is characterized by press-fitting the steel into a base steel.
この発明で対象とする一方向性珪素鋼板は、その表面上
にフォルステライト被膜をそなえているか、さらにフォ
ルステライト被膜上に絶縁被膜を形成したものも適合す
る。The unidirectional silicon steel sheet that is the subject of this invention is also suitable for use with a forsterite coating on its surface, or with an insulating coating formed on the forsterite coating.
なおフォルステライト被膜および絶縁被膜を微小領域に
おいて鋼板の幅方向へ地鉄内部の奥深くまで圧入するた
めには、高電圧および小電流の電子ビーム(以下EBと
示す)を使用してはじめて可能になる。すなわち、特に
高電圧および小電流のEBを使用した場合には、他の方
法(レーザープラズマ、メカニカルな手法等)にくらべ
、深さ方向への透過力が強く、しかも最も狭い幅で浸透
するため、下地被膜および絶縁被膜を消失することなく
、地鉄へ押込めることが可能となる。In order to press-fit the forsterite coating and the insulating coating deep into the steel base in the width direction of the steel plate in a minute area, it is only possible to use a high voltage and small current electron beam (hereinafter referred to as EB). . In other words, especially when using high voltage and small current EB, it has a stronger penetration power in the depth direction than other methods (laser plasma, mechanical methods, etc.), and also penetrates in the narrowest width. , it becomes possible to press the base film and the insulating film into the base metal without losing them.
さらにこの発明の素材である含珪素鋼としては、従来公
知の成分組成のものいずれもが適合するが、代表組成を
掲げると次のとおりである。Further, as the silicon-containing steel that is the material of this invention, any conventionally known compositions are suitable, but typical compositions are as follows.
C:0.01〜0.10%
Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なす、ゴス方位の発達に有用な元素であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.1
0%を超えて含有されるとかえってゴス方位に乱れが生
じるので上限は0.10%程度か好ましい。C: 0.01 to 0.10% C is an element that is useful for the development of Goss orientation by uniformly refining the structure during hot rolling and cold rolling, and it is added at least 0.01% or more. is preferred. However, 0.1
If the content exceeds 0%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.10%.
Si:2.0〜4,5%
Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5%を上回ると冷延性が損なわれ、一方2.
0%に満たないと比抵抗が低下するだけでなく、2次再
結晶・純化のために行われる最終高温焼鈍中にα−γ変
態によって結晶方位のランダム化を生じ、十分な鉄損改
善効果が得られないので、Si量は2.0〜4.5%程
度とするのが好ましい。Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
If it is less than 0%, not only will the resistivity decrease, but also randomization of crystal orientation will occur due to α-γ transformation during the final high-temperature annealing performed for secondary recrystallization and purification, resulting in a sufficient iron loss improvement effect. is not obtained, the amount of Si is preferably about 2.0 to 4.5%.
Mn : 0.02〜0.12%
Mnは、熱間脆化を防止するため少なくとも0.02%
程度を必要とするが、あまりに多すぎると磁気特性を劣
化させるので上限は0.12%程度に定めるのが好まし
い。Mn: 0.02-0.12% Mn is at least 0.02% to prevent hot embrittlement
It is preferable to set the upper limit at about 0.12%, since too much content deteriorates the magnetic properties.
インヒビターとしては、いわゆるMnS、 MnSe系
とAIN系とがある。 MnS、 MnSe系の場合は
、Se、 Sのうちから選ばれる少なくとも1種: 0
.005〜0.06%
Se、 Sはいずれも、方向性けい素鋼板の2次再結
晶を制御するインヒビターとして有力な元素である。抑
制力確保の観点からは、少なくとも0.005%程度を
必要とするか、0,06%を超えるとその効果が損なわ
れるので、その下限、上限はそれぞれ0.01%、0.
06%程度とするのが好ましい。Inhibitors include so-called MnS, MnSe, and AIN inhibitors. In the case of MnS and MnSe, at least one selected from Se and S: 0
.. 005 to 0.06% Se and S are both effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing suppressive force, it is necessary to have at least about 0.005%, or if it exceeds 0.06%, the effect will be impaired, so the lower and upper limits are 0.01% and 0.01%, respectively.
It is preferable to set it to about 0.06%.
AIN系の場合は、
Al : 0.005〜0.10%、N:0.004〜
0.015%AIおよびNの範囲についても、上述した
MnS。In the case of AIN type, Al: 0.005~0.10%, N: 0.004~
MnS as described above also for the 0.015% AI and N ranges.
MnSe系の場合と同様な理由により、上記の範囲に定
めた。ここに上記したMnS、 MnSe系およびAI
N系はそれぞれ併用が可能である。The above range was set for the same reason as in the case of the MnSe system. MnS, MnSe and AI mentioned above
N series can be used in combination.
インヒビター成分としては上記したS、 Se、 AI
の他、Cu、 Sn、 Cr、 Ge、 Sb、 Mo
、 Te、 BiおよびPなども有利に適合するので、
それぞれ少量併せて含有させることもできる。ここに上
記成分の好適添加範囲はそれぞれ、Cu、 Sn、 C
r : 0.01〜0.15%、Ge、 Sb、 Mo
、 Te、 Bi : 0.005〜0.1%、P:0
.01〜0.2%であり、これらの各インヒビター成分
についても、単独使用および複合使用いずれもが可能で
ある。As inhibitor components, the above-mentioned S, Se, AI
In addition to Cu, Sn, Cr, Ge, Sb, Mo
, Te, Bi and P etc. are also advantageously suited, so
They can also be contained together in small amounts. Here, the preferred addition ranges of the above components are Cu, Sn, and C.
r: 0.01-0.15%, Ge, Sb, Mo
, Te, Bi: 0.005-0.1%, P: 0
.. 01 to 0.2%, and each of these inhibitor components can be used alone or in combination.
(作 用) 次にこの発明について実験例に基いて詳細に述べる。(for production) Next, this invention will be described in detail based on experimental examples.
C: 0.048 wt%(以下単に%と示す)、 s
i : 3.42%、 Mn : 0.072%、 S
e : 0.021%、Sb:0゜027%。C: 0.048 wt% (hereinafter simply referred to as %), s
i: 3.42%, Mn: 0.072%, S
e: 0.021%, Sb: 0°027%.
Mo : 01012%を含み残部実質的にFeよりな
る珪素鋼スラブを、1390℃で4時間加熱後、熱間圧
延して2.4mm厚の熱延板とした後、1000℃で3
分の中間焼鈍をはさむ2回の冷間圧延を施して0.20
mrn厚の最終冷延板とした。ついで825°Cの湿水
素中で脱炭1次再結晶焼鈍を施した後、鋼板表面上にM
gOを主成分とする焼鈍分離剤をスラリー塗布し、その
後850°Cで50時間の2次再結晶焼鈍を行ってゴス
方位2次再結晶粒を優先成長させた後、1200°Cの
軟水素中で5時間の純化焼鈍を施した。次いで鋼板表面
上にリン酸塩とコロイダルシリカを主成分とする絶縁被
膜を被成した後、150kV、 1.3mAで発生させ
た0、 12mmφのEBを、下記の■〜■の条件に従
って圧延方向と直角方向に走査して照射し、かつこの照
射を圧延方向へ5mmの間隔で繰り返し施し、その後8
00℃で3時間の歪取り焼鈍を行った。また比較として
EB前照射施さない場合についても、同様の実験を行っ
た。A silicon steel slab containing Mo: 01012% and the remainder substantially Fe was heated at 1390°C for 4 hours, hot rolled into a 2.4mm thick hot rolled sheet, and then rolled at 1000°C for 3 hours.
Cold rolled twice with intermediate annealing for 0.20 min.
A final cold-rolled sheet having a thickness of mrn was obtained. Then, after decarburizing primary recrystallization annealing in wet hydrogen at 825°C, M
After applying a slurry of an annealing separator mainly composed of gO, secondary recrystallization annealing was performed at 850°C for 50 hours to preferentially grow Goss-oriented secondary recrystallized grains, and then soft hydrogen was applied at 1200°C. Purification annealing was performed for 5 hours in the inside. Next, after forming an insulating film mainly composed of phosphate and colloidal silica on the surface of the steel sheet, an EB of 0.12 mmφ generated at 150 kV and 1.3 mA was applied in the rolling direction according to the following conditions The irradiation was performed by scanning in the direction perpendicular to the rolling direction, and this irradiation was repeated at intervals of 5 mm in the rolling direction, and then 8
Strain relief annealing was performed at 00°C for 3 hours. For comparison, a similar experiment was also conducted without EB pre-irradiation.
記
■走査速度:6m/min、走査方向;両方向(第2図
参照)、ドツト状照射二間隔300μm(第3図(a+
参照)
■走査速度: 6m/min、走査方向ニ一方向(第1
図参照)、ドツト状照射・間隔300μm(第3図(a
)参照)
■走査速度: 6m/min、走査方向:両方向(第2
図参照)、線状照射(第3図(b)参照)■走査速度:
6m、/min、走査方向ニ一方向(第1図参照)、
線状照射(第3図(b)参照)■走査速度: 6m、/
min、走査方向ニ一方向(第2図参照)、ジグザグ状
照射:X方向間隔300μm。Note: Scanning speed: 6 m/min, scanning direction: both directions (see Figure 2), dot-shaped irradiation interval of 300 μm (Figure 3 (a+
(Reference) ■Scanning speed: 6m/min, one scanning direction (first
(see figure), dot-shaped irradiation, spacing 300 μm (see figure 3 (a)
)) ■Scanning speed: 6m/min, scanning direction: both directions (second
(see figure), linear irradiation (see figure 3(b)) ■Scanning speed:
6m/min, scanning direction in both directions (see Figure 1),
Linear irradiation (see Figure 3(b)) ■Scanning speed: 6m, /
min, one direction in the scanning direction (see Fig. 2), zigzag irradiation: X-direction interval 300 μm.
Y方向間隔300μm(第3図(C)参照)■走査速度
: 6m/min、走査方向ニ一方向(第1図参照)、
ジグザグ状照射:X方向間隔300μm。Y-direction spacing: 300 μm (see Figure 3 (C)) ■Scanning speed: 6 m/min, in both scanning directions (see Figure 1),
Zigzag irradiation: X-direction interval 300 μm.
)・′方向間隔300μm (第3図(C)参照)なお
第1及び2図中、符号lはEBの走査線、2の矢印は鋼
板の進行(圧延)方向を示す。)・' direction spacing 300 μm (see FIG. 3(C)) In FIGS. 1 and 2, the symbol 1 indicates the scanning line of EB, and the arrow 2 indicates the advancing (rolling) direction of the steel plate.
かくして得られた歪取り焼鈍後の鋼板の磁気特性を、第
1表に示す。The magnetic properties of the steel sheet thus obtained after strain relief annealing are shown in Table 1.
第1表
同表から明らかなように、EBを照射しない鋼板は、鉄
損WI?150が0.05〜0.12 W/kgと大幅
に向上する。これは鋼板表面のフォルステライト質被膜
および絶縁被膜が地鉄(ゴス方位を有する2次再結晶粒
)へ微小領域において深さ方向に圧入されたことによっ
て、歪取り焼鈍を施しても有効な磁区細分化核として作
用し、磁区細分化が可能となったことによる。As is clear from Table 1 and the same table, steel sheets that are not irradiated with EB have iron loss WI? 150 is significantly improved to 0.05 to 0.12 W/kg. This is because the forsterite coating and insulating coating on the surface of the steel sheet are press-fitted into the base steel (secondary recrystallized grains with Goss orientation) in the depth direction in a minute region, resulting in effective magnetic domains even after strain relief annealing. This is because it acts as a subdivision nucleus, making it possible to subdivide magnetic domains.
また鉄損の向上は、EBの照射条件によって異なること
もわかる。It can also be seen that the improvement in iron loss varies depending on the EB irradiation conditions.
すなわち照射条件■、■及び■の両方向走査を経た鋼板
は、照射条件■、■及び■の一方向走査を経た鋼板に比
較して、鉄損の低下が0.04〜0.05W/′kg程
度少ない。In other words, steel plates subjected to bidirectional scanning under irradiation conditions (■, ■, and ■) have a reduction in iron loss of 0.04 to 0.05 W/'kg compared to steel plates subjected to unidirectional scanning under irradiation conditions (■, ■, and ■). To a lesser extent.
EBの走査を両方向とした場合は、第2図に示す、鋼板
の進行(圧延)方向に対して直角の方向に走査方向を維
持することが技術的に困難である。When the EB is scanned in both directions, it is technically difficult to maintain the scanning direction perpendicular to the advancing (rolling) direction of the steel plate, as shown in FIG.
なぜなら鋼板の進行方向に対して完全な直角方向にする
ことはきわめて困難であり、通常台形状の走査形態とな
る。This is because it is extremely difficult to achieve a direction completely perpendicular to the direction in which the steel plate travels, and a trapezoidal scanning pattern is usually obtained.
特に鋼板の両面に照射を行う場合は、表裏面でEB走査
線の鋼板進行方向に対する角度にずれが生るため、磁区
の細分化が充分に行われず鉄損の向上度が少ないものと
考えられる。In particular, when irradiating both sides of a steel plate, there is a deviation in the angle of the EB scanning line with respect to the steel plate traveling direction on the front and back sides, so it is thought that the magnetic domains are not sufficiently subdivided and the improvement in iron loss is small. .
これに対して、第1図に示すようにEBの走査を一方向
とした場合は、鋼板の圧延(進行)方向に対して直角の
方向に走査方向を維持することが可能で、磁区の細分化
は充分に行われる。なおEBの一方向走査は、走査後に
一度走査始点に戻し再び同一方向に走査することで実現
し、走査始点に戻す際の走査を超高速で行うことで鉄損
への悪影響は回避できる。On the other hand, when the EB is scanned in one direction as shown in Fig. 1, it is possible to maintain the scanning direction perpendicular to the rolling (advancement) direction of the steel plate, and subdivide the magnetic domain. The conversion is done sufficiently. Note that the unidirectional scanning of the EB is achieved by returning to the scanning starting point once after scanning and scanning in the same direction again, and by performing the scanning at ultra high speed when returning to the scanning starting point, adverse effects on iron loss can be avoided.
なお珪素鋼板の板厚方向(深さ方向)におけるEBの透
過力は、通常X線が大量発生する65kV以上の加速電
圧において増大するため、この発明の効果を最大限に生
かすには加速電圧を高<(65〜500kV)、加速電
流を小さく (0,001〜5 mA)設定して用いる
ことが重要であり、それにより珪素鋼板の板厚方向への
透過力が強くなる。さらに磁区細分化を効率よく行うた
め、小径のEBを用いることによって照射領域を0.5
mmφ以下の大きさにすることが好ましい。さらにこの
EB前照射た後、その上に絶縁被膜を施して、EB照射
痕跡上の絶縁性をより強くしてもよいが、コストアップ
となるため、通常は施さなくても充分絶縁効果を発揮で
きる。Note that the penetrating power of EB in the thickness direction (depth direction) of a silicon steel plate increases at an accelerating voltage of 65 kV or higher, where a large amount of X-rays are normally generated. It is important to set the accelerating current to a high value (65 to 500 kV) and a small accelerating current (0,001 to 5 mA), thereby increasing the penetrating power in the thickness direction of the silicon steel plate. Furthermore, in order to efficiently perform magnetic domain refining, the irradiation area is reduced to 0.5 by using a small diameter EB.
It is preferable to make the size smaller than mmφ. Furthermore, after this pre-EB irradiation, an insulating film may be applied on top of it to further strengthen the insulation over the EB irradiation traces, but this increases the cost, so normally the insulating effect is sufficient even if it is not applied. can.
さらにこの発明に従う鋼板は、積鉄心や巻鉄心に供する
ことが可能であるが、積鉄心材に供する場合は巻鉄心材
に比較して細い微小圧入領域の導人が必要なので、EB
照射条件は電流を小さく、走査間隔を広くすることが好
ましい。−万巻鉄心材に供する場合のEB照射条件は、
歪取り焼鈍を施しても特性の劣化かないように、電流を
若干大きく、走査間隔を狭くして鋼板表面での微小圧入
領域の導入を促進することが好ましい。Furthermore, the steel plate according to the present invention can be used for stacked iron cores and wound cores, but when used for stacked iron cores, a guide with a minute press-fit area that is thinner than that for rolled iron cores is required, so EB
It is preferable that the irradiation conditions be such that the current is small and the scanning interval is wide. -The EB irradiation conditions when applying to 10,000-volume iron core material are as follows:
In order to avoid deterioration of characteristics even when strain relief annealing is performed, it is preferable to increase the current slightly and narrow the scanning interval to promote the introduction of minute press-fit regions on the surface of the steel sheet.
なおEBの一方向走査は、鋼板の進行(圧延)方向に等
間隔で規則正しく走査するときに特に有効であり、この
手法は磁気特性の向上のみならず、通常の冷延鋼板等に
用いられる局部熱処理等をはかる場合においても有利に
適合する。Note that EB unidirectional scanning is particularly effective when scanning regularly at equal intervals in the advancing (rolling) direction of the steel plate. This method not only improves magnetic properties but also improves the local It is also advantageously suitable for heat treatment and the like.
(実施例)
実施例1
(A) C: 0.072%、Si:3.36%、Al
: 0.026%、S:0.028%、Cu : 0
.98%、Sn : 0.08%又は(B) C: 0
.045%、Si:3.39%、Mn : 0.063
%、Se : 0.021%、Sb : 0.029%
、Mo : 0.012%をそれぞれ含有し残部実質的
にFeよりなる珪素鋼のフォルステライト質被膜付仕上
焼鈍板(0,20mm厚)に、EB装置を用いて圧延方
向と直角方向へEBを一方向から走査し、EB照射を行
った。なおEB照射条件は、加速電圧: 150kV、
加速電流:1.3mA、ビーム径: 0.15mm、ビ
ームスポットの中心間隔:300μmおよび走査間隔:
5mmで、またEB照射は鋼板の両面に施した。(Example) Example 1 (A) C: 0.072%, Si: 3.36%, Al
: 0.026%, S: 0.028%, Cu: 0
.. 98%, Sn: 0.08% or (B) C: 0
.. 045%, Si: 3.39%, Mn: 0.063
%, Se: 0.021%, Sb: 0.029%
, Mo: 0.012% respectively, with the remainder substantially consisting of Fe. A finish annealed plate (0.20 mm thick) with a forsterite coating was subjected to EB in a direction perpendicular to the rolling direction using an EB device. EB irradiation was performed by scanning from one direction. The EB irradiation conditions are acceleration voltage: 150kV,
Accelerating current: 1.3 mA, beam diameter: 0.15 mm, beam spot center spacing: 300 μm, and scanning interval:
5 mm, and EB irradiation was applied to both sides of the steel plate.
処理後の製品に800℃で2時間の歪取り焼鈍を施した
ところ、その磁気特性は次に示すとおりであった。When the treated product was subjected to strain relief annealing at 800° C. for 2 hours, its magnetic properties were as shown below.
(A) B+o=1.95T、 W+7.zso =0
.77W/kg(B) BIO=1.92T、 W+7
150 =0.78W/kg(発明の効果)
この発明によれば、歪取り焼鈍によっても鉄損の劣化し
ない一方向性珪素鋼板を安定して製造することができる
。(A) B+o=1.95T, W+7. zso=0
.. 77W/kg(B) BIO=1.92T, W+7
150 = 0.78 W/kg (Effects of the Invention) According to the present invention, it is possible to stably manufacture a grain-oriented silicon steel sheet whose core loss does not deteriorate even after strain relief annealing.
第1図はこの発明に従うEBの走査要領を示す模式図、 FIG. 1 is a schematic diagram showing the EB scanning procedure according to the present invention;
Claims (1)
性珪素鋼板につき、その表面上に、高電圧、小電流にて
発生させた電子ビームを局所的に照射するに当たり、 鋼板の圧延方向と交わる向きに行う電子ビームの走査を
、その走査方向を同一にして圧延方向へ繰り返し、鋼板
表面上の被膜を地鉄に圧入することを特徴とする低鉄損
一方向性珪素鋼板の製造方法。 2、仕上焼鈍を経たフォルステライト質被膜上にさらに
絶縁被膜をそなえる一方向性珪素鋼板につき、その表面
上に、高電圧、低電流にて発生させた電子ビームを局所
的に照射するに当たり、 鋼板の圧延方向と交わる向きに行う電子ビームの走査を
、その走査方向を同一にして圧延方向へ繰り返し、鋼板
表面上の被膜を地鉄に圧入することを特徴とする低鉄損
一方向性珪素鋼板の製造方法。[Claims] 1. When locally irradiating the surface of a unidirectional silicon steel plate with a forsterite film that has undergone final annealing with an electron beam generated at a high voltage and a small current, Low iron loss unidirectional silicon characterized by scanning an electron beam in a direction intersecting the rolling direction of a steel plate and repeating the scanning in the same direction in the rolling direction to press-fit the coating on the surface of the steel plate into the base steel. Method of manufacturing steel plates. 2. When locally irradiating the surface of a unidirectional silicon steel plate, which has an insulating coating on top of the forsterite coating that has undergone final annealing, with an electron beam generated at high voltage and low current, the steel plate A low iron loss unidirectional silicon steel plate characterized in that the coating on the surface of the steel plate is press-fitted into the base steel by repeatedly scanning an electron beam in the direction crossing the rolling direction with the same scanning direction in the rolling direction. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2056333A JPH0765109B2 (en) | 1990-03-09 | 1990-03-09 | Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2056333A JPH0765109B2 (en) | 1990-03-09 | 1990-03-09 | Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03260022A true JPH03260022A (en) | 1991-11-20 |
JPH0765109B2 JPH0765109B2 (en) | 1995-07-12 |
Family
ID=13024277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2056333A Expired - Lifetime JPH0765109B2 (en) | 1990-03-09 | 1990-03-09 | Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0765109B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013072116A (en) * | 2011-09-28 | 2013-04-22 | Jfe Steel Corp | Grain-oriented electrical steel sheet and method for producing the same |
JP2013111612A (en) * | 2011-11-29 | 2013-06-10 | Mitsubishi Electric Corp | Electron beam alloying method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5884168B2 (en) * | 2012-02-08 | 2016-03-15 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
JP5929808B2 (en) * | 2013-03-27 | 2016-06-08 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet by high-speed electron beam irradiation |
-
1990
- 1990-03-09 JP JP2056333A patent/JPH0765109B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013072116A (en) * | 2011-09-28 | 2013-04-22 | Jfe Steel Corp | Grain-oriented electrical steel sheet and method for producing the same |
JP2013111612A (en) * | 2011-11-29 | 2013-06-10 | Mitsubishi Electric Corp | Electron beam alloying method |
Also Published As
Publication number | Publication date |
---|---|
JPH0765109B2 (en) | 1995-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016056501A1 (en) | Low-core-loss grain-oriented electromagnetic steel sheet and method for manufacturing same | |
KR101421387B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JP3023242B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics | |
US10431359B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6617827B2 (en) | Method for producing grain-oriented electrical steel sheet | |
EP0108575B1 (en) | Local annealing treatment for cube-on-edge grain oriented silicon steel | |
US11459633B2 (en) | Low-iron-loss grain-oriented electrical steel sheet and production method for same | |
JP3399991B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet | |
JPH07268474A (en) | Grain oriented silicon steel sheet with low iron loss | |
KR0134088B1 (en) | Low iron loss grain oriented silicon steel sheets & method of producing the same | |
JPH062042A (en) | Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core | |
JP4331900B2 (en) | Oriented electrical steel sheet and method and apparatus for manufacturing the same | |
JPH03260020A (en) | Method for radiating eb | |
JPH03260022A (en) | Method for radiating linear eb | |
JP5565307B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2014194073A (en) | Method for manufacturing oriented electromagnetic steel sheet | |
JPH04362139A (en) | Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree | |
JP2638180B2 (en) | Low iron loss unidirectional silicon steel sheet and method for producing the same | |
JPH0432517A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
JPH03287725A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
JPH0543944A (en) | Manufacture of low iron loss grain-oriented silicon steel sheet | |
JPS6089521A (en) | Production of grain oriented silicon steel sheet having excellent magnetic characteristic | |
JPH04231415A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
JPH04202627A (en) | Method for irradiating electron beam | |
JPH05311241A (en) | Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam |