JPH04202627A - Method for irradiating electron beam - Google Patents

Method for irradiating electron beam

Info

Publication number
JPH04202627A
JPH04202627A JP33062290A JP33062290A JPH04202627A JP H04202627 A JPH04202627 A JP H04202627A JP 33062290 A JP33062290 A JP 33062290A JP 33062290 A JP33062290 A JP 33062290A JP H04202627 A JPH04202627 A JP H04202627A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
iron loss
steel plate
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33062290A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Hisashi Nakano
恒 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP33062290A priority Critical patent/JPH04202627A/en
Publication of JPH04202627A publication Critical patent/JPH04202627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain a grain-oriented silicon steel sheet free from the deterioration of iron loss even if stress relieving annealing is executed and having a good shape, in the method for manufacturing a grain-oriented silicon steel sheet low in iron loss, by specifying the method for irradiating electron beams. CONSTITUTION:The entire length on the surface of a grain-oriented silicon steel sheet provided with an insulating coating film essentially consisting of phosphate and colloidal silica and subjected to finish annealing is irradiated with electron beams. At this time, the positions equal to the surface and back faces of the above steel sheet are repeatedly irradiated with electron beams having the same scanning directions. By this method, because iron loss is not deteriorated even if stress relieving annealing is executed, the need of strengthening the electron beams to be irradiated and narrowing the scanning distance is eliminated, the shape of the silicon steel sheet is not deteriorated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性けい素鋼板を製造する
のに有用な電子ビーム照射方法に関し、特に該けい素鋼
板の磁区の細分化をはかり、鉄損をより一層低減しよう
とするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an electron beam irradiation method useful for manufacturing unidirectional silicon steel sheets with low core loss, and in particular to subdivision of magnetic domains of the silicon steel sheets. The aim is to further reduce iron loss.

(従来の技術) 一方向性けい素鋼板は製品の2次再結晶粒をゴス方位に
高度に集積させ、その鋼板表面上にフォルステライト質
皮膜を、さらにその上に熱膨張係数の小さい絶縁皮膜を
被成したもので、厳格な制御を必要とする複雑、多岐に
わたる工程を得て製造される。
(Prior technology) Unidirectional silicon steel sheets are made by highly accumulating secondary recrystallized grains in the Goss orientation, and a forsterite film is formed on the surface of the steel sheet, and an insulating film with a small coefficient of thermal expansion is further applied thereon. It is manufactured using a complex and diverse process that requires strict control.

このような一方向性けい素鋼板は、主として変圧器、そ
の他電気機器の鉄心として使用されていて、磁気特性と
して製品の磁束密度(Se値で代表される)が高く、鉄
損(WIT/So値で代表される)が低いこと、さらに
表面性状の良好な絶縁被膜を有することが要求されてい
る。
These unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetic properties include high magnetic flux density (represented by the Se value) and iron loss (WIT/So In addition, it is required to have an insulating film with good surface quality.

とくにエネルギー危機を境にして電力損失の低減を特徴
とする請が著しく強まり、変圧器用鉄心材料としての鉄
損のより低い一方向性けい素鋼板の必要性は益々重要な
ものとなってきている。
Particularly in the wake of the energy crisis, demand for features that reduce power loss has increased significantly, and the need for unidirectional silicon steel sheets with lower iron loss as core materials for transformers has become increasingly important. .

さて一方向性けい素鋼板の鉄損改善の歴史は、ゴス方位
2次再結晶集合組織の改善の歴史であるといてっも過言
でなく、このような2次再結晶粒を制御する方法として
は、7f!N 、 MnS及びMnSe等の1次再結晶
粒成長抑制剤、いわゆるインヒビターを用いてゴス方位
2次再結晶粒を優先成長させる方法が実施されていた。
Now, it is no exaggeration to say that the history of improving iron loss in grain-oriented silicon steel sheets is the history of improving the Goss-oriented secondary recrystallized texture, and as a method to control such secondary recrystallized grains. Ha, 7f! A method has been implemented in which primary recrystallized grain growth inhibitors such as N, MnS, and MnSe are used to preferentially grow Goss-oriented secondary recrystallized grains.

また最近に至ってはこのような2次再結晶集合組織を制
御するものの他、鋼板表面にレーザー照射(土山 正:
鉄と綱。
Recently, in addition to controlling the secondary recrystallization texture, laser irradiation on the steel sheet surface (Tasashi Tsuchiyama:
iron and rope.

69(1983)、P、895.特公昭57−2252
号、同57−53419号、同58−24605号、同
5B−24606号各公報参照)あるいはプラズマ照射
(特開昭62−96617号、同62−151511号
、同62−151516号及び同62−151517号
各公報参照)により局所微小ひずみを導入して磁区を細
分化し鉄損を低下させる画期的な方法が提案されている
。しかしながら、これらの方法に従って製造した鋼板は
、高温域まで加熱すると微小ひずみが消失するため、高
温でのひずみ取り焼鈍を施す必要がある巻鉄心トランス
用の材料としては使用できないという欠点があった。
69 (1983), P, 895. Tokuko Sho 57-2252
JP-A No. 57-53419, JP-A No. 58-24605, JP-A No. 5B-24606) or plasma irradiation (JP-A-62-96617, JP-A-62-151511, JP-A-62-151516 and JP-A-62-62- No. 151,517) proposes an innovative method of introducing local microstrain to subdivide magnetic domains and reduce iron loss. However, steel sheets manufactured according to these methods have the disadvantage that microstrains disappear when heated to a high temperature range, so they cannot be used as materials for wound core transformers that require high-temperature strain relief annealing.

このような高温のひずみ取り焼鈍を施しても鉄損の劣化
を招かない方法としては、仕上焼鈍板の表面に溝もしく
はセレーションを形成する方法(特公昭50−3567
9号、特開昭59−28525号及び同59−1975
20号各公報参照)とか、仕上焼鈍板の表面に微再結晶
粒領域を形成する方法(特開昭56−130454号公
報参照)、フォルステライト質被膜に異厚あるいは欠損
領域を形成する方法(特開昭60−92479号、同6
0−92480号、同60−92481及び同6〇−2
58479号各公報参照)、地鉄中、フォルステライト
質被膜中又は張力絶縁被膜中に異組成領域を形成する方
法(特開昭60403124号及び同60−10318
2号各公報参照)等が知られている。
As a method that does not cause deterioration of iron loss even if such high-temperature strain relief annealing is performed, there is a method of forming grooves or serrations on the surface of the finish annealed plate (Japanese Patent Publication No. 50-3567).
No. 9, JP-A-59-28525 and JP-A-59-1975
20), a method of forming finely recrystallized grain regions on the surface of a finish annealed plate (see JP-A-56-130454), a method of forming uneven thickness or defective regions in the forsterite coating ( JP-A No. 60-92479, No. 6
No. 0-92480, No. 60-92481 and No. 60-2
58479), a method of forming different compositional regions in the steel base, in the forsterite coating, or in the tension insulation coating (JP-A-60403124 and JP-A-60-10318)
2), etc. are known.

しかしながらこれらの方法は何れも工程が複雑になるね
りには鉄損の低減効果は小さく、また製造コストが高い
こともあって、工業的には採用されるには至っていない
のが現状であった。
However, none of these methods has a small effect on reducing iron loss when the process is complicated, and the manufacturing cost is high, so at present they have not been adopted industrially. .

この点に関し、発明者らは特開昭63−186826号
公報にて、絶縁皮膜を施した一方向性けい素鋼板の表面
上に、その鋼板の幅方向に沿って電子ビームを照射する
ことにより、積鉄芯、巻鉄芯の何れにおいても適用可能
とした技術を提案した。
Regarding this point, the inventors reported in Japanese Patent Application Laid-Open No. 63-186826 that by irradiating the surface of a unidirectional silicon steel plate with an insulating film with an electron beam along the width direction of the steel plate, proposed a technology that can be applied to both stacked iron cores and wound iron cores.

(課題を解決するための手段) しかしながら、巻鉄芯トランス用の材料として高温の歪
取り焼鈍を施してもその材料の鉄損を劣化させないため
には、鋼板表面に照射する電子ビームを強く (パワー
密度を大)するとともに、その走査間隔を小さくする必
要があるが、この場合には板形状の劣化を招くおそれが
あり、未だ改良の余地が残されていた。
(Means for solving the problem) However, in order to prevent the iron loss of the material from deteriorating even if it is subjected to high-temperature strain relief annealing as a material for wound iron core transformers, it is necessary to apply a strong electron beam to the surface of the steel sheet ( It is necessary to increase the power density and reduce the scanning interval, but in this case there is a risk of deterioration of the plate shape, and there is still room for improvement.

(発明が解決しようとする課題) 磁区の細分化によって低減された鉄損が、歪取り焼鈍を
施しても劣化することがなく、しかも板形状の劣化を来
すことがない一方向性けい素鋼板を製造するのに有用な
電子ビーム照射方法を提案することがこの発明の目的で
ある。
(Problems to be Solved by the Invention) A unidirectional silicone material in which the iron loss reduced by the subdivision of magnetic domains does not deteriorate even when subjected to strain relief annealing, and also does not cause deterioration of the plate shape. It is an object of the present invention to propose an electron beam irradiation method useful for manufacturing steel sheets.

(課題を解決するための手段) 巻鉄心用に適用できる板形状の良好な低鉄損一方向性け
い素鋼板を得るに当り、種々実験と検討を重ねた結果、
鋼板の片面に対する電子ビーム照射(以下単にEB照射
と記す)に比べ、鋼板の両面の同等位置に同時に、しか
も走査方向を同一にしてEB照射することが極めて有効
であることを突き止めた。この発明は上記の知見に立脚
するものである。すなわち、この発明は、仕上焼鈍を施
した表面にりん酸塩とコロイダルシリカを主成分とする
絶縁コーティング皮膜を備えた一方向性けい素鋼板に、
該鋼板の全長にわたってその表面上に電子ビームを照射
するに当り、上記鋼板の表裏面の同等位置にて、走査方
向を同じくした電子ビームを該鋼板の幅方向に沿って繰
返し照射することを特徴とする歪取り焼鈍を施しても特
性の劣化しない一方向性けい素鋼板の製造方法である。
(Means for solving the problem) In order to obtain a low iron loss unidirectional silicon steel plate with a good plate shape that can be applied to wound cores, we have conducted various experiments and studies.
Compared to electron beam irradiation (hereinafter simply referred to as EB irradiation) on one side of a steel plate, it has been found that EB irradiation on both sides of the steel plate at the same position at the same time and in the same scanning direction is extremely effective. This invention is based on the above knowledge. That is, this invention provides a unidirectional silicon steel sheet with an insulating coating film mainly composed of phosphate and colloidal silica on the surface that has been subjected to finish annealing.
In irradiating the surface of the steel plate with an electron beam over the entire length thereof, the electron beam is repeatedly irradiated with the same scanning direction along the width direction of the steel plate at the same position on the front and back surfaces of the steel plate. This is a method for producing a unidirectional silicon steel sheet whose properties do not deteriorate even when subjected to strain relief annealing.

(作用) まずこの発明の基礎となった実験結果について説明する
(Function) First, the experimental results that formed the basis of this invention will be explained.

表−1は、C: 0.068χ、Si : 3.39Z
 、Mn : 0.086χ、Al : 0.032χ
、Se : 0.028χ、Mo : 0.013%、
 N :0.0076r 、 Cu : 0.055K
を含有するけい素鋼熱延板を1050°Cの中間焼鈍を
はさんで2回の冷間圧延を施して0.20++o厚の最
終冷延板とし、その後840°Cの湿水素中で脱炭を兼
ねた1次再結晶焼鈍を施した後、850°Cから10°
C/hrで1050°Cまで10°C/hrで昇温して
Goss方位2次再結晶粒を発達させた後、1230°
Cの乾H2中で純化焼鈍を行い、その後鋼板表面上にり
ん酸塩とココイダルシリ力を主成分とする絶縁被膜を被
成させてから、種々の照射要領によってEB照射した場
合の板の磁気特性、形状について調査した結果である。
Table-1 shows C: 0.068χ, Si: 3.39Z
, Mn: 0.086χ, Al: 0.032χ
, Se: 0.028χ, Mo: 0.013%,
N: 0.0076r, Cu: 0.055K
A hot-rolled silicon steel sheet containing 1,050°C was cold-rolled twice with intermediate annealing at 1050°C to obtain a final cold-rolled sheet with a thickness of 0.20++o, and then desorbed in wet hydrogen at 840°C. After primary recrystallization annealing that also serves as charcoal, 10° from 850°C
After increasing the temperature at 10°C/hr to 1050°C at C/hr to develop Goss-oriented secondary recrystallized grains,
Magnetic properties of the steel plate when purification annealing is performed in dry H2 of C, an insulating film containing phosphate and cocoidal silica as main components is formed on the surface of the steel plate, and then EB irradiation is performed using various irradiation methods. This is the result of a survey regarding the shape.

なお、この実験では、225KVの加速電圧、1.0m
A (D電流、間隔6IiI11、真空度4 X 10
−’Torrの条件のもとにEB照射を行い、その後、
さらに絶縁被膜を施して800°Cで3時間の歪取り焼
鈍を行った。
In addition, in this experiment, the accelerating voltage of 225 KV, 1.0 m
A (D current, spacing 6IiI11, degree of vacuum 4 x 10
- Perform EB irradiation under the Torr condition, and then
Furthermore, an insulating film was applied and strain relief annealing was performed at 800°C for 3 hours.

表−1において、片面照射になる試験No、(1)より
両面照射になる試験No、(2)〜(4)の方が鉄損の
向上度は大である。しかし、鋼板の両面に照射を行う場
合において、Nα(2) (3)については、鋼板の表
裏面でEB走査線の鋼板長手方向に対する角度、位置に
つれが生しるため磁区細分化が充分に行われないし、ま
た照射位置のづれによる板形状に凹凸が生じる。
In Table 1, the degree of improvement in iron loss is greater in Test Nos. (2) to (4), which involve double-sided irradiation, than in Test No. (1), which involves single-sided irradiation. However, when irradiating both sides of a steel plate, regarding Nα(2) (3), the angle and position of the EB scanning line with respect to the longitudinal direction of the steel plate occur on the front and back sides of the steel plate, so magnetic domain refining is insufficient. This is not done, and irregularities occur in the plate shape due to deviations in the irradiation position.

同一照射位置にしEB走査方向を同一方向にすることに
より試験Nα(4)の如く磁気特性、板形状共に優れて
いる。この実験から、試験Nα(5)のようにEB照射
なしにくらべ、EB照射することにより、歪取り焼鈍後
でも鉄損は向上することがあるが、照射条件によっては
鉄損の向上の仕方および板形状が異なるのが明らかであ
る。
By using the same irradiation position and the same EB scanning direction, both magnetic properties and plate shape were excellent as in test Nα (4). From this experiment, compared to no EB irradiation as in test Nα (5), EB irradiation can improve iron loss even after strain relief annealing, but depending on the irradiation conditions, the method of improving iron loss and It is clear that the plate shapes are different.

一方向性けい素鋼板においては機能材料であるために、
製品の磁気特性が優れていることが不可欠であるが、鋼
板の板形状が悪いとトランスに組んだ場合の占積率が低
下するので、トランスの性能が悪くなる。従ってこのよ
うな鋼板においては磁気特性だけでなく、板形状も製品
の品質に太きな影響を及ぼすのである。
Because unidirectional silicon steel sheets are functional materials,
It is essential that the product has excellent magnetic properties, but if the shape of the steel plate is poor, the space factor will decrease when assembled into a transformer, resulting in poor transformer performance. Therefore, in such a steel plate, not only the magnetic properties but also the plate shape have a significant influence on the quality of the product.

この発明に適用して好適な素材である含けい素鋼として
は、従来公知の成分組成のものがを利に適合するが、そ
の代表組成を下記に示す。
As the silicon-containing steel which is a suitable material for this invention, conventionally known compositions are suitable, and typical compositions thereof are shown below.

1) C: 0.01〜0.08%、 Si : 2.
5〜4.0%、Mn:0.01〜0.2%、門o : 
0.003〜0.1%、 Sb : 0.005〜0.
2%、 S及びSeのうちいずれか0.005〜0.5
% 2) C: 0.01〜0.1%、 Si : 2.5
〜4.0%、Mn:0.01〜0.2 %、 八l  
: 0.005 〜0.06%、  N  :0.00
1〜0.2%、 Sn : 0.01〜0.5%、 C
u : 0.01〜0.3%、S及びSeのうちいずれ
か0.005〜0.5%3) C: 0.01−0.0
6%、 Si : 2.5〜4.0%、Mn:0.01
〜0.2%、 S  :0.005〜0.05%、 B
  :0.0003〜o、oos%、 N  :0.O
O1〜0.01%を含有する珪素鋼素材が好適である。
1) C: 0.01-0.08%, Si: 2.
5-4.0%, Mn: 0.01-0.2%, gate o:
0.003-0.1%, Sb: 0.005-0.
2%, either 0.005 to 0.5 of S and Se
%2) C: 0.01-0.1%, Si: 2.5
~4.0%, Mn: 0.01~0.2%, 8l
: 0.005 to 0.06%, N: 0.00
1-0.2%, Sn: 0.01-0.5%, C
u: 0.01-0.3%, any one of S and Se 0.005-0.5%3) C: 0.01-0.0
6%, Si: 2.5-4.0%, Mn: 0.01
~0.2%, S: 0.005~0.05%, B
:0.0003~o, oos%, N:0. O
A silicon steel material containing 1 to 0.01% O is suitable.

鋼板に照射する電子ビームとしては、高電圧・低電流に
て発生させたビーム径の小さいものを用いるのが好適で
ある。具体的な条件としては加速電圧を65KV 〜5
00KVの範囲に、加速電流を0.001〜5mAの範
囲に設定するのが好ましい。
It is preferable to use an electron beam with a small diameter generated at high voltage and low current as the electron beam to irradiate the steel plate. Specifically, the acceleration voltage is 65KV ~ 5
It is preferable to set the accelerating current in the range of 0.001 to 5 mA in the range of 0.00 KV.

この発明を実施するに当たっては、バッチ式で処理する
こともできるが、コスト上の観点からAir−to−A
ir方式の連続装置を用いるのが良<、EB照射におい
ては、線状あるいは線状の何れであってもよい。
In carrying out this invention, batch processing is also possible, but from the viewpoint of cost, air-to-A processing is possible.
It is preferable to use an IR type continuous device; however, in EB irradiation, either linear or linear irradiation may be used.

(実施例) 仕上げ焼鈍を経た厚み0.23mmになる試料Nα1の
一方向性ケイ素mli (C: 0.044!、Si 
: 3.44X、Mn : 0.070χ、Mo : 
0.014χ、Se : 0.021χ、Sb : 0
.025χ)と、同じく厚み0.23mmになる試料N
o、 2の一方向性けい素鋼板(C: 0.068χ、
Si : 3.42χ、A1:0.024χ、Se :
 0.020χ、Sb : 0.025χ、Mo : 
0.014χ、)のそれぞれに、りん酸塩とコロイダル
シリカを主成分とする絶縁被膜を形成して巻き取った約
6.5トンのコイルに対し、上掲第1表の中の試験Nα
(4)と同一の条件にてEB照射による局部的な熱処理
をその全長にわたって施し、その上にさらに絶縁被膜を
塗布した後800″C15時間の歪取り焼鈍を施し、得
られたそれぞれの鋼板の特性、板形状について調査した
(Example) Unidirectional silicon mli (C: 0.044!, Si
: 3.44X, Mn: 0.070χ, Mo:
0.014χ, Se: 0.021χ, Sb: 0
.. 025χ) and sample N, which also has a thickness of 0.23 mm.
o, 2 unidirectional silicon steel plate (C: 0.068χ,
Si: 3.42χ, A1: 0.024χ, Se:
0.020χ, Sb: 0.025χ, Mo:
The test Nα in Table 1 above was applied to approximately 6.5 tons of coils, each of which was wound with an insulating coating mainly composed of phosphate and colloidal silica.
Localized heat treatment by EB irradiation was applied to the entire length under the same conditions as in (4), and an insulating film was further applied on top of that, followed by strain relief annealing at 800"C for 15 hours. We investigated the characteristics and plate shape.

なお、EB照射時の処理条件は加速電圧: 225KV
、電流: 1.2mA 、走査間隔=5閣、ビーム径:
0.12皿φ、真空度: 5 Xl0−’mmHg、ラ
インスピード:10m/min とした。
The processing conditions during EB irradiation are acceleration voltage: 225KV.
, Current: 1.2mA, Scan interval = 5 mm, Beam diameter:
The diameter of the dish was 0.12, the degree of vacuum was 5 Xl0-'mmHg, and the line speed was 10 m/min.

その結果、試料No、 1の一方向性けい素鋼板は、B
8が1.91T XWI7ys。が0.79訂眩であり
、試料Nα2の一方向性けい素鋼板についてはB8が1
,94、W+tzs。
As a result, sample No. 1 unidirectional silicon steel sheet had B
8 is 1.91T XWI7ys. is 0.79 brightness, and B8 is 1 for the unidirectional silicon steel sheet of sample Nα2.
,94,W+tzs.

が0.78W/kgであり、板形状については何れの場
合も良好であるとこが確かめられた。
was 0.78 W/kg, and it was confirmed that the plate shape was good in all cases.

(発明の効果) かくしてこの発明によれば、歪取り焼鈍によっても鉄損
の劣化を招くことのない形状の良好な一方向性珪素鋼板
を提供できる。
(Effects of the Invention) Thus, according to the present invention, it is possible to provide a unidirectional silicon steel plate with a good shape that does not cause deterioration of core loss even when subjected to strain relief annealing.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍を施した、表面にりん酸塩とコロイダルシ
リカを主成分とする絶縁コーティング被膜を有する一方
向性けい素鋼板に、該鋼板の全長にわたって電子ビーム
を照射するに当り、 上記鋼板の表裏面の同等位置にて、走査方 向を同じくした電子ビームを該鋼板の幅方向に沿って繰
返し照射することを特徴とする電子ビーム照射方法。
[Claims] 1. A unidirectional silicon steel plate that has been subjected to finish annealing and has an insulating coating film mainly composed of phosphate and colloidal silica on its surface is irradiated with an electron beam over the entire length of the steel plate. An electron beam irradiation method comprising repeatedly irradiating an electron beam with the same scanning direction along the width direction of the steel plate at the same position on the front and back surfaces of the steel plate.
JP33062290A 1990-11-30 1990-11-30 Method for irradiating electron beam Pending JPH04202627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33062290A JPH04202627A (en) 1990-11-30 1990-11-30 Method for irradiating electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33062290A JPH04202627A (en) 1990-11-30 1990-11-30 Method for irradiating electron beam

Publications (1)

Publication Number Publication Date
JPH04202627A true JPH04202627A (en) 1992-07-23

Family

ID=18234723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33062290A Pending JPH04202627A (en) 1990-11-30 1990-11-30 Method for irradiating electron beam

Country Status (1)

Country Link
JP (1) JPH04202627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126995A (en) * 2010-11-26 2012-07-05 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
KR20210088666A (en) 2018-12-05 2021-07-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126995A (en) * 2010-11-26 2012-07-05 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
KR20210088666A (en) 2018-12-05 2021-07-14 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
US11923116B2 (en) 2018-12-05 2024-03-05 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing same

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US9514868B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
CA2088326C (en) Method of producing low iron loss, low-noise grain-oriented silicon steel sheet, and low-noise stacked transformer
US9761361B2 (en) Grain-oriented electrical steel sheet
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
JP2022027234A (en) Directional electromagnetic steel plate
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
KR960014945B1 (en) Method for providing heat-resistant domain refinement of electrical steels to reduce core loss
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JP2012177162A (en) Method for manufacturing grain-oriented magnetic steel sheet
JP2012177161A (en) Method of producing grain-oriented electromagnetic steel sheet
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JP2020070477A (en) Production method of oriented electromagnetic steel sheet
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JPH0765108B2 (en) Iron loss reduction method of unidirectional silicon steel sheet by electron beam irradiation
JPH04202627A (en) Method for irradiating electron beam
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JPH03260022A (en) Method for radiating linear eb
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JP5712626B2 (en) Method for producing grain-oriented electrical steel sheet
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet