JPH03287725A - Production of grain-oriented silicon steel sheet reduced in iron loss - Google Patents

Production of grain-oriented silicon steel sheet reduced in iron loss

Info

Publication number
JPH03287725A
JPH03287725A JP2088121A JP8812190A JPH03287725A JP H03287725 A JPH03287725 A JP H03287725A JP 2088121 A JP2088121 A JP 2088121A JP 8812190 A JP8812190 A JP 8812190A JP H03287725 A JPH03287725 A JP H03287725A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
silicon steel
grain
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088121A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2088121A priority Critical patent/JPH03287725A/en
Publication of JPH03287725A publication Critical patent/JPH03287725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet of low iron loss free from deterioration due to stress relief annealing by locally irradiating the surface of a finish-annealed grain-oriented silicon steel sheet surface of specific temp. with electron beam of high voltage and small electric current and also properly shifting this electron beam irradiation. CONSTITUTION:A slab of a silicon steel containing about 2.0-4.5wt.% Si is hot-rolled and cold-rolled and then subjected to recrystallization annealing and to finish annealing, and, if necessary, an insulation coating is formed on the surface. The temp. of the resulting grain-oriented silicon steel sheet is regulated to >=50 deg.C. The surface of this steel sheet is locally irradiated with electron beam. As this electron beam, the one produced at a voltage as high as about 65-500kV and an electric current as small as about 0.01-5mA is used, and the irradiation of this electron beam is shifted in a direction orthogonal to the rolling direction of the steel sheet. By the above procedure, a forsterite film on the above steel sheet can be pressed into ferrite together with the insulation coating, if necessary, by which a magnetic domain can be fractionized and iron loss can be reduced. By this method, the grain-oriented silicon steel sheet of low iron loss free from deterioration even if subjected to stress relief annealing can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性けい素鋼板の製造方法
に関し、特に鋼板表面上の被膜を地鉄中に圧入すること
により磁区の細分化を図って、鉄損を低減しようとする
方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing unidirectional silicon steel sheets with low core loss, and in particular, to a method for manufacturing unidirectional silicon steel sheets with low core loss, in particular, by press-fitting a coating on the surface of a steel sheet into a base steel, the magnetic domains are removed. This relates to a method of reducing iron loss by subdividing the iron.

一方向性けい素鋼板は主として変圧器、その他の電気機
器の鉄心として利用され、その磁化特性が優れているこ
と、すなわち鉄損(Wlff/S。で代表される)が低
いことが要求されている。
Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetization characteristics, that is, low iron loss (represented by Wlff/S). There is.

このためには、第1に鋼板中の2次再結晶粒の<001
>方位粒を圧延方向に高度に揃えることが必要であり、
第2には、最終製品の鋼中に存在する不純物や析出物を
できるだけ減少させることが必要である。かかる配慮の
下で製造される一方向性けい素鋼板は、今日まで多(の
改善努力によってその鉄損値も年を追って改善されてい
るが、エネルギー危機を境にして電力損失のより少ない
電気機器を求める傾向が一段と強まり、それらの鉄心材
料としてさらに鉄損の低い一方向性けい素鋼板の製造が
要請されるようになっている。
For this purpose, firstly, the secondary recrystallized grains in the steel sheet should be <001
>It is necessary to highly align the oriented grains in the rolling direction,
Secondly, it is necessary to reduce as much as possible the impurities and precipitates present in the final product steel. The iron loss value of unidirectional silicon steel sheets manufactured under these considerations has been improved over the years due to numerous efforts to date. As the demand for equipment becomes stronger, there is a demand for the production of unidirectional silicon steel sheets with even lower iron loss as the iron core material for these devices.

(従来の技術) ところで一方向性けい素tlAviの鉄損を下げるには
、 (1) Si含有量を高める (2)製品板厚を薄くする (3)2次再結晶粒を細かくする (4)不純物含有量を低減する (5)  (110)  <001>方位の2次再結晶
粒をより高度に揃える など、主に冶金学的な方法が一般に知られているが、こ
れらの手法は現行の生産手段での限界に達し、もはやそ
れ以上の改善は極めて難しく、たとえ多少の改善が認め
られたとしても、その努力の割には鉄損改善の実効は僅
かとなるような状況になっている。
(Prior art) By the way, in order to reduce the iron loss of unidirectional silicon tlAvi, (1) increase the Si content (2) reduce the thickness of the product plate (3) make the secondary recrystallized grains finer (4) ) Reduction of impurity content (5) (110) Mainly metallurgical methods are generally known, such as aligning secondary recrystallized grains with <001> orientation to a higher degree, but these methods are currently We have reached the limit of our production means, and it is extremely difficult to make any further improvements, and even if some improvement is made, the effect of iron loss improvement will be small compared to the efforts made. There is.

これらの方法とは別に特公昭54−23647号公報に
開示されているように、鋼板表面に2次再結晶粒阻止領
域を形成させることにより、2次再結晶粒を細粒化させ
ることが提案されている。しかしこの技術は2次再結晶
粒径の制御が安定していないため実用的とは言いがたい
Apart from these methods, as disclosed in Japanese Patent Publication No. 54-23647, it has been proposed to make secondary recrystallized grains finer by forming a secondary recrystallized grain blocking region on the steel sheet surface. has been done. However, this technique cannot be said to be practical because control of the secondary recrystallized grain size is not stable.

一方特公昭5B−5968号公報には、2次再結晶後の
鋼板の表面にボールペン状小球によって微小歪を導入す
ることにより磁区の幅を微細化し、鉄損を低減する技術
、さらに特公昭57−2252号、同5753419号
、同58−24605号及び同58−24605号各公
報あるいは鉄と綱、69 (1983) 、P、895
 (市山正)には最終製品板表面に圧延方向とほぼ直角
にレーザービームを数雛間隔に照射し、鋼板表面に高転
位密度領域を導入することにより磁区の幅を微細化し、
鉄損を低減する技術も続いて提案されている。
On the other hand, Japanese Patent Publication No. 5B-5968 discloses a technique for reducing iron loss by introducing micro-strain into the surface of a steel plate after secondary recrystallization using a ballpoint pen-shaped ball to refine the width of the magnetic domain and reduce iron loss. No. 57-2252, No. 5753419, No. 58-24605, and No. 58-24605 or Tetsu to Tsuna, 69 (1983), P, 895
(Tasashi Ichiyama) irradiates the surface of the final product sheet with a laser beam at intervals of several strands almost perpendicular to the rolling direction to introduce high dislocation density regions on the surface of the steel sheet, thereby refining the width of the magnetic domains.
Techniques to reduce iron loss have also been proposed.

そしてまた特公昭57−188810号公報では放電加
工により鋼板表層に微小歪を導入して磁区幅を微細化し
、鉄損を低減する同様な技術が提案されている。また最
近特開昭62−96617号公報、同62−15151
1号、同62−151516号及び同62−15151
1号各公報において、鋼板表面状にプラズマ照射によっ
て局部微小歪を導入して磁区を細分化し、もって鉄損を
低下させる方法が提案された。
Furthermore, Japanese Patent Publication No. 57-188810 proposes a similar technique in which fine strain is introduced into the surface layer of a steel sheet by electrical discharge machining to refine the magnetic domain width and reduce iron loss. Also, recently, Japanese Patent Application Laid-open No. 62-96617, No. 62-15151
No. 1, No. 62-151516 and No. 62-15151
In each of the No. 1 publications, a method was proposed in which local microstrain was introduced into the surface of a steel sheet by plasma irradiation to subdivide the magnetic domain, thereby reducing iron loss.

これら4種類の方法は、いずれも2次再結晶後の鋼板の
地鉄表面に微小な塑性歪を導入することにより、磁区幅
を微細化して鉄損の低減を図るものであって、均しく実
用的でありかつ鉄損低減効果も優れているが、鋼板の打
抜き加工、せん断加工や巻き加工後の歪取り焼鈍やその
他コーティングの焼付は処理の如き熱処理によって塑性
歪導入による効果が減殺される欠点を伴う。
All of these four methods aim to reduce iron loss by refining the magnetic domain width by introducing minute plastic strain to the surface of the base steel of the steel sheet after secondary recrystallization. Although it is practical and has an excellent iron loss reduction effect, the effect of introducing plastic strain is reduced by heat treatment such as strain relief annealing after punching, shearing, and winding of steel plates, and baking of other coatings. With drawbacks.

このような高温の歪取り焼鈍を施しても鉄損が劣化しな
い方法が提案されている。例えば、仕上げ焼鈍板の表面
に溝もしくはセレーションを形成する方法(特公昭50
−35679号、特開昭59−28525号及び同59
−197520号各公報参照)、仕上げ焼鈍板の表面に
微再結晶粒領域を形成する方法(特開昭56−1304
54号公報参照)、フォルステライト質被膜に異厚或い
は欠損領域を形成する方法(特開昭60−92479号
、同60−92480号、同60−92481号及び同
60−258479号各公報参照)、地鉄中、フォルス
テライト質被膜中又は張力絶縁被膜中に異組成領域を形
成する方法(特開昭60−103124号及び同60−
103182号各公報参照)、等である。
A method has been proposed in which iron loss does not deteriorate even when such high-temperature strain relief annealing is performed. For example, a method of forming grooves or serrations on the surface of a finish annealed plate (Japanese Patent Publication No. 50
-35679, JP-A-59-28525 and JP-A-59-28525
-197520), a method for forming fine recrystallized grain regions on the surface of a finish annealed plate (Japanese Unexamined Patent Publication No. 56-1304
54), a method of forming a different thickness or a defective region in a forsterite film (see Japanese Patent Application Laid-open Nos. 60-92479, 60-92480, 60-92481, and 60-258479). , a method for forming regions of different compositions in the substructure, in the forsterite coating, or in the tension insulation coating (JP-A-60-103124 and JP-A-60-103124)
103182), etc.

しかしながらこれらの方法はいずれも工程が複雑となる
割には鉄損の低減効果は少なく、また製造コストが高い
こともあって、工業的に採用されるには至っていない。
However, these methods have not been adopted industrially because the process is complicated, the effect of reducing iron loss is small, and the manufacturing cost is high.

(発明が解決しようとする課題) この発明は、磁区細分化によって低減された鉄損が歪取
り焼鈍を施しても劣化することのない、そして安定した
製造が可能な低鉄損一方向性けい素鋼板を有利に製造す
る方法について提案することを目的とする。
(Problems to be Solved by the Invention) The present invention provides a low core loss unidirectional structure in which the core loss reduced by magnetic domain refining does not deteriorate even after strain relief annealing, and stable manufacturing is possible. The purpose of this paper is to propose an advantageous method for manufacturing raw steel sheets.

(課題を解決するための手段) この発明は、仕上げ焼鈍後の一方向性けい素鋼板の温度
を50℃以上とする一方、この銅板表面に対し、高電圧
・小電流で発生させた電子ビームを局所的に照射すると
ともにこの鋼板の圧延方向に直交する向きに移動させる
ことにより、この銅板表面の被膜を地鉄に圧入させるこ
とを特徴とする低鉄損一方向性けい素鋼板の製造方法で
ある。
(Means for Solving the Problems) This invention aims to increase the temperature of a unidirectional silicon steel sheet after finish annealing to 50°C or higher, and to apply an electron beam generated at a high voltage and a small current to the surface of the copper sheet. A method for producing a low core loss unidirectional silicon steel sheet, characterized in that the coating on the surface of the copper sheet is press-fitted into the base steel by locally irradiating the copper sheet and moving the sheet in a direction perpendicular to the rolling direction of the sheet. It is.

この発明で対象とする仕上げ焼鈍後の一方向性けい素鋼
板は、その表面上にフォルステライト被膜をそなえてい
るが、このフォルステライト被膜上にさらに絶縁被膜を
形成したものも適合する。
The unidirectional silicon steel sheet after finish annealing that is the object of this invention has a forsterite coating on its surface, but a material in which an insulating coating is further formed on the forsterite coating is also suitable.

かかる絶縁被膜は、りん酸塩とコロイダルシリカを主成
分とするコーティングにより被成するのが好適である。
Such an insulating film is preferably formed by a coating containing phosphate and colloidal silica as main components.

なおフォルステライト被膜及び絶縁被膜を、鋼板の圧延
方向に直交する方向へ並ぶ微小領域において地鉄内部の
奥深くまで圧入させるためには、高電圧でかつ小電流の
電子ビーム(以下EBと示す)を使用してはじめて可能
になる。すなわち特に高電圧(65〜500kV程度)
でかつ小電流(0,01〜5+aA程度)のEBを使用
した場合には、他の方法(レーザー、プラズマ又はメカ
ニカルな手法等)に比べ、厚み方向への圧入力が強く、
しかも最も狭い幅で圧入させることができるため、下地
フォルステライト被膜及び絶縁被膜を消失することなく
、地鉄へ押込めることが可能となる。
In order to press-fit the forsterite coating and the insulating coating deep into the steel base in minute areas lined up in a direction perpendicular to the rolling direction of the steel plate, a high voltage and small current electron beam (hereinafter referred to as EB) is used. It becomes possible only when you use it. That is, especially high voltage (about 65 to 500 kV)
When using EB with a large and small current (approximately 0.01~5+aA), the pressing force in the thickness direction is stronger than other methods (laser, plasma, mechanical methods, etc.).
Moreover, since it can be press-fitted with the narrowest width, it is possible to press it into the base iron without losing the underlying forsterite coating and insulation coating.

またこの発明の素材である含けい素鋼としては、従来公
知の成分組成のものいずれもが適合するが、代表組成を
掲げると次のとおりである。
Further, as the silicon-containing steel which is the material of this invention, any conventionally known compositions are suitable, but typical compositions are as follows.

C:0.01〜0.10 wtχ(以下単に%で示す)
Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達に有用な成分であり、少なくとも
0.01%以上の含有が好ましい。しかしながら0.1
0%を超えて含有させるとかえってゴス方位に乱れが生
じるので上限は0.10%程度が好ましい。
C: 0.01 to 0.10 wtχ (hereinafter simply expressed as %)
C is a component useful not only for uniform refinement of the structure during hot rolling and cold rolling, but also for the development of Goss orientation, and its content is preferably at least 0.01%. However, 0.1
If the content exceeds 0%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.10%.

Si : 2.0〜4.5  % Stは、綱板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5%を上回ると冷延性が損なわれ、一方2.
0%に満たないと比抵抗が低下するだけでなく、2次再
結晶・純化のために行われる最終高温焼鈍中にα−γ変
態によって結晶方位のランダム化を生じ、十分な鉄損改
善効果が得られないので、Si量は2.0〜4.5%程
度とするのが好ましい。
Si: 2.0 to 4.5% St increases the specific resistance of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
If it is less than 0%, not only will the resistivity decrease, but also randomization of crystal orientation will occur due to α-γ transformation during the final high-temperature annealing performed for secondary recrystallization and purification, resulting in a sufficient iron loss improvement effect. is not obtained, the amount of Si is preferably about 2.0 to 4.5%.

Mn : 0.02〜0.12% Mnは、熱間ぜい化を防止するため少なくとも0.02
%程度を必要とするが、あまりに多すぎると磁気特性を
劣化させるので上限は0.12%程度に定めるのが好ま
しい。
Mn: 0.02 to 0.12% Mn is at least 0.02% to prevent hot embrittlement.
%, but if it is too large, the magnetic properties will deteriorate, so it is preferable to set the upper limit at about 0.12%.

インヒビターとしては、いわゆるMnS 、 MnSe
系とAIN系とがある。
As inhibitors, so-called MnS, MnSe
There are two types: the AIN system and the AIN system.

MnS SMnSe系の場合には、 S、Seを、それらのうちから選ばれる少なくとも1種
: 0.005〜0.06% 5SSeは、いずれも方向性けい素鋼板の2次再結晶を
制御するインヒビターとして有力な成分である。抑制力
確保の観点からは少なくとも0.005%程度を必要と
するが、0.06%を趙えるとその効果が損なわれるの
でその上限、下限はそれぞれ0.01%、0.06%程
度とするのが好ましい。
In the case of MnS SMnSe, at least one selected from S and Se: 0.005 to 0.06% 5SSe is an inhibitor that controls secondary recrystallization of grain-oriented silicon steel sheets. It is a powerful ingredient. From the viewpoint of securing suppressive power, at least 0.005% is required, but if it exceeds 0.06%, the effect will be impaired, so the upper and lower limits are about 0.01% and 0.06%, respectively. It is preferable to do so.

AIN系の場合には、 Al : 0.005〜0.10%、  N : 0.
004〜0.015%AI及びNの範囲についても、上
述したMnS 、 MnSe系の場合と同様な理由によ
り、上記の範囲に定めた。ここに上記したMnS 、 
MnSe系及びAIN系は、それぞれ併用が可能である
In the case of AIN type, Al: 0.005 to 0.10%, N: 0.
The ranges of 004% to 0.015% AI and N were also set to the above ranges for the same reason as in the case of the MnS and MnSe systems mentioned above. Here the MnS mentioned above,
MnSe type and AIN type can be used together.

インヒビター成分としては上記したS、Se、^1の他
、Cu、 Sn、 Cr、、Ge、、Sb、 Mo、 
Te、 Bi及びP等も有利に適合するので、それぞれ
少量併せて含有させることもできる。ここに上記成分の
好適含有範囲は、それぞれCu、 Sn、 Cr : 
0.01〜0.15%、GeSb、 Mo、 Te、 
Bi : 0.005〜0.1%、P : 0.01〜
0.2%であり、これらの各インヒビター成分について
も、単独使用及び複合使用いずれもが可能である。
In addition to the above-mentioned S, Se, and ^1, inhibitor components include Cu, Sn, Cr, Ge, Sb, Mo,
Since Te, Bi, P, etc. are also advantageously compatible, small amounts of each can also be included. Here, the preferred content ranges of the above components are Cu, Sn, and Cr, respectively:
0.01-0.15%, GeSb, Mo, Te,
Bi: 0.005~0.1%, P: 0.01~
0.2%, and each of these inhibitor components can be used alone or in combination.

(作 用) 次にこの発明について実験例に基づいて具体的に述べる
(Function) Next, this invention will be specifically described based on experimental examples.

C: 0.046%、Si : 3.46%、Mn :
 0.072%、Se: 0.022%、Sb : 0
.026%及びMo : 0.013%を含み残部は実
質的にFeよりなるけい素鋼スラブを、1360℃で5
時間加熱後、熱間圧延にて板厚2.6 anO熱延板に
した後、950℃12分間の中間焼鈍を挟む2回の冷間
圧延を施して厚み0.20mmの最終冷延板とした。次
いで830″Cの湿水素雰囲気中で脱炭を兼ねる1次再
結晶焼鈍を施したのち、鋼板表面上にMgOを主成分と
する焼鈍分離剤をスラリー塗布し、その後860℃で5
0時間の2次再結晶焼鈍を行ってゴス方位2次再結晶粒
を優先成長させた後、1220℃の乾水素雰囲気中で5
時間の純化焼鈍を施した。次いで鋼板表面上にりん酸塩
とコロイダルシリカを主成分とする絶縁被膜を被成した
のち、150kV 、1.3mAで発生させたビーム径
1.5閣φのEBを、常温から800℃までの範囲の種
々の温度に綱板温度を変化させた条件下で圧延方向に直
交する方向に511III+間隔で銅板の両面に、また
は10mm間隔でm板の片面に照射した。その後、両面
に照射した試料については800℃で3時間の歪取り焼
鈍を行った。また比較材としてEB照射を施さない場合
についても同様の実験を行った。
C: 0.046%, Si: 3.46%, Mn:
0.072%, Se: 0.022%, Sb: 0
.. A silicon steel slab containing 0.026% and Mo: 0.013%, the remainder being substantially Fe, was heated at 1360°C for 5
After heating for several hours, it was hot-rolled into a 2.6 anO hot-rolled plate with a thickness of 2.6 anO, and then cold-rolled twice with an intermediate annealing at 950°C for 12 minutes to form a final cold-rolled plate with a thickness of 0.20 mm. did. Next, after performing primary recrystallization annealing which also serves as decarburization in a wet hydrogen atmosphere at 830"C, a slurry coating of an annealing separator mainly composed of MgO is applied to the surface of the steel sheet, and then annealing at 860"C for 55 minutes.
After performing secondary recrystallization annealing for 0 hours to preferentially grow Goss-oriented secondary recrystallized grains, annealing was performed for 5 hours in a dry hydrogen atmosphere at 1220°C.
Subjected to time purification annealing. Next, an insulating film containing phosphate and colloidal silica as main components was formed on the surface of the steel plate, and then EB with a beam diameter of 1.5 mm was generated at 150 kV and 1.3 mA at temperatures ranging from room temperature to 800°C. Irradiation was applied to both sides of a copper plate at 511III+ intervals or to one side of an m plate at 10 mm intervals in a direction perpendicular to the rolling direction under conditions where the steel plate temperature was varied over a range of temperatures. Thereafter, the samples irradiated on both sides were subjected to strain relief annealing at 800° C. for 3 hours. Similar experiments were also conducted using a comparative material that was not subjected to EB irradiation.

かくして得られた各鋼板の鉄損特性(Wl’l/%。値
)を第1図にまとめて示す。同図では、EB照射をしな
い鋼板では、鋼板の温度を変化させても鉄損特性はほと
んど変化していない。これに対してEB照射材において
は、鉄損特性が大きく変化することが注目される。すな
わちEB照射材では、片面照射材及び両面照射材ともに
50℃以上の鋼板温度で鉄損特性がさらに向上している
。好ましくは150〜750℃の温度範囲において鉄損
特性が良好となる。
The iron loss characteristics (Wl'l/%. value) of each steel plate thus obtained are summarized in FIG. In the same figure, in the case of a steel plate that is not subjected to EB irradiation, the iron loss characteristics hardly change even if the temperature of the steel plate is changed. On the other hand, it is noteworthy that the iron loss characteristics of EB irradiated materials change significantly. That is, in the EB irradiated material, the iron loss characteristics are further improved at a steel plate temperature of 50° C. or higher for both the single-sided irradiated material and the double-sided irradiated material. Preferably, the iron loss characteristics are good in the temperature range of 150 to 750°C.

このように鋼板の温度を高くした状況でEB照射を施す
と、鉄損特性が良好となる理由は完全には解明されたわ
けではないが、鋼板が熱膨張した状態でEB照射を施す
と、磁区細分化を効果的に行うことが可能であり、鉄損
特性向上に効果があるものと考えられる。したがってこ
の発明は公知文献からは全く予想し得ないものであり、
その効果および発想は新規なものである。
Although the reason why EB irradiation improves the iron loss characteristics when the temperature of the steel plate is elevated is not completely clear, it is clear that when EB irradiation is performed while the steel plate is thermally expanded, the magnetic domain It is possible to effectively perform subdivision and is considered to be effective in improving iron loss characteristics. Therefore, this invention is completely unexpected from known documents.
The effect and idea are new.

このEBを照射するに当たって鋼板を加熱する場合には
、前もって鋼板を板幅方向にわたって均一加熱すること
が良く、その方法としては抵抗加熱、赤外線加熱等、従
来公知の方法を用いることができる。また連続式で行う
場合、ロール加熱等も好適である。
When heating a steel plate when irradiating this EB, it is preferable to uniformly heat the steel plate across the width of the plate in advance, and conventionally known methods such as resistance heating, infrared heating, etc. can be used for this purpose. Moreover, when carrying out in a continuous system, roll heating etc. are also suitable.

(実施例) 2種の成分組成になる鋼板すなわち (A)  C: 0.071  %、 Si  二 3
.39 %、 Mn  :  0.081  %、^1
 : 0.025%、Se : 0.025%、Cu 
: 0.068%、Mo : 0.013% を含有したけい素鋼、及び (B)  C: 0.044%、Si : 3.39%
、Mn : 0.066%、Se : 0.022%、
Sb : 0.023%、Mo : 0.013%を含
有したけい素鋼の 仕上げ焼鈍板(各板厚0.23mm)にフォルステライ
ト被膜、さらにその上にリン酸塩とコロイダルシリカを
主成分とする絶縁被膜を施した鋼板に対し、EBを、片
面並びに両面に対し点状に照射した。
(Example) Steel plate with two types of component compositions, namely (A) C: 0.071%, Si23
.. 39%, Mn: 0.081%, ^1
: 0.025%, Se: 0.025%, Cu
: 0.068%, Mo: 0.013%, and (B) C: 0.044%, Si: 3.39%
, Mn: 0.066%, Se: 0.022%,
A finish annealed silicon steel plate (each plate thickness 0.23 mm) containing Sb: 0.023% and Mo: 0.013% was coated with forsterite, and on top of that was a coating containing phosphate and colloidal silica as main components. A steel plate coated with an insulating coating was irradiated with EB in dots on one side and both sides.

なおEB照射条件は、加速電圧: 175にν、加速電
流:1.3mA、ビーム径: 0.13mmφ、ビーム
スポット間隔:300μm (両面)及び350μm 
(片面)、走査間隔:5鵬(両面)及び10mm(片面
)であった。またこのときの鋼板の温度は200℃とし
た。
The EB irradiation conditions are: acceleration voltage: 175 to ν, acceleration current: 1.3mA, beam diameter: 0.13mmφ, beam spot spacing: 300μm (both sides) and 350μm.
(single side), scanning interval: 5mm (both sides) and 10 mm (single side). Further, the temperature of the steel plate at this time was 200°C.

なお両面照射材は、800℃で3時間の歪取り焼鈍を行
った。
Note that the double-sided irradiated material was subjected to strain relief annealing at 800° C. for 3 hours.

かくして得られたfil板の磁気特性(Boo 、’A
r、ys。)を表1に示す。
The magnetic properties of the fil plate thus obtained (Boo, 'A
r,ys. ) are shown in Table 1.

表1 することにより、鉄損がさらに低減した一方向性けい素
鋼板を得ることができる。
Table 1 By doing so, a unidirectional silicon steel sheet with further reduced iron loss can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、EB照射材及びEB無照射材の鉄損特性に及
ぼす鋼板温度の影響を示すグラフである。 (発明の効果)
FIG. 1 is a graph showing the influence of steel plate temperature on the iron loss characteristics of EB irradiated material and non-EB irradiated material. (Effect of the invention)

Claims (1)

【特許請求の範囲】[Claims] 1、仕上げ焼鈍後の一方向性けい素鋼板の温度を50℃
以上とする一方、この鋼板表面に対し、高電圧・小電流
で発生させた電子ビームを局所的に照射するとともにこ
の鋼板の圧延方向に直交する向きに移動させることによ
り、この鋼板表面の被膜を地鉄に圧入させることを特徴
とする低鉄損一方向性けい素鋼板の製造方法。
1. The temperature of the unidirectional silicon steel plate after final annealing is 50℃.
On the other hand, by locally irradiating the surface of this steel plate with an electron beam generated with high voltage and small current and moving it in a direction perpendicular to the rolling direction of this steel plate, the film on the surface of this steel plate can be removed. A method for producing a low iron loss unidirectional silicon steel sheet, which is characterized by press-fitting it into a base steel.
JP2088121A 1990-04-04 1990-04-04 Production of grain-oriented silicon steel sheet reduced in iron loss Pending JPH03287725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088121A JPH03287725A (en) 1990-04-04 1990-04-04 Production of grain-oriented silicon steel sheet reduced in iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088121A JPH03287725A (en) 1990-04-04 1990-04-04 Production of grain-oriented silicon steel sheet reduced in iron loss

Publications (1)

Publication Number Publication Date
JPH03287725A true JPH03287725A (en) 1991-12-18

Family

ID=13934075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088121A Pending JPH03287725A (en) 1990-04-04 1990-04-04 Production of grain-oriented silicon steel sheet reduced in iron loss

Country Status (1)

Country Link
JP (1) JPH03287725A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017693A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
WO2012017654A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented electrical steel sheet, and method for producing same
JP2014019901A (en) * 2012-07-18 2014-02-03 Jfe Steel Corp Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
WO2017159507A1 (en) * 2016-03-15 2017-09-21 Jfeスチール株式会社 Method of producing oriented magnetic steel sheet and production equipment line

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017693A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented magnetic steel sheet and process for producing same
WO2012017654A1 (en) * 2010-08-06 2012-02-09 Jfeスチール株式会社 Grain-oriented electrical steel sheet, and method for producing same
JP2012036445A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Grain-oriented electrical steel sheet, and method for producing the same
EP2602339A4 (en) * 2010-08-06 2016-07-20 Jfe Steel Corp Grain-oriented electrical steel sheet, and method for producing same
US9536658B2 (en) 2010-08-06 2017-01-03 Jfe Steel Corporation Grain oriented electrical steel sheet and method for manufacturing the same
JP2014019901A (en) * 2012-07-18 2014-02-03 Jfe Steel Corp Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
WO2017159507A1 (en) * 2016-03-15 2017-09-21 Jfeスチール株式会社 Method of producing oriented magnetic steel sheet and production equipment line
JP2017166016A (en) * 2016-03-15 2017-09-21 Jfeスチール株式会社 Method for producing grain oriented magnetic steel sheet and production equipment line
CN108779509A (en) * 2016-03-15 2018-11-09 杰富意钢铁株式会社 The manufacturing method and production equipment line of orientation electromagnetic steel plate
RU2695853C1 (en) * 2016-03-15 2019-07-29 ДжФЕ СТИЛ КОРПОРЕЙШН Method of producing sheet electrotechnical steel with oriented structure and production line for its production
US11767571B2 (en) 2016-03-15 2023-09-26 Jfe Steel Corporation Method of producing grain-oriented electrical steel sheet and production line therefor

Similar Documents

Publication Publication Date Title
RU2610204C1 (en) Method of making plate of textured electrical steel
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets &amp; method of producing the same
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
KR20240035911A (en) Method for producing grain-oriented electrical steel sheet
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH03260020A (en) Method for radiating eb
JP2020070477A (en) Production method of oriented electromagnetic steel sheet
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JPH03260022A (en) Method for radiating linear eb
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
KR100276341B1 (en) The manufacturing method of highmagnetic flux density oriented electric steel sheet of slab low temperature heating
JPH0432517A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH03104823A (en) Production of grain-oriented silicon steel sheet with superlow iron loss
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPS6257689B2 (en)
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
KR920004949B1 (en) Making process for the electic steel plate
JPH07331333A (en) Grain oriented silicon steel sheet excellent in iron loss characteristic and its production
JP3734191B2 (en) Component adjustment method for annealing separator for grain-oriented electrical steel sheet
JPS61238939A (en) Silicon steel sheet excelling in high-frequency characteristic and its production