JPH07331333A - Grain oriented silicon steel sheet excellent in iron loss characteristic and its production - Google Patents

Grain oriented silicon steel sheet excellent in iron loss characteristic and its production

Info

Publication number
JPH07331333A
JPH07331333A JP6122407A JP12240794A JPH07331333A JP H07331333 A JPH07331333 A JP H07331333A JP 6122407 A JP6122407 A JP 6122407A JP 12240794 A JP12240794 A JP 12240794A JP H07331333 A JPH07331333 A JP H07331333A
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
annealing
groove
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6122407A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishida
昌義 石田
Kunihiro Senda
邦浩 千田
Keiji Sato
圭司 佐藤
Kazuhiro Suzuki
一弘 鈴木
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6122407A priority Critical patent/JPH07331333A/en
Publication of JPH07331333A publication Critical patent/JPH07331333A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide superior iron loss characteristic free from deterioration even after coiling annealing by forming many linear grooves in the surface of a steel sheet in a direction intersecting a rolling direction and then forming a low Si region, lower in Si content than a material, at least in one face among the bottom face and both side faces of each groove, over a prescribed depth or above. CONSTITUTION:The linear grooves to be formed in the surface of a steel sheet are constituted so that they have 30-30mum width, 10-7mum depth, and 1-30mm spacing between grooves and the angle of intersection with a rolling direction is regulated to <=30 deg. with respect to the direction perpendicular to the rolling direction. At least per face of each linear groove, a low Si region having Si content lower than that of a material by >=0.3wt.% is formed over a depth of >=50mum. It is preferable to form this low Si region by forming linear grooves by electrolytic etching, applying a water slurry of fine CaCO3 powder to the grooves, drying them, and then performing annealing at >=800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電機
機器の鉄心材料として有利に適合する鉄損特性に優れた
方向性電磁鋼板およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having excellent iron loss characteristics and suitable for use as an iron core material for transformers and other electrical equipment, and a method for producing the same.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主に変圧器その他の
電気機器の鉄心として利用され、磁気特性に優れるこ
と、中でも鉄損の低いことが要求される。この鉄損は、
概ねヒステリシス損と渦電流損との和で表すことがで
き、ヒステリシス損は強い抑制力をもつインヒビターを
用いることによって結晶方位をゴス方位すなわち(11
0)〔001〕方位に高度に集積させることや、磁化し
たとき磁壁移動の際のピンニング因子の生成原因となる
不純物元素を低減させること等により大幅に低減されて
きた。一方、渦電流損については、Si含有量を増加して
電気抵抗を増大させることや、鋼板板厚を薄くするこ
と、鋼板地鉄表面に地鉄と熱膨張係数の異なる被膜を形
成して地鉄に張力を付与すること、結晶粒の微細化によ
り磁区幅を低減すること等によって、その低減が図られ
てきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetic properties, and especially low iron loss. This iron loss is
It can be roughly expressed by the sum of the hysteresis loss and the eddy current loss, and the hysteresis loss can be obtained by using the inhibitor having a strong suppressing force to change the crystal orientation to the Goss orientation, that is, (11
0) It has been drastically reduced by highly accumulating in the [001] direction and reducing the impurity element that causes generation of a pinning factor when the domain wall moves when magnetized. On the other hand, regarding eddy current loss, increasing the Si content to increase electrical resistance, thinning the steel plate thickness, and forming a coating on the surface of the steel plate base metal with a coefficient of thermal expansion different from that of the base iron The reduction has been achieved by applying tension to iron and reducing the magnetic domain width by refining the crystal grains.

【0003】さらに近年では、渦電流損の低減により、
一層鉄損を低減できる技術として、鋼板の圧延方向と垂
直な方向にレーザー光(特公昭57−2252号公報)やプラ
ズマ炎(特開昭62-96617号公報)等を照射する方法が提
案された。これらの方法は、鋼板表面に線状または点状
に微細な熱歪を導入することによって磁区を細分化し、
この磁区細分化によって鉄損を低減しようとするもので
ある。しかしながら、これらの方法では、磁区細分化後
に高温での熱処理を施すと鉄損低減効果が消失してしま
うため、照射処理後に歪取焼鈍を不可欠とする巻鉄心用
素材としては用いることができなかった。
More recently, due to the reduction of eddy current loss,
As a technique for further reducing iron loss, there has been proposed a method of irradiating a laser beam (Japanese Patent Publication No. 57-2252) or a plasma flame (Japanese Patent Publication No. 62-96617) in a direction perpendicular to the rolling direction of the steel sheet. It was These methods subdivide the magnetic domains by introducing fine thermal strains in a linear or spot form on the steel plate surface,
The magnetic domain is subdivided to reduce the iron loss. However, these methods cannot be used as a material for wound cores that require stress relief annealing after irradiation because the iron loss reduction effect disappears when heat treatment at high temperature is performed after magnetic domain refinement. It was

【0004】そこで歪取焼鈍にも耐え得る磁区細分化技
術として、鋼板への溝形成を利用した方法が種々開発さ
れた。このような技術として、たとえば、仕上焼鈍後す
なわち二次再結晶後の鋼板に局所的に溝を形成し、その
反磁界効果によって磁区を細分化する方法があるが、か
かる溝形成手段としては、機械的な加工(特公昭50-356
79号公報)やレーザー光照射により絶縁被膜および下地
被膜を局所的に除去した後電解マッチングする(特開昭
63-76819号公報)方法等が提案されている。また特公昭
62-53579号公報には、歯形ロールで圧刻後、歪取焼鈍を
施すことによって、溝形成および再結晶を達成して磁区
を細分化する方法が、さらに特開昭59−197520号公報に
は、仕上焼鈍前の鋼板に溝を形成する方法が、それぞれ
開示されている。
Therefore, various methods utilizing groove formation in a steel sheet have been developed as a magnetic domain refining technique capable of withstanding strain relief annealing. As such a technique, for example, there is a method of locally forming a groove in a steel sheet after finish annealing, that is, after secondary recrystallization, and subdividing a magnetic domain by the demagnetizing effect thereof. Mechanical processing (Japanese Patent Publication No. 50-356)
79) or laser light irradiation to locally remove the insulating coating and the underlying coating, followed by electrolytic matching.
63-76819) method has been proposed. In addition,
In JP 62-53579, a method of subdividing a magnetic domain by achieving groove formation and recrystallization by performing stress relief annealing after stamping with a tooth profile roll is further disclosed in JP-A-59-197520. Respectively disclose a method of forming a groove in a steel sheet before finish annealing.

【0005】[0005]

【発明が解決しようとする課題】上記のような溝形成技
術によって、歪取焼鈍後も磁区細分化効果を維持できる
ようになったけれども、鉄損の低減幅は、前記したレー
ザー光やプラズマ炎等を照射する方法と比較すると十分
とは言えず、一層の低鉄損化が望まれていた。この発明
は、上記の要請に有利に応えるもので、溝形成による鉄
損の低減技術において、より一層の低鉄損化を安定して
実現できる新規な技術を提案することを目的とする。
Although the groove forming technique as described above makes it possible to maintain the magnetic domain refining effect even after the strain relief annealing, the iron loss can be reduced by the above-mentioned laser beam or plasma flame. However, it is not sufficient compared with the method of irradiating the same, and further reduction of iron loss has been desired. The present invention advantageously responds to the above-mentioned demands, and an object thereof is to propose a novel technique that can stably realize further lower iron loss in the technique of reducing iron loss by forming a groove.

【0006】[0006]

【課題を解決するための手段】さて発明者らは、方向性
電磁鋼板の低鉄損化を目的として鋭意実験検討を重ねた
結果、表面に線状溝を有する方向性電磁鋼板において、
該線状溝近辺のSi含有量を鋼素材よりも低減することに
より、従来よりも格段に鉄損が低減することの知見を得
た。この発明は、上記の知見の立脚するものである。
Means for Solving the Problems Now, as a result of intensive experiments and studies for reducing the iron loss of grain-oriented electrical steel sheets, the inventors have found that in grain-oriented electrical steel sheets having linear grooves on the surface,
It was found that iron loss can be significantly reduced by reducing the Si content in the vicinity of the linear groove as compared with the steel material. The present invention builds on the above findings.

【0007】すなわちこの発明は、鋼板表面に、圧延方
向と交差する向きに延びる多数の線状溝を有し、かつ該
線状溝の底面および両側面の3面のうち少なくとも1面
につき、Si含有量が素材のそれよりも 0.3wt%以上低い
低Si領域を深さ:50μm 以上にわたって形成したことを
特徴とする鉄損特性に優れた方向性電磁鋼板である。
That is, according to the present invention, a large number of linear grooves extending in a direction intersecting the rolling direction are formed on the surface of a steel sheet, and at least one of the bottom surface and both side surfaces of the linear groove has a Si surface. It is a grain-oriented electrical steel sheet with excellent iron loss characteristics, characterized in that a low Si region whose content is 0.3 wt% or more lower than that of the material is formed over a depth of 50 μm or more.

【0008】またこの発明は、含けい素鋼スラブを、熱
間圧延した後、1回または中間焼鈍を挟む2回以上の冷
間圧延を施して最終製品板厚とし、ついで脱炭焼鈍、最
終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の
製造方法において、最終冷間圧延を経た鋼板に、圧延方
向と交差する向きに多数の線状溝を形成すると共に、最
終仕上焼鈍後、該線状溝の底面および両側面の3面のう
ち少なくとも1面に炭酸カルシウムを付着させたのち、
800℃以上の温度で焼鈍することを特徴とする鉄損特性
に優れた方向性電磁鋼板の製造方法である。
In the present invention, the silicon-containing slab is hot-rolled, and then cold-rolled once or twice or more with an intermediate anneal to obtain a final product sheet thickness, followed by decarburizing-annealing. In a method for producing a grain-oriented electrical steel sheet comprising a series of steps for applying finish annealing, a steel sheet that has undergone final cold rolling is formed with a number of linear grooves in a direction intersecting the rolling direction, and after final finish annealing, After attaching calcium carbonate to at least one of the three surfaces of the bottom surface and both side surfaces of the linear groove,
A method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics, which is characterized by annealing at a temperature of 800 ° C or higher.

【0009】この発明において、鋼板表面に形成する線
状溝の形態は、幅:30〜300 μm 、深さ:10〜70μm 、
溝間隔:1〜30mm、圧延方向との交差角度:圧延方向と
直角な方向に対し30゜以内とすることが好ましい。
In the present invention, the linear groove formed on the surface of the steel sheet has a width of 30 to 300 μm, a depth of 10 to 70 μm,
It is preferable that the groove interval is 1 to 30 mm, and the angle of intersection with the rolling direction is within 30 ° with respect to the direction perpendicular to the rolling direction.

【0010】以下、この発明を具体的に説明する。ま
ず、この発明の基礎となった実験結果について説明す
る。Mn, SeおよびAlをインヒビター形成元素として微量
含有する鋼スラブを、常法に従い熱間圧延ついで中間焼
鈍を挟む2回の冷間圧延を施して0.23mm厚の最終冷延板
とした。ついでこの冷延板に、線状溝形状に対応する非
塗布部を残してレジストインキを塗布しマスキングし
た。ここに非塗布部の形状は、板幅方向に平行な幅:20
0 μm の直線とした。このような直線状の非塗布部を、
圧延方向に間隔:3mmで残した。次にNaCl浴を用いた電
解エッチング処理により、深さ:20μmの線状溝を形成
した。ついでレジスト剤を除去してから、脱炭焼鈍およ
び仕上焼鈍を施した後、 CaCO3微粉を水に懸濁したスラ
リーを、溝部分に塗布、ついで乾燥させた後、 700〜11
00℃の範囲の種々の温度で焼鈍を施した。その後、張力
コーティングを塗布、焼き付けた後、 850℃, 3hの歪
取焼鈍を施した。
The present invention will be described in detail below. First, the experimental results that are the basis of the present invention will be described. A steel slab containing a small amount of Mn, Se and Al as inhibitor forming elements was subjected to hot rolling according to a conventional method and then cold rolling twice with intermediate annealing interposed therebetween to obtain a final cold rolled sheet having a thickness of 0.23 mm. Then, a resist ink was applied to the cold rolled plate to mask it, leaving a non-coated portion corresponding to the linear groove shape. Here, the shape of the non-coating part has a width parallel to the plate width direction: 20
A straight line of 0 μm was used. Such a straight non-coated portion,
It was left with an interval of 3 mm in the rolling direction. Next, a linear groove having a depth of 20 μm was formed by electrolytic etching using a NaCl bath. Then, after removing the resist agent, decarburization annealing and finish annealing were performed, and a slurry in which CaCO 3 fine powder was suspended in water was applied to the groove portion and then dried, and then 700 to 11
Annealing was performed at various temperatures in the range of 00 ° C. Then, a tension coating was applied and baked, and then strain relief annealing was performed at 850 ° C. for 3 hours.

【0011】また比較のため、最終冷延板に対し線状溝
形成処理を施さない鋼板、および幅:200 μm 、深さ:
20μm 、溝間隔:3mmの板幅方向に平行な直線状の線状
溝を形成した鋼板に対し、上と同じ条件で脱炭焼鈍、仕
上焼鈍および歪取焼鈍を施した。
For comparison, a steel plate not subjected to linear groove forming treatment on the final cold-rolled steel plate, width: 200 μm, depth:
Decarburization annealing, finish annealing and strain relief annealing were applied to a steel sheet having linear grooves parallel to the sheet width direction of 20 μm and groove interval: 3 mm under the same conditions as above.

【0012】かくして得られた各鋼板から、エプスタイ
ン試験片を、その長手方向が圧延方向と一致するように
切り出し、それぞれの磁気特性について測定した結果を
図1に示す。図1に示したとおり、 CaCO3を塗布し、 8
00℃以上の温度で焼鈍を施した場合には、溝なしは勿
論、溝のみを形成した従来材に比べて、格段に鉄損が低
減している。また、かかる鋼板の溝周辺部のSi含有量を
EPMAにより調査したところ、溝両側の約 160μm 幅(従
って両側面の約 160μm 深さ)の帯状領域においてSi量
が減少していることが判明した。
From each of the steel plates thus obtained, Epstein test pieces were cut out so that the longitudinal direction thereof coincided with the rolling direction, and the measurement results of the respective magnetic properties are shown in FIG. Apply CaCO 3 as shown in Figure 1 and
When annealed at a temperature of 00 ° C. or higher, the iron loss is remarkably reduced as compared with the conventional material in which only the groove is formed as well as the case without the groove. In addition, the Si content around the groove of the steel plate
An investigation by EPMA revealed that the amount of Si was reduced in a strip-shaped region with a width of about 160 μm on both sides of the groove (thus a depth of about 160 μm on both sides).

【0013】[0013]

【作用】鋼板表面に導入された線状溝は、電磁鋼板が磁
化されたときに自由磁極を生じ、この磁極によって生じ
る磁気エネルギーを減少させるように磁区幅が減少し、
その結果、異常渦電流損が減少することが知られてい
る。しかしながら、磁束線は線状溝の下部を迂回して磁
極の発生を妨げようとする傾向があるため、その分渦電
流損の減少効果が低減することになる。この磁束線の迂
回は、方向性けい素鋼板の磁気異方性に抗して生じるも
のであるから、線状溝周辺の磁気異方性を強化すること
によって、磁束線の迂回による磁区細分化効果の低下を
抑制することが可能となる。ここにFe−Si合金において
は、Si含有量が少ないほど結晶磁気異方性定数が大きい
ため、溝周辺のSi含有量を低減してやれば、磁束線の迂
回を効果的に阻止することができ、その結果、磁区細分
化効果を強化することができるのである。
The linear groove introduced on the surface of the steel sheet forms a free magnetic pole when the electromagnetic steel sheet is magnetized, and the magnetic domain width is reduced so as to reduce the magnetic energy generated by this magnetic pole.
As a result, it is known that abnormal eddy current loss is reduced. However, since the magnetic flux lines tend to bypass the lower part of the linear groove to prevent the magnetic pole from being generated, the effect of reducing the eddy current loss is reduced accordingly. This detour of the magnetic flux lines occurs against the magnetic anisotropy of the grain-oriented silicon steel sheet. Therefore, by strengthening the magnetic anisotropy around the linear grooves, the magnetic domain subdivision by the detour of the magnetic flux lines is performed. It is possible to suppress a decrease in the effect. Here, in the Fe-Si alloy, the smaller the Si content, the larger the magnetocrystalline anisotropy constant, so if the Si content around the groove is reduced, it is possible to effectively prevent the detour of the magnetic flux line, As a result, the magnetic domain subdivision effect can be enhanced.

【0014】Si含有量が少ない領域の分布形態として
は、線状溝直下または線状溝の両側面の隣接領域の少な
くとも一方、すなわち線状溝の底面および両側面の3面
のうち少なくとも1面に沿う帯状領域であれば良い。こ
こに、かかる帯状領域の幅(各面における深さ)が50μ
m に満たないと磁化の回転が起こり易いので、低Si領域
の幅は50μm 以上とする必要がある。とはいえ、この低
Si領域幅があまりに大きいと鋼板の磁気抵抗率が減少
し、かえって鉄損の劣化を招くので、低Si領域幅は 400
μm 以下とするのが好ましい。
As a distribution form of the region containing a small amount of Si, at least one of the regions directly below the linear groove or adjacent to both side surfaces of the linear groove, that is, at least one of the three surfaces of the bottom surface and both side surfaces of the linear groove is used. Any strip-shaped region may be used. Here, the width (depth on each surface) of the strip-shaped area is 50μ.
If the width is less than m, the rotation of magnetization is likely to occur, so the width of the low Si region must be 50 μm or more. However, this low
If the Si region width is too large, the magnetic resistivity of the steel sheet will decrease, which will rather lead to deterioration of iron loss.
It is preferably not more than μm.

【0015】また、この帯状領域におけるSi低減量は、
素材のSi量よりも 0.3wt%以上とする必要がある。とい
うのは、Si低減量が 0.3wt%より少ないと、磁気異方性
の増強効果が小さく、磁束線の線状溝下部迂回を有効に
抑制して鉄損改善を図ることが望めないからである。
Further, the Si reduction amount in this strip region is
It should be 0.3 wt% or more than the Si content of the material. This is because if the Si reduction amount is less than 0.3 wt%, the effect of enhancing the magnetic anisotropy is small, and it is not possible to effectively suppress the detour of the linear groove below the magnetic flux line to improve the iron loss. is there.

【0016】なお、この帯状領域は、線状溝に沿って連
続的に板幅方向に形成されていることがより望ましい
が、必ずしも連続的である必要はなく、破線状のように
断続的であっても良い。また、この帯状領域の結晶粒方
位は、その周辺と同じにする、すなわち同一の結晶粒内
において低Si領域が形成されていることが望ましいが、
この領域内に粒界または微細な結晶粒が存在していても
良い。
It is more preferable that the strip-shaped region is continuously formed in the plate width direction along the linear groove, but it is not always necessary to be continuous, and it is intermittent like a broken line. It may be. Further, the crystal grain orientation of this band-shaped region is the same as that of the periphery thereof, that is, it is desirable that the low Si region is formed in the same crystal grain,
Grain boundaries or fine crystal grains may be present in this region.

【0017】線状溝の形状については、幅:30〜300 μ
m 、深さ:10〜70μm で、溝間隔:1〜30mm、圧延方向
との交差角度:圧延方向と直角な方向に対し30゜以内と
することが好ましい。というのは、溝幅が30μm に満た
ない場合および溝の深さが10μm に満たない場合には、
磁極の発生量が少ないために十分な磁区細分化効果が得
られず、一方溝幅が 300μm を超えた場合および溝深さ
が70μm を超えた場合には磁束密度の著しい低下を招く
からである。また、溝間隔が1mmに満たないと磁束密度
の低下が著しく、一方30mmを超えると磁区細分化効果が
低下し、鉄損低減が十分でなくなる。さらに、線状溝の
方向が圧延方向と直角な方向に対し±30゜の範囲を逸脱
すると磁区細分化効果が急激に小さくなり、鉄損低減効
果が著しく劣化する。
Regarding the shape of the linear groove, width: 30 to 300 μ
It is preferable that m is m, depth is 10 to 70 μm, groove interval is 1 to 30 mm, and angle of intersection with the rolling direction is within 30 ° with respect to the direction perpendicular to the rolling direction. This is because when the groove width is less than 30 μm and the groove depth is less than 10 μm,
This is because the amount of magnetic poles generated is small, so a sufficient domain refinement effect cannot be obtained, while when the groove width exceeds 300 μm and the groove depth exceeds 70 μm, the magnetic flux density is significantly reduced. . Further, if the groove spacing is less than 1 mm, the magnetic flux density is remarkably reduced, while if it exceeds 30 mm, the magnetic domain refining effect is reduced and the iron loss is not sufficiently reduced. Further, if the direction of the linear groove deviates from the range of ± 30 ° with respect to the direction perpendicular to the rolling direction, the effect of domain refinement will be sharply reduced, and the effect of reducing iron loss will be significantly deteriorated.

【0018】線状溝の形成時期については、最終冷間圧
延後であれば、最終仕上焼鈍の前後のいずれの段階でも
構わない。溝を形成する方法については局所的にエッチ
ング処理する方法、刃物等でけがく方法、突起付きロー
ルで圧延する方法等が挙げられるが、最も望ましい方法
は、最終冷間圧延直後に、レジスト−電解エッチング法
等の電気化学的方法またはエッチング等の化学的方法に
よって、鋼板に溝を形成する方法である。
The linear grooves may be formed at any stage before and after the final finish annealing as long as they are after the final cold rolling. Examples of the method of forming the groove include a method of locally performing an etching treatment, a method of scribing with a cutting tool, a method of rolling with a protruding roll, and the like, but the most preferable method is immediately after final cold rolling, resist-electrolysis. It is a method of forming grooves in a steel sheet by an electrochemical method such as etching or a chemical method such as etching.

【0019】次に、線状溝の周辺に低Si領域を形成する
が、かような方法としては、仕上焼鈍後に線状溝部分に
CaCO3を塗布し、 800℃以上の温度で焼鈍する方法が有
利に適合する。ここに、焼鈍温度が 800℃に満たないと
前掲図1に示したとおり、溝の周辺領域に低Si領域を十
分に形成することができず、満足いく磁区細分化効果が
得られないので、焼鈍温度は 800℃以上(好ましくは11
00℃以下)とする必要がある。
Next, a low Si region is formed around the linear groove. As such a method, the linear groove portion is formed after the finish annealing.
The method of applying CaCO 3 and annealing at a temperature of 800 ° C. or higher is advantageously suitable. If the annealing temperature is lower than 800 ° C., as shown in FIG. 1, a low Si region cannot be formed sufficiently in the peripheral region of the groove, and a satisfactory domain refinement effect cannot be obtained. Annealing temperature is 800 ℃ or higher (preferably 11
It is necessary to set the temperature below 00 ° C).

【0020】なお、低Si領域の形成手段は、上記した C
aCO3の塗布・焼付け法に限るわけではなく、以下のよう
な方法も適合する。 . 予め素材中のSi量を低減しておき、線状溝形成後、
この線状溝の近接領域を除く領域に加Si処理を施す方
法。 . 線状溝形成後、この線状溝の近接領域のみを強酸化
雰囲気において加熱し、酸化脱珪する方法。
The means for forming the low Si region is C
It is not limited to the coating and baking method of aCO 3 , but the following methods are also applicable. After reducing the amount of Si in the material in advance and forming linear grooves,
A method of applying Si treatment to a region other than the adjacent region of the linear groove. After the linear grooves are formed, a method of heating only the region near the linear grooves in a strong oxidizing atmosphere to oxidize and desiliconize.

【0021】この発明の適用については、特に限定され
ることはなく、従来公知の電磁鋼板であればいずれにも
適用することができる。ここに、好適組成を示すと次の
とおりである。 C:0.01〜0.10wt%(以下単に%と示す) Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達にも有用な元素であり、少なくと
も0.01%の添加が好ましいが、0.10%を超えて含有する
とかえってゴス方位に乱れが生じるので、0.01〜0.10%
程度とするのが好ましい。
The application of the present invention is not particularly limited, and any conventionally known magnetic steel sheet can be applied. The preferred composition is as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as "%") C is an element useful not only for uniform refinement of the structure during hot rolling and cold rolling but also for development of Goss orientation, and at least 0.01%. However, if the content exceeds 0.10%, the Goss orientation will be disturbed, so 0.01 to 0.10%
It is preferably about the same.

【0022】Si: 2.0〜4.5 % Siは、鋼板の比抵抗を高めて鉄損の低減に有効に寄与す
るが、 4.5%を上回ると冷延性が損なわれ、一方 2.0%
に満たないと比抵抗が低下するだけでなく、二次再結晶
・鈍化のために行われる仕上焼鈍中にα−γ変態によっ
て結晶方位のランダム化を生じ、十分な鉄損低減効果が
得られないので、Si量は 2.0〜4.5 %程度とするのが好
ましい。
Si: 2.0 to 4.5% Si increases the resistivity of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold rolling property is impaired, while 2.0%
If it does not satisfy the requirement, not only the specific resistance decreases, but also the crystal orientation is randomized by α-γ transformation during the finish annealing performed for secondary recrystallization and blunting, and a sufficient iron loss reduction effect is obtained. Therefore, the amount of Si is preferably set to about 2.0 to 4.5%.

【0023】Mn:0.02〜0.12% Mnは、熱間脆性を防止するために少なくとも0.02%程度
を必要とするが、あまりに多すぎると磁気特性を劣化さ
せるので上限は0.12%程度に定めるのが好ましい。
Mn: 0.02 to 0.12% Mn requires at least about 0.02% to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%. .

【0024】ゴス方位以外の方位を有する結晶粒の粒成
長を抑制し、有効にゴス方位を成長させるために添加さ
れるインヒビターとしては、MnS, MnSe系と、AlN系が
挙げられる。 ・MnS, MnSe系;Se, Sのうちから選んだ少なくとも1
種:0.005 〜0.06% Se, Sは、いずれもインヒビターとして有効な元素であ
り、抑制力確保の観点からは少なくとも 0.005%程度を
必要とするが、0.06%を超えるとかえってその効果が損
なわれるので、単独添加または複合添加いずれの場合に
おいても含有量は 0.005〜0.06%程度とするのが好まし
い。 ・AlN系;Al:0.005 〜0.10%, N:0.004 〜0.015 % AlおよびNの範囲についても、上述のMnS, MnSe系の場
合と同様の理由により上記の範囲とした。ここに、上述
したMnS, MnSe系とAlN系との併用は可能である。
The inhibitors added to suppress the grain growth of crystal grains having an orientation other than the Goss orientation and effectively grow the Goss orientation include MnS, MnSe-based and AlN-based inhibitors.・ MnS, MnSe system; at least 1 selected from Se and S
Species: 0.005 to 0.06% Se and S are all effective elements as inhibitors, and at least about 0.005% is required from the viewpoint of securing inhibitory power, but if it exceeds 0.06%, the effect is rather impaired. In either case of single addition or complex addition, the content is preferably about 0.005 to 0.06%. AlN system; Al: 0.005 to 0.10%, N: 0.004 to 0.015% The range of Al and N is also set to the above range for the same reason as in the case of the above MnS and MnSe systems. Here, the above-mentioned MnS, MnSe system and AlN system can be used together.

【0025】なお、上記したS, Se, Al以外にも、イン
ヒビター構成元素として、Cu, Sn,Cr, Ge, Sb, Mo, Te,
BiおよびP等を利用することができる。ここに、上記
成分の好適添加範囲はそれぞれ、Cu, Sn, Cr:0.01〜0.
15%、Ge, Sb, Mo, Te, Bi:0.005 〜0.1 %、P:0.01
〜0.2 %であり、これらの各インヒビターについても単
独使用および複合使用いずれもが可能である。
In addition to S, Se, and Al described above, Cu, Sn, Cr, Ge, Sb, Mo, Te, and
Bi and P etc. can be used. Here, the preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0, respectively.
15%, Ge, Sb, Mo, Te, Bi: 0.005 to 0.1%, P: 0.01
.About.0.2%, and each of these inhibitors can be used alone or in combination.

【0026】[0026]

【実施例】【Example】

実施例1 Al, Mn, SeおよびSbをインヒビター形成元素として微量
含有するけい素鋼スラブを、常法に従い熱間圧延ついで
中間焼鈍を挟む2回の冷間圧延を施して0.23mm厚の最終
冷延板とした。ついでこの冷延板に、線状溝形状に対応
する非塗布部を残してレジストインキを塗布しマスキン
グした。ここで非塗布部の形状は、板幅方向に延びる
幅:200 μm の直線とした。このような直線状の非塗布
部を、圧延方向の間隔:3mmで残した。次に、NaCl浴を
用いた電解エッチング処理により、深さ:20μm の線状
溝を形成した。ついでレジスト剤を除去してから、脱炭
焼鈍および仕上焼鈍を施した後、 CaCO3粉末を水に懸濁
したスラリーを、溝部分に塗布・乾燥し、焼き付けた
後、 750〜1000℃の温度で焼鈍を施した。
Example 1 A silicon steel slab containing trace amounts of Al, Mn, Se and Sb as inhibitor forming elements was subjected to hot rolling according to a conventional method and then cold rolling twice with intermediate annealing sandwiched between them to obtain a final cold 0.23 mm thickness. It was a rolled sheet. Then, a resist ink was applied to the cold rolled plate to mask it, leaving a non-coated portion corresponding to the linear groove shape. Here, the shape of the non-coated portion was a straight line having a width of 200 μm extending in the plate width direction. Such a linear non-coated portion was left at a distance of 3 mm in the rolling direction. Next, a linear groove having a depth of 20 μm was formed by electrolytic etching using a NaCl bath. Next, after removing the resist agent, decarburization annealing and finish annealing were performed, and then a slurry in which CaCO 3 powder was suspended in water was applied to the groove portion, dried, and baked. Annealed in.

【0027】また比較のため、最終冷延板に対し線状溝
形成処理を施さない鋼板、および幅:200 μm 、深さ:
20μm 、圧延方向の間隔:3mmの板幅方向に平行な直線
状の線状溝を形成したレジスト剤除去後の鋼板に対し、
同様にして脱炭焼鈍および仕上焼鈍を施した後、 850
℃, 3時間の歪取焼鈍を施した。
For comparison, a steel plate not subjected to the linear groove forming treatment on the final cold-rolled sheet, width: 200 μm, depth:
For the steel plate after removing the resist agent, which has a linear groove parallel to the plate width direction of 20 μm and a rolling direction interval of 3 mm,
Similarly, after decarburizing and finishing annealing,
Strain relief annealing was performed at ℃ for 3 hours.

【0028】かくして得られた歪取焼鈍後の各鋼板か
ら、エプスタイン試験片を、その長手方向が圧延方向と
一致するように切り出し、それぞれの磁気特性について
測定した結果を表1に示す。
Epstein test pieces were cut from each of the thus obtained steel sheets after stress relief annealing so that the longitudinal direction thereof coincided with the rolling direction, and the measurement results of the respective magnetic properties are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかなように、この発明に従い
線状溝部分に CaCO3を塗布し、 800℃以上で焼鈍した場
合には、比較材に比べて鉄損が大幅に低減されている。
As is clear from Table 1, when CaCO 3 is applied to the linear groove portion according to the present invention and annealed at 800 ° C. or higher, iron loss is significantly reduced as compared with the comparative material.

【0031】実施例2 Al, Mn, SeおよびSbをインヒビター形成元素として微量
含有するけい素鋼スラブを、常法に従い熱間圧延ついで
中間焼鈍を挟む2回の冷間圧延を施して0.23mm厚の冷延
板とした。ついでこの冷延板に、線状溝形状に対応する
非塗布部を残してレジストインキを塗布しマスキングし
た。ここで非塗布部の形状は、板幅方向に対し10゜の角
度をなして延びる幅:200 μm の直線とした。このよう
な直線状の非塗布部を間隔:3mm毎に残した。次に、Na
Cl浴を用いた電解エッチング処理により、深さ25μm の
線状溝を形成した後、レジスト剤を除去してから、脱炭
焼鈍および仕上焼鈍を施した。その後、線状溝部に YAG
レーザーを照射することによって線状溝部に生成した被
膜を除去した後、 CaCO3粉末を水に懸濁したスラリーを
塗布し、焼鈍した。
Example 2 A silicon steel slab containing a small amount of Al, Mn, Se and Sb as inhibitor forming elements was subjected to hot rolling according to a conventional method and then cold rolling twice with intermediate annealing interposed therebetween to obtain a thickness of 0.23 mm. Cold-rolled sheet. Then, a resist ink was applied to the cold rolled plate to mask it, leaving a non-coated portion corresponding to the linear groove shape. Here, the shape of the non-coated portion was a straight line having a width of 200 μm and extending at an angle of 10 ° with respect to the plate width direction. Such linear non-coated portions were left at intervals of 3 mm. Then Na
After forming a linear groove having a depth of 25 μm by electrolytic etching using a Cl bath, the resist agent was removed, and then decarburization annealing and finish annealing were performed. After that, YAG in the linear groove
After irradiating a laser to remove the coating formed in the linear groove, a slurry in which CaCO 3 powder was suspended in water was applied and annealed.

【0032】また比較のため、最終冷延板に対し線状溝
形成処理を施さない鋼板、および幅:200 μm 、深さ:
25μm 、間隔:3mm、板幅方向に対する角度:10゜で直
線状に延びる線状溝を形成し、レジスト剤除去後、線状
溝上に YAGレーザーを照射した鋼板に対し、同様にして
脱炭焼鈍および仕上焼鈍を施し、張力コーティングを塗
布、焼き付けた後、 800℃, 3時間の歪取焼鈍を施し
た。
For comparison, a steel plate not subjected to linear groove forming treatment on the final cold-rolled plate, width: 200 μm, depth:
A linear groove extending linearly at 25 μm, an interval of 3 mm, and an angle of 10 ° with respect to the plate width direction was formed, and after removing the resist agent, the steel plate on which the YAG laser was irradiated was linearly decarburized and annealed. After finishing annealing, a tension coating was applied and baked, and then strain relief annealing was performed at 800 ° C for 3 hours.

【0033】かくして得られた歪取焼鈍後の各鋼板か
ら、エプスタイン試験片を、その長手方向が圧延方向と
一致するように切り出し、それぞれの磁気特性について
測定した結果を表2に示す。
Epstein test pieces were cut from each of the thus obtained steel sheets after stress relief annealing so that the longitudinal direction thereof coincided with the rolling direction, and the measurement results of the respective magnetic properties are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2から明らかなように、この発明に従い
得られた鋼板は、比較材に比べて格段に鉄損が低減して
いる。
As is clear from Table 2, the steel sheet obtained according to the present invention has significantly reduced iron loss as compared with the comparative material.

【0036】[0036]

【発明の効果】かくしてこの発明によれば、歪取焼鈍に
よっても劣化することのない、優れた鉄損特性を有する
方向性電磁鋼板を安定して得ることができ、特に変圧器
鉄心の用途に供して偉効を奏する。
As described above, according to the present invention, it is possible to stably obtain a grain-oriented electrical steel sheet having excellent iron loss characteristics, which is not deteriorated by strain relief annealing, and is particularly suitable for transformer core applications. Serve and play a great effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼鈍温度と鉄損との関係を示すグラフである。FIG. 1 is a graph showing the relationship between annealing temperature and iron loss.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 鈴木 一弘 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keiji Sato, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Division, Kawasaki Steel Co., Ltd. (72) Kazuhiro Suzuki, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba (72) Inventor Michio Komatsubara, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Kawasaki Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表面に、圧延方向と交差する向きに
延びる多数の線状溝を有し、かつ該線状溝の底面および
両側面の3面のうち少なくとも1面につき、Si含有量が
素材のそれよりも 0.3wt%以上低い低Si領域を深さ:50
μm 以上にわたって形成したことを特徴とする鉄損特性
に優れた方向性電磁鋼板。
1. A steel sheet surface having a large number of linear grooves extending in a direction intersecting the rolling direction, and at least one of the bottom surface and both side surfaces of the linear groove has a Si content. Depth of low Si region 0.3 wt% lower than that of material: 50
A grain-oriented electrical steel sheet with excellent iron loss characteristics, characterized by being formed over μm.
【請求項2】 請求項1において、線状溝が、幅:30〜
300 μm 、深さ:10〜70μm 、溝間隔:1〜30mm、圧延
方向との交差角度:圧延方向と直角な方向に対し30゜以
内である鉄損特性に優れた方向性電磁鋼板。
2. The linear groove according to claim 1, wherein the width is 30 to
300 μm, depth: 10 to 70 μm, groove interval: 1 to 30 mm, crossing angle with rolling direction: grain oriented electrical steel sheet with excellent iron loss characteristics within 30 ° with respect to the direction perpendicular to the rolling direction.
【請求項3】 含けい素鋼スラブを、熱間圧延した後、
1回または中間焼鈍を挟む2回以上の冷間圧延を施して
最終製品板厚とし、ついで脱炭焼鈍、最終仕上焼鈍を施
す一連の工程からなる方向性電磁鋼板の製造方法におい
て、 最終冷間圧延を経た鋼板に、圧延方向と交差する向きに
多数の線状溝を形成すると共に、最終仕上焼鈍後、該線
状溝の底面および両側面の3面のうち少なくとも1面に
炭酸カルシウムを付着させたのち、 800℃以上の温度で
焼鈍することを特徴とする鉄損特性に優れた方向性電磁
鋼板の製造方法。
3. A silicon-containing steel slab is hot-rolled,
In the method for producing a grain-oriented electrical steel sheet, which comprises a series of steps in which a final product sheet thickness is obtained by performing cold rolling once or twice or more with an intermediate annealing between them, followed by decarburization annealing and final finishing annealing. A large number of linear grooves are formed on the rolled steel plate in a direction intersecting with the rolling direction, and after final finishing annealing, calcium carbonate is adhered to at least one of the bottom surface and both side surfaces of the linear groove. A method for producing a grain-oriented electrical steel sheet with excellent iron loss characteristics, which comprises annealing at a temperature of 800 ° C or higher.
JP6122407A 1994-06-03 1994-06-03 Grain oriented silicon steel sheet excellent in iron loss characteristic and its production Pending JPH07331333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122407A JPH07331333A (en) 1994-06-03 1994-06-03 Grain oriented silicon steel sheet excellent in iron loss characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122407A JPH07331333A (en) 1994-06-03 1994-06-03 Grain oriented silicon steel sheet excellent in iron loss characteristic and its production

Publications (1)

Publication Number Publication Date
JPH07331333A true JPH07331333A (en) 1995-12-19

Family

ID=14835040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122407A Pending JPH07331333A (en) 1994-06-03 1994-06-03 Grain oriented silicon steel sheet excellent in iron loss characteristic and its production

Country Status (1)

Country Link
JP (1) JPH07331333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045025B2 (en) * 2002-05-31 2006-05-16 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045025B2 (en) * 2002-05-31 2006-05-16 Nippon Steel Corporation Grain-oriented electrical steel sheet excellent in magnetic properties and method for producing the same

Similar Documents

Publication Publication Date Title
JP5988026B2 (en) Method for producing grain-oriented electrical steel sheet
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
JP5740854B2 (en) Oriented electrical steel sheet
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JP5794409B2 (en) Electrical steel sheet and manufacturing method thereof
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JP2019137883A (en) Grain-oriented electromagnetic steel sheet and method for manufacturing grain-oriented electromagnetic steel sheet
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
KR102427606B1 (en) Grain-oriented electrical steel sheet
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH03260020A (en) Method for radiating eb
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH07331333A (en) Grain oriented silicon steel sheet excellent in iron loss characteristic and its production
JPS6331527B2 (en)
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP4876799B2 (en) Oriented electrical steel sheet
JPH0841602A (en) Grain-oriented silicon steel sheet excellent in magnetic property and its production
JPH07268470A (en) Production of grain oriented silicon steel sheet with low iron loss
JPH03260022A (en) Method for radiating linear eb
JPH0542496B2 (en)
JPH07268472A (en) Grain oriented silicon steel sheet excellent in magnetic property
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet