JPH0841602A - Grain-oriented silicon steel sheet excellent in magnetic property and its production - Google Patents

Grain-oriented silicon steel sheet excellent in magnetic property and its production

Info

Publication number
JPH0841602A
JPH0841602A JP6180104A JP18010494A JPH0841602A JP H0841602 A JPH0841602 A JP H0841602A JP 6180104 A JP6180104 A JP 6180104A JP 18010494 A JP18010494 A JP 18010494A JP H0841602 A JPH0841602 A JP H0841602A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
annealing
rolling
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6180104A
Other languages
Japanese (ja)
Inventor
Masayoshi Ishida
昌義 石田
Kunihiro Senda
邦浩 千田
Keiji Sato
圭司 佐藤
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6180104A priority Critical patent/JPH0841602A/en
Publication of JPH0841602A publication Critical patent/JPH0841602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To stably produce a grain-oriented silicon steel sheet having excellent core loss properties by forming an area in which one kind among Ga, In, Sn, Pb and Bi is diffused on the faces of linear grooves. CONSTITUTION:Silicon steel slag, e.g., contg. a trace of Al, Mn, Se and Sb as inhibitor forming components is subjected to hot rolling and cold rolling into a cold rolled sheet. This is subjected to electrolytic etching treatment to form many linear grooves stretching in a direction crossed with the rolling direction on the surface. Along at least one face among the bottom face and both side faces of the linear grooves, an area in which at least one kind selected from Ge, In, Sn, Pb and Bi and the oxides and sulfates of the same components is diffused into the steel sheet is formed. For this purpose, each substance is adhered to the grooves, and annealing is executed at >=400 deg.C. Thus, the material effective for the application to the iron core of a transformer can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電機
機器の鉄心材料として有利に適合する磁気特性に優れた
方向性電磁鋼板およびその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having excellent magnetic properties, which is suitable as an iron core material for transformers and other electrical equipment, and a method for producing the same.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主に変圧器その他の
電気機器の鉄心として利用され、磁気特性に優れるこ
と、中でも鉄損の低いことが要求される。この鉄損は、
概ねヒステリシス損と渦電流損との和で表すことがで
き、ヒステリシス損は強い抑制力をもつインヒビターを
用いることによって結晶方位をゴス方位すなわち(11
0)〔001〕方位に高度に集積させることや、磁化し
たとき磁壁移動の際のピンニング因子の生成原因となる
不純物元素を低減させること等により大幅に低減されて
きた。一方、渦電流損については、Si含有量を増加して
電気抵抗を増大させることや、鋼板板厚を薄くするこ
と、鋼板地鉄表面に地鉄と熱膨張係数の異なる被膜を形
成して地鉄に張力を付与すること、結晶粒の微細化によ
り磁区幅を低減すること等によって、その低減が図られ
てきた。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have excellent magnetic properties, and especially low iron loss. This iron loss is
It can be roughly expressed by the sum of the hysteresis loss and the eddy current loss, and the hysteresis loss can be obtained by using the inhibitor having a strong suppressing force to change the crystal orientation to the Goss orientation, that is, (11
0) It has been drastically reduced by highly accumulating in the [001] direction and reducing the impurity element that causes generation of a pinning factor when the domain wall moves when magnetized. On the other hand, regarding eddy current loss, increasing the Si content to increase electrical resistance, thinning the steel plate thickness, and forming a coating on the surface of the steel plate base metal with a coefficient of thermal expansion different from that of the base iron The reduction has been achieved by applying tension to iron and reducing the magnetic domain width by refining the crystal grains.

【0003】さらに近年では、渦電流損の低減により、
一層鉄損を低減できる技術として、鋼板の圧延方向と垂
直な方向にレーザー光(特公昭57−2252号公報)やプラ
ズマ炎(特開昭62-96617号公報)等を照射する方法が提
案された。これらの方法は、鋼板表面に線状または点状
に微細な熱歪を導入することによって磁区を細分化し、
この磁区細分化によって鉄損を低減しようとするもので
ある。しかしながら、これらの方法では、磁区細分化後
に高温での熱処理を施すと鉄損低減効果が消失してしま
うため、照射処理後に歪取焼鈍を不可欠とする巻鉄心用
素材としては用いることができなかった。
More recently, due to the reduction of eddy current loss,
As a technique for further reducing iron loss, there has been proposed a method of irradiating a laser beam (Japanese Patent Publication No. 57-2252) or a plasma flame (Japanese Patent Publication No. 62-96617) in a direction perpendicular to the rolling direction of the steel sheet. It was These methods subdivide the magnetic domains by introducing fine thermal strains in a linear or spot form on the steel plate surface,
The magnetic domain is subdivided to reduce the iron loss. However, these methods cannot be used as a material for wound cores that require stress relief annealing after irradiation because the iron loss reduction effect disappears when heat treatment at high temperature is performed after magnetic domain refinement. It was

【0004】そこで、歪取焼鈍にも耐え得る磁区細分化
技術として、鋼板への溝形成を利用した方法が種々開発
された。このような技術として、たとえば、仕上焼鈍後
すなわち二次再結晶後の鋼板に局所的に溝を形成し、そ
の反磁界効果によって磁区を細分化する方法があるが、
かかる溝形成手段としては、機械的な加工(特公昭50-3
5679号公報)やレーザー光照射により絶縁被膜および下
地被膜を局所的に除去した後電解エッチングする(特開
昭63-76819号公報)方法等が提案されている。また、特
公昭62-53579号公報には、歯形ロールで圧刻後、歪取焼
鈍を施すことによって、溝形成および再結晶を達成して
磁区を細分化する方法が、さらに特開昭59−197520号公
報には、仕上焼鈍前の鋼板に溝を形成する方法が、それ
ぞれ開示されている。
Therefore, various methods utilizing groove formation in a steel sheet have been developed as a magnetic domain refining technique capable of withstanding strain relief annealing. As such a technique, for example, there is a method of locally forming grooves in the steel sheet after finish annealing, that is, after secondary recrystallization, and subdividing magnetic domains by the demagnetizing effect.
As such groove forming means, mechanical processing (Japanese Patent Publication No.
5679) or a method of locally removing the insulating coating and the underlying coating by laser light irradiation and then electrolytically etching (JP-A-63-76819). Further, JP-B-62-53579 discloses a method of subdividing a magnetic domain by achieving groove formation and recrystallization by performing stress relief annealing after pressing with a tooth profile roll. Japanese Patent Publication No. 197520 discloses a method of forming grooves in a steel sheet before finish annealing.

【0005】[0005]

【発明が解決しようとする課題】上記のような溝形成技
術によって、歪取焼鈍後も磁区細分化効果を維持できる
ようになったけれども、鉄損の低減幅は、前記したレー
ザー光やプラズマ炎等を照射する方法と比較すると十分
とは言えず、一層の低鉄損化が望まれていた。この発明
は、上記の要請に有利に応えるもので、溝形成による鉄
損の低減技術において、より一層の低鉄損化を安定して
実現できる新規な技術を提案することを目的とする。
Although the groove forming technique as described above makes it possible to maintain the magnetic domain refining effect even after the strain relief annealing, the iron loss can be reduced by the above-mentioned laser beam or plasma flame. However, it is not sufficient compared with the method of irradiating the same, and further reduction of iron loss has been desired. The present invention advantageously responds to the above-mentioned demands, and an object thereof is to propose a novel technique that can stably realize further lower iron loss in the technique of reducing iron loss by forming a groove.

【0006】[0006]

【課題を解決するための手段】さて、発明者らは、方向
性電磁鋼板の低鉄損化を目的として鋭意実験検討を重ね
た結果、表面に線状溝を有する方向性電磁鋼板におい
て、該線状溝の周囲、すなわち底面および両側面の近辺
に、特定の物質を拡散させた領域を形成することによ
り、従来よりも格段に鉄損が低減することの知見を得
た。この発明は、上記の知見の立脚するものである。
Means for Solving the Problems Now, the inventors of the present invention have conducted earnest experiments and studies for the purpose of reducing iron loss of grain-oriented electrical steel sheets, and as a result, in grain-oriented electrical steel sheets having linear grooves on the surface, It has been found that the core loss is significantly reduced as compared with the conventional case by forming a region in which a specific substance is diffused around the linear groove, that is, near the bottom surface and both side surfaces. The present invention builds on the above findings.

【0007】すなわち、この発明は、鋼板表面に、圧延
方向と交差する向きに延びる多数の線状溝を有し、かつ
該線状溝の底面および両側面の3面のうち少なくとも1
面に沿って、Ge,In,Sn,PbおよびBi並びにこれら各元
素の酸化物および硫酸塩のうちから選ばれた少なくとも
いずれか1種を鋼板中に拡散させた領域を形成したこと
を特徴とする鉄損特性に優れた方向性電磁鋼板である。
That is, the present invention has a large number of linear grooves extending in the direction intersecting the rolling direction on the surface of the steel sheet, and at least one of the bottom surface and both side surfaces of the linear groove.
A region in which at least one selected from Ge, In, Sn, Pb and Bi and oxides and sulfates of these elements is diffused in the steel sheet along the surface is characterized by Is a grain-oriented electrical steel sheet with excellent iron loss characteristics.

【0008】またこの発明は、含けい素鋼スラブを、熱
間圧延した後、1回または中間焼鈍を挟む2回以上の冷
間圧延を施して最終製品板厚とし、ついで脱炭焼鈍、最
終仕上焼鈍を施す一連の工程からなる方向性電磁鋼板の
製造方法において、最終冷間圧延を経た鋼板に、圧延方
向と交差する向きに多数の線状溝を形成すると共に、最
終仕上焼鈍後、該線状溝の底面および両側面の3面のう
ち少なくとも1面に、Ge,In,Sn,PbおよびBi並びにこ
れら各元素の酸化物および硫酸塩のうちから選ばれた少
なくともいずれか1種を付着させたのち、 400℃以上の
温度で焼鈍することを特徴とする鉄損特性に優れた方向
性電磁鋼板の製造方法である。
In the present invention, the silicon-containing slab is hot-rolled, and then cold-rolled once or twice or more with an intermediate anneal to obtain a final product sheet thickness, followed by decarburizing-annealing. In a method for producing a grain-oriented electrical steel sheet comprising a series of steps for applying finish annealing, a steel sheet that has undergone final cold rolling is formed with a number of linear grooves in a direction intersecting the rolling direction, and after final finish annealing, At least one selected from Ge, In, Sn, Pb and Bi, and oxides and sulfates of these elements is attached to at least one of the three surfaces of the bottom surface and both side surfaces of the linear groove. After that, it is annealed at a temperature of 400 ° C or higher, which is a method for producing a grain-oriented electrical steel sheet having excellent iron loss characteristics.

【0009】この発明において、鋼板表面に形成する線
状溝の形態は、幅:30〜300 μm 、深さ:10〜70μm 、
溝間隔:1〜30mm、圧延方向との交差角度:圧延方向と
直角な方向に対し30゜以内とすることが好ましい。
In the present invention, the linear groove formed on the surface of the steel sheet has a width of 30 to 300 μm, a depth of 10 to 70 μm,
It is preferable that the groove interval is 1 to 30 mm, and the angle of intersection with the rolling direction is within 30 ° with respect to the direction perpendicular to the rolling direction.

【0010】以下、この発明を具体的に説明する。ま
ず、この発明の基礎となった実験結果について説明す
る。Mn, SeおよびAlをインヒビター形成成分として微量
含有する鋼スラブを、常法に従い熱間圧延ついで中間焼
鈍を挟む2回の冷間圧延を施して0.23mm厚の最終冷延板
とした。次いで、この冷延板に、所望の線状溝形状に対
応する非塗布部を残してレジストインキを塗布しマスキ
ングした。ここに、非塗布部の形状は、板幅方向に平行
な幅:200 μm の直線とした。このような直線状の非塗
布部を、圧延方向に間隔:3mmで残した。次に、NaCl浴
を用いた電解エッチング処理により、深さ:20μm の線
状溝を形成した。そして、レジスト剤を除去してから、
脱炭焼鈍および仕上焼鈍を施した後、Ge,In,Sn,Pbお
よびBiの各酸化物の微粉末をそれぞれ樹脂とともに混練
したペーストを、溝部分に塗布、次いで乾燥させた後、
250〜 850℃の範囲の種々の温度で焼鈍を施した。その
後、張力コーティングを塗布、焼き付けた後、 850℃,
3hの歪取焼鈍を施した。
The present invention will be described in detail below. First, the experimental results that are the basis of the present invention will be described. A steel slab containing a small amount of Mn, Se and Al as inhibitor forming components was subjected to hot rolling according to a conventional method and then cold rolling twice with intermediate annealing interposed therebetween to obtain a final cold rolled sheet having a thickness of 0.23 mm. Then, a resist ink was applied to the cold rolled plate to mask it, leaving an uncoated portion corresponding to the desired linear groove shape. Here, the shape of the non-coated portion was a straight line with a width of 200 μm parallel to the plate width direction. Such straight non-coated portions were left with a gap of 3 mm in the rolling direction. Next, a linear groove having a depth of 20 μm was formed by electrolytic etching using a NaCl bath. And after removing the resist agent,
After performing decarburization annealing and finish annealing, a paste obtained by kneading Ge, In, Sn, Pb, and Bi oxide fine powders with a resin was applied to the groove portion, and then dried,
Annealing was carried out at various temperatures ranging from 250 to 850 ° C. Then, after applying the tension coating and baking,
Strain relief annealing was performed for 3 hours.

【0011】また、比較のため、最終冷延板に対し線状
溝形成処理を施さない鋼板、および幅:200 μm 、深
さ:20μm 、溝間隔:3mmの板幅方向に平行な直線状の
線状溝を形成した鋼板に対し、上と同じ条件で脱炭焼
鈍、仕上焼鈍を施してから張力コーティングを塗布、焼
き付けた後、歪取焼鈍を施した。
For comparison, a steel sheet not subjected to linear groove forming treatment on the final cold-rolled sheet and a linear sheet parallel to the sheet width direction with a width of 200 μm, a depth of 20 μm and a groove interval of 3 mm The steel sheet on which the linear grooves were formed was subjected to decarburization annealing and finish annealing under the same conditions as above, then applied with a tension coating, baked, and then subjected to strain relief annealing.

【0012】かくして得られた各鋼板から、エプスタイ
ン試験片を、その長手方向が圧延方向と一致するように
切り出し、それぞれの磁気特性について測定した結果を
図1に示す。図1に示したとおり、Ge,In,Sn,Pbおよ
びBiの各金属を含むペーストを塗布し、 400℃以上の温
度で焼鈍を施した場合には、溝なしは勿論、溝のみを形
成した従来材に比べて、格段に鉄損が低減している。な
お、Ge,In,Sn,PbおよびBiの各金属、その硫酸塩また
はそれらの混合物を塗布した場合にも、同様に鉄損の低
減が確認された。
From each of the steel plates thus obtained, Epstein test pieces were cut out so that the longitudinal direction thereof coincided with the rolling direction, and the measurement results of the respective magnetic properties are shown in FIG. As shown in FIG. 1, when a paste containing each metal of Ge, In, Sn, Pb and Bi was applied and annealed at a temperature of 400 ° C. or higher, not only the groove but also the groove was formed. Compared with conventional materials, iron loss is significantly reduced. In addition, when the metals of Ge, In, Sn, Pb, and Bi, their sulfates, or a mixture thereof were applied, the reduction of iron loss was similarly confirmed.

【0013】[0013]

【作用】さて、線状溝の底面および両側面の3面のうち
少なくとも1面に沿って、Ge,In,Sn,PbおよびBi並び
にこれら各元素の酸化物および硫酸塩のうちから選ばれ
た少なくともいずれか1種を鋼板中に拡散させた領域
(以下、拡散領域と示す)を形成することによって、鉄
損特性が改善されることは事実であるが、その理由につ
いては未だ明らかにはなっていない。しかし、次に示す
諸説のいずれかによって説明が可能と考えられる。
[Function] Now, along at least one of the three surfaces of the bottom surface and both side surfaces of the linear groove, Ge, In, Sn, Pb and Bi and oxides and sulfates of these elements are selected. It is a fact that the iron loss characteristics are improved by forming a region (hereinafter referred to as a diffusion region) in which at least one kind is diffused in the steel sheet, but the reason for this is not yet clear. Not not. However, it can be explained by any of the following theories.

【0014】まず、磁区の細分化について説明する。す
なわち、鋼板表面に導入された線状溝は、電磁鋼板が磁
化されたときに自由磁極を生じ、この磁極によって生じ
る磁気エネルギーを減少させるように磁区幅が減少し、
その結果、異常渦電流損が減少することが知られてい
る。しかしながら、磁束線は線状溝の下部を迂回して磁
極の発生を妨げようとする傾向があるため、その分渦電
流損の減少効果が低減することになる。この磁束線の迂
回は、方向性けい素鋼板の磁気異方性に抗して生じるた
め、線状溝周辺の磁気異方性を強化することによって、
磁束線の迂回による磁区細分化効果の低下を抑制するこ
とが可能となる。つまり、線状溝周辺に磁気異方性を増
大させた領域を形成すれば、ここでの磁気異方性が強ま
って、磁束線の迂回を効果的に阻止することができ、そ
の結果、磁区細分化効果を強化することができるのであ
る。従って、鉄損が向上する理由として、拡散領域を形
成することによって、線状溝周辺の磁気異方性が増大す
ることが考えられる。
First, the subdivision of magnetic domains will be described. That is, the linear groove introduced on the surface of the steel sheet produces a free magnetic pole when the electromagnetic steel sheet is magnetized, and the magnetic domain width decreases so as to reduce the magnetic energy generated by this magnetic pole,
As a result, it is known that abnormal eddy current loss is reduced. However, since the magnetic flux lines tend to bypass the lower part of the linear groove to prevent the magnetic pole from being generated, the effect of reducing the eddy current loss is reduced accordingly. This detour of the magnetic flux lines occurs against the magnetic anisotropy of the grain-oriented silicon steel sheet, so by strengthening the magnetic anisotropy around the linear grooves,
It is possible to suppress the reduction of the magnetic domain subdivision effect due to the detour of the magnetic flux lines. In other words, if a region with increased magnetic anisotropy is formed around the linear groove, the magnetic anisotropy here is strengthened, and the detour of the magnetic flux line can be effectively prevented. The subdivision effect can be strengthened. Therefore, the reason why the iron loss is improved is that the magnetic anisotropy around the linear groove is increased by forming the diffusion region.

【0015】また、これら元素が線状溝周辺の領域に拡
散することによって、飽和磁歪値が周囲と異なる領域が
形成され、両者の歪感受性の違いによって線状溝部に発
生する磁極を増強する機構、さらに、線状拡散領域の存
在による内部応力の増大が磁区細分化効果を増強する機
構、によっても前記の鉄損改善効果を説明することがで
きる。
Further, by diffusing these elements in the region around the linear groove, a region having a saturation magnetostriction value different from that of the surrounding region is formed, and a mechanism for enhancing the magnetic pole generated in the linear groove portion due to the difference in strain sensitivity between the two. Further, the iron loss improving effect can be explained also by the mechanism in which the increase of the internal stress due to the existence of the linear diffusion region enhances the magnetic domain refining effect.

【0016】ここで、拡散領域の分布形態としては、線
状溝の底面または線状溝の両側面の少なくとも一方と隣
接する領域、すなわち図2に示すように、線状溝の底面
と隣接して、その面に沿って延びる帯状の領域1、同様
に両側面とそれぞれ隣接して、その面に沿って延びる帯
状の領域2aおよび2bのうちのいずれか少なくとも1領域
であれば良い。なお、かかる拡散領域の厚みt(図2参
照)が50μm に満たないと磁化の回転が起こり易いの
で、厚みを50μm 以上とすることが好ましく、一方この
領域の厚みがあまりに大きいと鋼板の磁気抵抗率が減少
し、かえって鉄損の劣化を招くので、この領域の厚みは
400μm 以下とするのが好ましい。
Here, as a distribution form of the diffusion region, a region adjacent to the bottom surface of the linear groove or at least one of both side surfaces of the linear groove, that is, as shown in FIG. 2, is adjacent to the bottom surface of the linear groove. The strip-shaped region 1 extending along the surface may be at least one of the strip-shaped regions 2a and 2b that are adjacent to both side surfaces and extend along the surface. If the thickness t (see FIG. 2) of the diffusion region is less than 50 μm, the rotation of magnetization is likely to occur, so it is preferable to set the thickness to 50 μm or more. On the other hand, if the thickness of this region is too large, the magnetic resistance of the steel sheet is increased. The thickness of this region is
It is preferably 400 μm or less.

【0017】なお、上記領域は、線状溝に沿って連続的
に板幅方向に形成されていることがより望ましいが、必
ずしも連続的である必要はなく、破線状のように断続的
であっても良い。また、この領域の結晶粒方位は、その
周辺と同じにする、すなわち同一の結晶粒内において低
Si領域が形成されていることが望ましいが、この領域内
に粒界または微細な結晶粒が存在していても良い。
It is more preferable that the above-mentioned region is continuously formed in the plate width direction along the linear groove, but it is not always necessary to be continuous, and it is intermittent like a broken line. May be. In addition, the crystal grain orientation in this region should be the same as that of the periphery, that is, in the same crystal grain,
It is desirable that the Si region is formed, but grain boundaries or fine crystal grains may be present in this region.

【0018】線状溝の形状については、幅:30〜300 μ
m 、深さ:10〜70μm で、溝間隔:1〜30mm、圧延方向
との交差角度:圧延方向と直角な方向に対し30゜以内と
することが好ましい。というのは、溝幅が30μm に満た
ない場合および溝の深さが10μm に満たない場合には、
磁極の発生量が少ないために十分な磁区細分化効果が得
られず、一方溝幅が 300μm を超えた場合および溝深さ
が70μm を超えた場合には磁束密度の著しい低下を招く
からである。また、溝間隔が1mmに満たないと磁束密度
の低下が著しく、一方30mmを超えると磁区細分化効果が
低下し、鉄損低減が十分でなくなる。さらに、線状溝の
方向が圧延方向と直角な方向に対し±30゜の範囲を逸脱
すると磁区細分化効果が急激に小さくなり、鉄損低減効
果が著しく劣化する。
Regarding the shape of the linear groove, width: 30 to 300 μ
It is preferable that m is m, depth is 10 to 70 μm, groove interval is 1 to 30 mm, and angle of intersection with the rolling direction is within 30 ° with respect to the direction perpendicular to the rolling direction. This is because when the groove width is less than 30 μm and the groove depth is less than 10 μm,
This is because the amount of magnetic poles generated is small, so a sufficient domain refinement effect cannot be obtained, while when the groove width exceeds 300 μm and the groove depth exceeds 70 μm, the magnetic flux density is significantly reduced. . Further, if the groove spacing is less than 1 mm, the magnetic flux density is remarkably reduced, while if it exceeds 30 mm, the magnetic domain refining effect is reduced and the iron loss is not sufficiently reduced. Further, if the direction of the linear groove deviates from the range of ± 30 ° with respect to the direction perpendicular to the rolling direction, the effect of domain refinement will be sharply reduced, and the effect of reducing iron loss will be significantly deteriorated.

【0019】線状溝の形成時期については、最終冷間圧
延後であれば、最終仕上焼鈍の前後のいずれの段階でも
構わない。溝を形成する方法については局所的にエッチ
ング処理する方法、刃物等でけがく方法、突起付きロー
ルで圧延する方法等が挙げられるが、最も望ましい方法
は、最終冷間圧延直後に、レジスト−電解エッチング法
等の電気化学的方法またはエッチング等の化学的方法に
よって、鋼板に溝を形成する方法である。
The linear grooves may be formed at any stage before and after the final finish annealing as long as they are after the final cold rolling. Examples of the method of forming the groove include a method of locally performing an etching treatment, a method of scribing with a cutting tool, a method of rolling with a protruding roll, and the like, but the most preferable method is immediately after final cold rolling, resist-electrolysis. It is a method of forming grooves in a steel sheet by an electrochemical method such as etching or a chemical method such as etching.

【0020】次に、線状溝の周辺に拡散領域を形成する
には、仕上げ焼鈍後に、結晶磁気異方性定数が素材であ
る珪素鋼よりも大きい物質、例えばGe,In,Sn,Pbおよ
びBi並びにこれら各元素の酸化物および硫酸塩のうちか
ら選ばれた少なくともいずれか1種を、線状溝の底面ま
たは両側面のいずれか一方に塗布し、400 ℃以上の温度
で焼鈍することが好ましい。
Next, in order to form a diffusion region around the linear groove, after finish annealing, a substance having a magnetocrystalline anisotropy constant larger than that of the raw material silicon steel, such as Ge, In, Sn, Pb and It is possible to apply Bi and at least one selected from oxides and sulfates of these elements to either the bottom surface or both side surfaces of the linear groove and anneal at a temperature of 400 ° C or higher. preferable.

【0021】ここに、焼鈍温度が 400℃に満たないと、
前掲図1に示したとおり、溝の周辺における拡散領域の
形成が不十分になって、満足いく磁区細分化効果が得ら
れないので、焼鈍温度は 400℃以上とする必要がある。
なお、焼鈍温度が 850℃をこえると、拡散領域である合
金層が消滅する場合もあるから、焼鈍温度は 850℃以下
とすることが好ましい。また、この工程は、仕上げ焼鈍
後に行う必要があり、仕上げ焼鈍前では、上記領域を安
定して形成することが難しい。
If the annealing temperature is less than 400 ° C.,
As shown in FIG. 1, the annealing temperature must be 400 ° C. or higher because the formation of the diffusion region around the groove is insufficient and a satisfactory domain refinement effect cannot be obtained.
If the annealing temperature exceeds 850 ° C, the alloy layer as the diffusion region may disappear, so the annealing temperature is preferably 850 ° C or lower. Further, this step needs to be performed after finish annealing, and it is difficult to stably form the above region before finish annealing.

【0022】なお、拡散領域を形成するには、上記の図
1に結果を示した実験における、ペーストによる塗布後
に焼鈍を行う手法が好適であるが、これ以外にも、真空
蒸着、スパッタリング、気相化学反応蒸着などの成膜プ
ロセス、あるいはめっき、プラズマスプレー、静電塗装
などの付着技術を用いてもよい。ここに、Ge,In,Sn,
PbおよびBi並びにこれら各元素の酸化物および硫酸塩の
うちから選ばれた少なくともいずれか1種の拡散量とし
ては、0.5 wt%以上であることがより望ましい。という
のは、0.5 wt%に満たないと、磁気異方性の増強効果が
小さく、磁束線の線状溝下部迂回を有効に抑制して鉄損
改善を図ることが望めないからである。
In order to form the diffusion region, the technique of performing annealing after applying the paste in the experiment shown in FIG. 1 is suitable, but other than this, vacuum evaporation, sputtering, vapor deposition A film forming process such as phase chemical reaction vapor deposition, or a deposition technique such as plating, plasma spraying or electrostatic coating may be used. Here, Ge, In, Sn,
The diffusion amount of at least one selected from Pb and Bi and oxides and sulfates of these elements is more preferably 0.5 wt% or more. This is because if it is less than 0.5 wt%, the effect of enhancing the magnetic anisotropy is small, and it is not possible to effectively suppress the detour of the magnetic flux line below the linear groove to improve the iron loss.

【0023】この発明で対象とする電磁鋼板について
は、特に限定されることはなく、従来公知の電磁鋼板で
あればいずれにも適用することができる。ここに、好適
組成を示すと次のとおりである。 C:0.01〜0.10wt%(以下単に%と示す) Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達にも有用な元素であり、少なくと
も0.01%の添加が好ましいが、0.10%を超えて含有する
とかえってゴス方位に乱れが生じるので、0.01〜0.10%
程度とするのが好ましい。
The electromagnetic steel sheet targeted by the present invention is not particularly limited, and any conventionally known electromagnetic steel sheet can be applied. The preferred composition is as follows. C: 0.01 to 0.10 wt% (hereinafter simply referred to as%) C is an element useful not only for uniform refinement of the structure during hot rolling and cold rolling but also for development of Goss orientation, and at least 0.01%. However, if the content exceeds 0.10%, the Goss orientation will be disturbed, so 0.01 to 0.10%
It is preferable to set the degree.

【0024】Si: 2.0〜4.5 % Siは、鋼板の比抵抗を高めて鉄損の低減に有効に寄与す
るが、 4.5%を上回ると冷延性が損なわれ、一方 2.0%
に満たないと比抵抗が低下するだけでなく、二次再結晶
・鈍化のために行われる仕上焼鈍中にα−γ変態によっ
て結晶方位のランダム化を生じ、十分な鉄損低減効果が
得られないので、Si量は 2.0〜4.5 %程度とするのが好
ましい。
Si: 2.0 to 4.5% Si increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.5%, the cold rolling property is impaired, while 2.0%
If it does not satisfy the requirement, not only the specific resistance decreases, but also the crystal orientation is randomized by α-γ transformation during the finish annealing performed for secondary recrystallization and blunting, and a sufficient iron loss reduction effect is obtained. Therefore, the amount of Si is preferably set to about 2.0 to 4.5%.

【0025】Mn:0.02〜0.12% Mnは、熱間脆性を防止するために少なくとも0.02%程度
を必要とするが、あまりに多すぎると磁気特性を劣化さ
せるので上限は0.12%程度に定めるのが好ましい。
Mn: 0.02 to 0.12% Mn requires at least about 0.02% in order to prevent hot brittleness, but if it is too much, the magnetic properties deteriorate, so the upper limit is preferably set to about 0.12%. .

【0026】ゴス方位以外の方位を有する結晶粒の粒成
長を抑制し、有効にゴス方位を成長させるために添加さ
れるインヒビターとしては、MnS, MnSe系と、AlN系が
挙げられる。 ・MnS, MnSe系;Se, Sのうちから選んだ少なくとも1
種:0.005 〜0.06% Se, Sは、いずれもインヒビターとして有効な元素であ
り、抑制力確保の観点からは少なくとも 0.005%程度を
必要とするが、0.06%を超えるとかえってその効果が損
なわれるので、単独添加または複合添加いずれの場合に
おいても含有量は 0.005〜0.06%程度とするのが好まし
い。 ・AlN系;Al:0.005 〜0.10%, N:0.004 〜0.015 % AlおよびNの範囲についても、上述のMnS, MnSe系の場
合と同様の理由により上記の範囲とした。ここに、上述
したMnS, MnSe系とAlN系との併用は可能である。
The inhibitors added to suppress grain growth of crystal grains having an orientation other than the Goth orientation and effectively grow the Goth orientation include MnS, MnSe and AlN.・ MnS, MnSe system; at least 1 selected from Se and S
Species: 0.005 to 0.06% Se and S are all effective elements as inhibitors, and at least about 0.005% is required from the viewpoint of securing inhibitory power, but if it exceeds 0.06%, the effect is rather impaired. In either case of single addition or complex addition, the content is preferably about 0.005 to 0.06%. AlN system; Al: 0.005 to 0.10%, N: 0.004 to 0.015% The range of Al and N is also set to the above range for the same reason as in the case of the above MnS and MnSe systems. Here, the above-mentioned MnS, MnSe system and AlN system can be used together.

【0027】なお、上記したS, Se, Al以外にも、イン
ヒビター構成元素として、Cu, Sn,Cr, Ge, Sb, Mo, Te,
BiおよびP等を利用することができる。ここに、上記
成分の好適添加範囲はそれぞれ、Cu, Sn, Cr:0.01〜0.
15%、Ge, Sb, Mo, Te, Bi:0.005 〜0.1 %、P:0.01
〜0.2 %であり、これらの各インヒビターについても単
独使用および複合使用いずれもが可能である。
In addition to S, Se and Al described above, Cu, Sn, Cr, Ge, Sb, Mo, Te, and
Bi and P etc. can be used. Here, the preferred addition ranges of the above components are Cu, Sn, Cr: 0.01 to 0, respectively.
15%, Ge, Sb, Mo, Te, Bi: 0.005 to 0.1%, P: 0.01
.About.0.2%, and each of these inhibitors can be used alone or in combination.

【0028】[0028]

【実施例】【Example】

実施例1 Al, Mn, SeおよびSbをインヒビター形成成分として微量
含有するけい素鋼スラブを、常法に従い熱間圧延ついで
中間焼鈍を挟む2回の冷間圧延を施して0.23mm厚の最終
冷延板とした。次いで、この冷延板に、線状溝形状に対
応する非塗布部を残してレジストインキを塗布しマスキ
ングした。ここで、非塗布部の形状は、板幅方向に延び
る幅:200 μm の直線とした。このような直線状の非塗
布部を、圧延方向の間隔:3mmで残した。次に、NaCl浴
を用いた電解エッチング処理により、深さ:20μm の線
状溝を形成した。次に、レジスト剤を除去してから、脱
炭焼鈍および仕上焼鈍を施した後、表1に示す種々の物
質を樹脂と混練したペーストを、溝部分に塗布・乾燥
し、焼き付けた後、 450℃および 750℃の各温度で焼鈍
を施した。
Example 1 A silicon steel slab containing trace amounts of Al, Mn, Se and Sb as inhibitor forming components was subjected to hot rolling according to a conventional method and then cold rolling twice with intermediate annealing interposed between them to obtain a final cold 0.23 mm thickness. It was a rolled sheet. Then, resist coating was applied to the cold rolled plate to mask it, leaving a non-coated portion corresponding to the linear groove shape. Here, the shape of the non-coated portion was a straight line having a width of 200 μm extending in the plate width direction. Such a linear non-coated portion was left at a distance of 3 mm in the rolling direction. Next, a linear groove having a depth of 20 μm was formed by electrolytic etching using a NaCl bath. Next, after removing the resist agent, decarburization annealing and finish annealing were performed, and then a paste prepared by kneading various substances shown in Table 1 with a resin was applied to the groove portion, dried, and baked, Annealing was performed at each temperature of ℃ and 750 ℃.

【0029】また、比較のため、最終冷延板に対し線状
溝形成処理を施さない鋼板、および幅:200 μm 、深
さ:20μm 、圧延方向の間隔:3mmの板幅方向に平行な
直線状の線状溝を形成したレジスト剤除去後の鋼板に対
し、同様にして脱炭焼鈍および仕上焼鈍を施した後、 8
50℃, 3時間の歪取焼鈍を施した。
For comparison, a steel plate not subjected to linear groove forming treatment on the final cold-rolled sheet and a straight line parallel to the sheet width direction with a width of 200 μm, a depth of 20 μm and a rolling direction interval of 3 mm After decarburization annealing and finish annealing were performed in the same manner on the steel sheet from which the resist agent was removed in which the linear grooves were formed,
Strain relief annealing was performed at 50 ° C. for 3 hours.

【0030】かくして得られた歪取焼鈍後の各鋼板か
ら、エプスタイン試験片を、その長手方向が圧延方向と
一致するように切り出し、それぞれの磁気特性について
測定した結果を表1に示す。
Epstein test pieces were cut from each of the thus obtained steel sheets after stress relief annealing so that the longitudinal direction thereof coincided with the rolling direction, and the measurement results of the respective magnetic properties are shown in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、この発明に従い
線状溝部分に CaCO3を塗布し、 800℃以上で焼鈍した場
合には、比較材に比べて鉄損が大幅に低減されている。
As is clear from Table 1, when CaCO 3 is applied to the linear groove portion according to the present invention and annealed at 800 ° C. or higher, the iron loss is greatly reduced as compared with the comparative material.

【0033】実施例2 Al, Mn, SeおよびSbをインヒビター形成成分として微量
含有するけい素鋼スラブを、常法に従い熱間圧延ついで
中間焼鈍を挟む2回の冷間圧延を施して0.23mm厚の冷延
板とした。次いで、この冷延板に、線状溝形状に対応す
る非塗布部を残してレジストインキを塗布しマスキング
した。ここで、非塗布部の形状は、板幅方向に対し10゜
の角度をなして延びる幅:200 μm の直線とした。この
ような直線状の非塗布部を間隔:3mm毎に残した。次
に、NaCl浴を用いた電解エッチング処理により、深さ25
μm の線状溝を形成した後、レジスト剤を除去してか
ら、脱炭焼鈍および仕上焼鈍を施した。その後、線状溝
部に YAGレーザーを照射することによって線状溝部に生
成した被膜を除去した後、種々の物質を含むペーストを
塗布し、焼鈍した。
Example 2 A silicon steel slab containing trace amounts of Al, Mn, Se and Sb as inhibitor forming components was hot-rolled according to a conventional method and then cold-rolled twice with intermediate annealing to obtain a thickness of 0.23 mm. Cold-rolled sheet. Then, resist coating was applied to the cold rolled plate to mask it, leaving a non-coated portion corresponding to the linear groove shape. Here, the shape of the non-coated portion was a straight line having a width of 200 μm and extending at an angle of 10 ° with respect to the plate width direction. Such linear non-coated portions were left at intervals of 3 mm. Next, a depth of 25 is obtained by electrolytic etching using a NaCl bath.
After forming the μm linear groove, the resist agent was removed, and then decarburization annealing and finish annealing were performed. Then, the linear groove was irradiated with a YAG laser to remove the coating film formed in the linear groove, and then pastes containing various substances were applied and annealed.

【0034】また比較のため、最終冷延板に対し線状溝
形成処理を施さない鋼板、および幅:200 μm 、深さ:
20μm 、間隔:3mm、板幅方向に対する角度:10゜で直
線状に延びる線状溝を形成し、レジスト剤除去後、線状
溝上に YAGレーザーを照射した鋼板に対し、同様にして
脱炭焼鈍および仕上焼鈍を施し、張力コーティングを塗
布、焼き付けた後、 850℃, 3時間の歪取焼鈍を施し
た。
For comparison, a steel sheet not subjected to the linear groove forming treatment on the final cold-rolled sheet, width: 200 μm, depth:
A linear groove extending linearly at 20 μm, an interval of 3 mm, and an angle of 10 ° with respect to the plate width direction was formed, and after removing the resist agent, the steel plate on which the YAG laser was irradiated was linearly decarburized and annealed. After finishing annealing, a tension coating was applied and baked, then strain relief annealing was carried out at 850 ° C. for 3 hours.

【0035】かくして得られた歪取焼鈍後の各鋼板か
ら、エプスタイン試験片を、その長手方向が圧延方向と
一致するように切り出し、それぞれの磁気特性について
測定した結果を表2に示す。
Epstein test pieces were cut from each of the thus obtained steel sheets after stress relief annealing so that the longitudinal direction thereof coincided with the rolling direction, and the measurement results of the respective magnetic properties are shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】表2から明らかなように、この発明に従い
得られた鋼板は、比較材に比べて格段に鉄損が低減して
いる。
As is clear from Table 2, the steel sheet obtained according to the present invention has significantly reduced iron loss as compared with the comparative material.

【0038】[0038]

【発明の効果】かくしてこの発明によれば、歪取焼鈍に
よっても劣化することのない、優れた鉄損特性を有する
方向性電磁鋼板を安定して得ることができ、特に変圧器
鉄心の用途に有効である。
As described above, according to the present invention, it is possible to stably obtain a grain-oriented electrical steel sheet having excellent iron loss characteristics, which is not deteriorated by strain relief annealing, and is particularly suitable for transformer core applications. It is valid.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼鈍温度と鉄損との関係を示すグラフである。FIG. 1 is a graph showing the relationship between annealing temperature and iron loss.

【図2】線状溝周辺の拡散領域の形態を示す模式図であ
る。
FIG. 2 is a schematic diagram showing a form of a diffusion region around a linear groove.

【符号の簡単な説明】[Brief description of reference numerals]

1 領域 2a 領域 2b 領域 1 area 2a area 2b area

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 (72)発明者 佐藤 圭司 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社鉄鋼開発・生産本部鉄鋼研究所 内Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01F 1/16 (72) Inventor Keiji Sato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Steel Development・ In the Steel Research Laboratory, Production Headquarters (72) Inventor Michio Komatsubara, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表面に、圧延方向と交差する向きに
延びる多数の線状溝を有し、かつ該線状溝の底面および
両側面の3面のうち少なくとも1面に沿って、Ge,In,
Sn,PbおよびBi並びにこれら各元素の酸化物および硫酸
塩のうちから選ばれた少なくともいずれか1種を鋼板中
に拡散させた領域を形成したことを特徴とする磁気特性
に優れた方向性電磁鋼板。
1. A steel sheet surface having a large number of linear grooves extending in a direction intersecting with the rolling direction, and Ge, Ge along at least one of the three surfaces of the bottom surface and both side surfaces of the linear grooves. In,
A directional electromagnetic field with excellent magnetic properties, characterized by forming a region in which at least one selected from Sn, Pb and Bi and oxides and sulfates of these elements is diffused in a steel sheet. steel sheet.
【請求項2】 含けい素鋼スラブを、熱間圧延した後、
1回または中間焼鈍を挟む2回以上の冷間圧延を施して
最終製品板厚とし、ついで脱炭焼鈍、最終仕上焼鈍を施
す一連の工程からなる方向性電磁鋼板の製造方法におい
て、 最終冷間圧延を経た鋼板に、圧延方向と交差する向きに
多数の線状溝を形成すると共に、最終仕上焼鈍後、該線
状溝の底面および両側面の3面のうち少なくとも1面
に、Ge,In,Sn,PbおよびBi並びにこれら各元素の酸化
物および硫酸塩のうちから選ばれた少なくともいずれか
1種を付着させたのち、400 ℃以上の温度で焼鈍するこ
とを特徴とする磁気特性に優れた方向性電磁鋼板の製造
方法。
2. After hot rolling the silicon-containing silicon steel slab,
In the method for producing a grain-oriented electrical steel sheet, which comprises a series of steps in which a final product sheet thickness is obtained by performing cold rolling once or twice or more with an intermediate annealing between them, followed by decarburization annealing and final finishing annealing. A large number of linear grooves are formed on the rolled steel sheet in a direction intersecting the rolling direction, and after final finishing annealing, at least one of the bottom surface and both side surfaces of the linear groove is Ge, In , Sn, Pb and Bi, and at least one selected from oxides and sulfates of these elements are deposited and then annealed at a temperature of 400 ° C or more, which is excellent in magnetic properties. Method for producing grain-oriented electrical steel sheet.
【請求項3】 請求項1または2において、線状溝が、
幅:30〜300 μm 、深さ:10〜70μm 、溝間隔:1〜30
mm、圧延方向との交差角度:圧延方向と直角な方向に対
し30゜以内である磁気特性に優れた方向性電磁鋼板。
3. The linear groove according to claim 1 or 2,
Width: 30 to 300 μm, depth: 10 to 70 μm, groove interval: 1 to 30
mm, the crossing angle with the rolling direction: Within 30 ° with respect to the direction perpendicular to the rolling direction, a grain-oriented electrical steel sheet with excellent magnetic properties.
JP6180104A 1994-08-01 1994-08-01 Grain-oriented silicon steel sheet excellent in magnetic property and its production Pending JPH0841602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6180104A JPH0841602A (en) 1994-08-01 1994-08-01 Grain-oriented silicon steel sheet excellent in magnetic property and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6180104A JPH0841602A (en) 1994-08-01 1994-08-01 Grain-oriented silicon steel sheet excellent in magnetic property and its production

Publications (1)

Publication Number Publication Date
JPH0841602A true JPH0841602A (en) 1996-02-13

Family

ID=16077502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6180104A Pending JPH0841602A (en) 1994-08-01 1994-08-01 Grain-oriented silicon steel sheet excellent in magnetic property and its production

Country Status (1)

Country Link
JP (1) JPH0841602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305788A (en) * 2013-06-07 2013-09-18 和顺银圣化工有限公司 Preparation method of antimony assistant for oriented silicon steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305788A (en) * 2013-06-07 2013-09-18 和顺银圣化工有限公司 Preparation method of antimony assistant for oriented silicon steel

Similar Documents

Publication Publication Date Title
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
KR101593346B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP2012012639A (en) Oriented electromagnetic steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH06136449A (en) Production of low iron loss grain-oriented silicon steel sheet
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPH0888114A (en) Manufacture of nonoriented flat rolled magnetic steel sheet
JP3357601B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPH03260020A (en) Method for radiating eb
KR20210107833A (en) Grain-oriented electrical steel sheet and iron core using same
JPH0841602A (en) Grain-oriented silicon steel sheet excellent in magnetic property and its production
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JP3463314B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JPS6331527B2 (en)
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPH07320921A (en) Directional electromagnetic steel sheet at low iron loss
JPH07331333A (en) Grain oriented silicon steel sheet excellent in iron loss characteristic and its production
JPH03260022A (en) Method for radiating linear eb
JP4192332B2 (en) Manufacturing method of unidirectional electrical steel sheet