JPH0432517A - Production of grain-oriented silicon steel sheet reduced in iron loss - Google Patents
Production of grain-oriented silicon steel sheet reduced in iron lossInfo
- Publication number
- JPH0432517A JPH0432517A JP2138511A JP13851190A JPH0432517A JP H0432517 A JPH0432517 A JP H0432517A JP 2138511 A JP2138511 A JP 2138511A JP 13851190 A JP13851190 A JP 13851190A JP H0432517 A JPH0432517 A JP H0432517A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- electron beam
- silicon steel
- iron loss
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title abstract description 48
- 229910052742 iron Inorganic materials 0.000 title abstract description 23
- 238000010894 electron beam technology Methods 0.000 claims abstract description 54
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 36
- 239000010959 steel Substances 0.000 claims abstract description 36
- 238000000137 annealing Methods 0.000 claims abstract description 17
- 230000001133 acceleration Effects 0.000 claims abstract description 11
- 239000010953 base metal Substances 0.000 claims abstract description 6
- 230000001678 irradiating effect Effects 0.000 claims abstract description 6
- 229910052839 forsterite Inorganic materials 0.000 abstract description 10
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 abstract description 10
- 230000005381 magnetic domain Effects 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000001953 recrystallisation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000011162 core material Substances 0.000 description 4
- 229910052711 selenium Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、鉄損の低い一方向性けい素鋼板の製造方法
に関し、とくに該鋼板の表面に被成した皮膜を局所的に
地金中に圧入する局部ひずみの導入によって、磁区の細
分化を図り、鉄損のより一層の低減を図ろうとするもの
である。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method of manufacturing a unidirectional silicon steel sheet with low iron loss, and in particular to a method for locally removing a film formed on the surface of the steel sheet into a base metal. By introducing local strain that is press-fitted into the core, the magnetic domain is subdivided and the iron loss is further reduced.
(従来の技術)
一方向性けい素鋼板は、製品の2次再結晶粒をゴス方位
に高度に集積させ、また鋼板表面上にはフォルステライ
ト質皮膜を、さらにその上に熱膨張係数の小さい絶縁皮
膜を被成したものであって、厳格な制御を必要とする複
雑、多岐にわたる工程を経て製造される。(Prior technology) Unidirectional silicon steel sheets have secondary recrystallized grains of the product highly concentrated in the Goss orientation, and a forsterite film on the surface of the steel sheet, which has a small coefficient of thermal expansion. It is coated with an insulating film and is manufactured through a complex and diverse process that requires strict control.
このような一方向性けい素鋼板は、主として変圧器、そ
の他電気機器の鉄心として使用されていて、磁気特性と
して製品の磁束密度(B、、値で代表される)が高く、
鉄損(W+7/!l。値で代表される)が低いこと、さ
らに表面性状が良好な絶縁皮膜を有することが要求され
ている。These unidirectional silicon steel sheets are mainly used as cores for transformers and other electrical equipment, and their magnetic properties include high magnetic flux density (represented by the value B).
It is required to have low iron loss (represented by the value W+7/!l) and to have an insulating film with good surface quality.
とくに、エネルギー危機を境にして電力損失の低減を特
徴とする請が著しく強まり、変圧器用鉄心材料としての
鉄損のより低い一方向性けい素鋼板の必要性は益々重要
なものとなってきているのである。In particular, in the wake of the energy crisis, demand for reduced power loss has become significantly stronger, and the need for unidirectional silicon steel sheets with lower iron loss as core materials for transformers has become increasingly important. There is.
さて、一方向性けい素鋼板の鉄損改善の歴史は、ゴス方
位2次再結晶集合組織の改善の歴史であると言っても過
言でない。このような2次再結晶粒を制御する手法とし
ては、AIN、MnSおよびMnSe等の1次再結晶粒
成長抑制剤、いわゆるインヒビターを用いてゴス方位2
次再結晶粒を優先成長させる方法が実施されてきた。し
かしながら、このような手法は現行の生産手段での限界
に達し、もはやそれ以上の改善は極めて難しく、たとえ
多少の改善が認められたとしても、その努力の割りには
鉄損改善の実効は僅かとなるような状況になっている。Now, it is no exaggeration to say that the history of improving iron loss in unidirectional silicon steel sheets is the history of improving the Goss orientation secondary recrystallization texture. As a method for controlling such secondary recrystallized grains, a primary recrystallized grain growth inhibitor such as AIN, MnS, and MnSe is used to control the Goss orientation
Methods have been implemented to preferentially grow secondary recrystallized grains. However, such methods have reached their limits with current production means, and it is extremely difficult to make any further improvements, and even if some improvement is recognized, the effect of improving iron loss is small compared to the effort. The situation is such that.
一方、これら2次再結晶集合組織を制御する手法とは全
く異なるものとして、鋼板表面にレーザーを照射(土山
正:鉄と鋼、 69(1983)、895頁、特公昭
57−2252号、同57−53419号、同58−2
4605号、同58−24606号各公報参照)したり
、あるいはプラズマを照射(特開昭62−96617号
、同62451511号、同62−151516号およ
び同151517号各公報参照)することによって局部
微小ひずみを導入して磁区の細分化を図り、もって鉄損
を低下する画期的な鉄損低減手法が提案された。ところ
で、かかる手法を通用して得られた鋼板は、高温域まで
加熱した場合に局部微小ひずみが消失するため、高温の
ひずみ取り焼鈍を施す巻鉄心トランス用材料の如きには
使用できない欠点があった。On the other hand, a method that is completely different from these methods of controlling the secondary recrystallization texture is the method of irradiating the steel plate surface with a laser (Masashi Tsuchiyama: Tetsu to Hagane, 69 (1983), p. 895, Japanese Patent Publication No. 57-2252, same). No. 57-53419, No. 58-2
4605, 58-24606) or plasma irradiation (see JP-A-62-96617, JP-A-62451-511, JP-A-62-151516, and JP-A-151517). An innovative iron loss reduction method has been proposed that introduces strain to subdivide magnetic domains and thereby reduce iron loss. By the way, the steel sheet obtained through this method has the disadvantage that local microstrains disappear when heated to a high temperature range, so it cannot be used as a material for wound core transformers, which is subjected to high-temperature strain relief annealing. Ta.
このような高温のひずみ取り焼鈍を施しても鉄損を劣化
させない方法としては、例えば、仕上焼鈍板の表面に溝
もしくはセレーションを形成する方法(特公昭50−3
5679号、特開昭59−28525号及び同59−1
97520号各公報参照)、フォルステライト質皮膜に
異厚あるいは欠損領域を形成する方法(特開昭60−9
2479号、同60−92480号、同60−9248
1号、同60−258479号公報参照)、鋼板の地鉄
中、フォルステライト中又は張力絶縁皮膜中に異組成領
域を形成する方法(特開昭60−103124号、同6
0−103182号公報参照)等がある。しかしながら
、かかる方法は、何れも工程が複雑となる割りには鉄損
の改善効果は小さく、また製造コストが高いこともあっ
て、工業的に採用されるには至っていない。As a method of not deteriorating iron loss even if such high-temperature strain relief annealing is performed, for example, a method of forming grooves or serrations on the surface of a finish annealed plate (Japanese Patent Publication No. 50-3
No. 5679, JP-A-59-28525 and JP-A No. 59-1
97520), a method for forming a defective region or a different thickness in a forsterite film (Japanese Unexamined Patent Publication No. 60-9
No. 2479, No. 60-92480, No. 60-9248
1, Japanese Patent Publication No. 60-258479), a method of forming different compositional regions in the base steel, forsterite, or tensile insulation film of a steel plate (Japanese Patent Application Laid-Open No. 60-103124, Japanese Patent Publication No. 60-258479).
0-103182), etc. However, these methods have not been industrially adopted because the process is complicated and the iron loss improvement effect is small, and the manufacturing cost is high.
なお、特公平1−36970号公報には、ビーム加速エ
ネルギーの異なる2つ以上の電子ビームを照射する電子
ビームアニール方法が提案されているが、かかる方法は
、半導体層の単結晶化を目的としたものであって、一方
向性けい素鋼板の鉄損低減に役立つ解決手法ではなかっ
たのである。Note that Japanese Patent Publication No. 1-36970 proposes an electron beam annealing method in which two or more electron beams with different beam acceleration energies are irradiated; However, it was not a solution that would help reduce iron loss in unidirectional silicon steel sheets.
(発明が解決しようとする課題)
この発明は、局部ひずみの導入による磁区の細分化によ
って低減された鉄損がひずみ取り焼鈍を施しても劣化す
ることがない新規な方法を提案することを目的とする。(Problems to be Solved by the Invention) The purpose of the present invention is to propose a new method in which the iron loss, which has been reduced by subdividing magnetic domains by introducing local strain, does not deteriorate even when strain relief annealing is applied. shall be.
(課題を解決するための手段)
この発明は、仕上焼鈍を施した一方向性けい素鋼板に絶
縁皮膜を被成したのち、該鋼板の幅方向に沿って連続的
(線状)または断続的(点状)に電子ビームを照射して
絶縁皮膜を局所的に鋼板の地金に圧入するに当たり、上
記電子ビームとして、加速エネルギーの異なる少なくと
も2種の電子ビームを照射することを特徴とする低鉄損
一方向性けい素鋼板の製造方法である。(Means for Solving the Problems) This invention provides an insulating coating that is formed on a unidirectional silicon steel plate that has been subjected to finish annealing, and then continuously (linearly) or discontinuously coats the unidirectional silicon steel plate along the width direction of the steel plate. When locally press-fitting the insulating film into the base metal of the steel plate by irradiating an electron beam (in a dotted manner), at least two types of electron beams having different acceleration energies are irradiated as the electron beam. This is a method for manufacturing a silicon steel sheet with unidirectional iron loss.
この発明において適用できる加速エネルギーの異なる電
子ビームとしては、高電圧・小電流で発生させた電子ビ
ーム、低電圧・大電流で発生させた電子ビーム等があり
、ここに高電圧とは65〜500KVの範囲を、また低
電圧とは10〜64KVの範囲のものがとくに好ましい
。Electron beams with different acceleration energies that can be applied in this invention include electron beams generated with high voltage and small current, electron beams generated with low voltage and large current, etc., where high voltage is 65 to 500 KV. A range of 10 to 64 KV is particularly preferred.
(作用)
この発明においては、仕上焼鈍を施した一方向性けい素
鋼板に例えば、フォルステライト質皮膜および絶縁皮膜
を被成したのち、ビーム径が比較的細く、崎板内へ深く
進入する高電圧・小電流の電子ビームを照射し、次でビ
ーム径が大きく、鋼板内への進入深さの比較的浅い低電
圧・大電流の電子ビームを照射する。高電圧・小電流の
電子ビームの照射においては、地鉄界面に局部的な凹部
の微小溶解領域が形成され、これと同時にその領域に上
記の被膜を圧入してこれによる反磁場の形成にて磁区の
細分化を図る。一方、低電圧・小電流の電子ビームの照
射では、フォルステライト皮膜あるいは絶縁皮膜中のひ
ずみを開放して該ひずみの存在による磁気特性の劣化が
回避される。ここに上記高電圧・小電流の電子ビームに
よって形成された局部ひずみは後のひずみ取り焼鈍を施
しても消失するようなことはな(また、皮膜に生じたひ
ずみも緩和され、従って一方向性けい素鋼板の鉄損を有
利に低減される。(Function) In this invention, after a forsterite film and an insulating film are formed on a finish-annealed unidirectional silicon steel plate, the beam diameter is relatively small and the beam penetrates deeply into the plate. A high-voltage, low-current electron beam is irradiated, and then a low-voltage, high-current electron beam with a large beam diameter and a relatively shallow penetration depth into the steel plate is irradiated. When irradiated with a high-voltage, small-current electron beam, a micro-dissolved region of local concave portions is formed at the interface of the base metal, and at the same time, the above-mentioned coating is press-fitted into that region, thereby creating a demagnetizing field. Aim to subdivide magnetic domains. On the other hand, irradiation with a low-voltage, small-current electron beam releases strain in the forsterite film or insulating film, thereby avoiding deterioration of magnetic properties due to the presence of the strain. Here, the local strain formed by the high-voltage, small-current electron beam does not disappear even after subsequent strain-relief annealing (in addition, the strain generated in the film is also relaxed, and therefore the unidirectionality is reduced). The iron loss of silicon steel sheets is advantageously reduced.
高電圧・小電流で発注させた電子ビームでもって、磁区
の細分化を図ることにより、ひずみ取り焼鈍の如き高温
熱処理を施しても鉄損が劣化しないのは、地鉄に圧入領
域が形成され、それによって反磁界を形成する小さな穴
ができるからである。By subdividing the magnetic domains using an electron beam ordered at high voltage and low current, the iron loss does not deteriorate even when high temperature heat treatment such as strain relief annealing is performed, because a press-fit region is formed in the base steel. , which creates a small hole that creates a demagnetizing field.
第1図に、上記の順序に従う電子ビームの照射を行った
場合の鋼板の要部断面を、第2図にこの発明の実施に用
いて好適な電子ビーム照射装置を示す。なお、第2図に
おける番号1は高電圧・小電流の電子ビームAを発生さ
せる電子ビーム照射系、2は低電圧・大電流の電子ビー
ムBを発生させる電子ビーム照射系、1a、2aは電子
銃であって、この電子銃1a、2aはそれぞれフィラメ
ントlb、2b、ウェネルトlc、2cおよびアノード
ld、2dからなる。また、le、2eは負荷抵抗、I
f、2fは間欠的な電子ビーム照射を行う場合に有用な
ブランキング電極、3,4は電子銃1a、2aからそれ
ぞれ放射された電子ビームA、Bを収束させる収束レン
ズ、5,6は収束レンズ3.4によって収束させた電子
ビームを、皮膜h(フォルステライト質皮膜+絶縁皮膜
など)を被成したけい素鋼板にの幅方向に沿って走査さ
せるための偏向コイルである。FIG. 1 shows a cross section of a main part of a steel plate when electron beam irradiation is performed in accordance with the above-described order, and FIG. 2 shows an electron beam irradiation apparatus suitable for carrying out the present invention. In Fig. 2, number 1 is an electron beam irradiation system that generates a high-voltage, small-current electron beam A, 2 is an electron beam irradiation system that generates a low-voltage, large-current electron beam B, and 1a and 2a are electron beams. The electron guns 1a and 2a each consist of filaments lb and 2b, Wehnelt lc and 2c, and anodes ld and 2d. In addition, le and 2e are load resistances, I
f and 2f are blanking electrodes useful when performing intermittent electron beam irradiation; 3 and 4 are converging lenses that converge the electron beams A and B emitted from the electron guns 1a and 2a, respectively; 5 and 6 are converging lenses This is a deflection coil for scanning the electron beam focused by the lens 3.4 along the width direction of a silicon steel plate covered with a coating h (forsterite coating + insulation coating, etc.).
電子ビームの照射に当たっては、まず、高電圧・小電流
で発生させた電子ビームAを照射し、次いで低電圧・大
電流で発生させた電子ビームBを照射するのがよいが、
より効果的な照射を行なおうとする場合には、同時に照
射することもできる。When irradiating an electron beam, it is preferable to first irradiate the electron beam A generated at a high voltage and a small current, and then irradiate the electron beam B generated at a low voltage and a large current.
If more effective irradiation is desired, irradiation can be performed simultaneously.
またこのような電子ビームの照射回数は2回に限られる
ものではなく、必要に応じてその回数を増加することが
できる。Further, the number of times of electron beam irradiation is not limited to two, but can be increased as necessary.
この発明で適用する含けい素鋼としては、従来公知の成
分組成になるものが有利に適合するが、代表組成を揚げ
るとつぎのとおりである。As the silicon-containing steel used in this invention, those having conventionally known compositions are advantageously suitable, but typical compositions are as follows.
C:0.01〜0.10ivt%(以下単に%で示す)
Cは、熱間圧延、冷間圧延中の組織の均一微細化のみな
らず、ゴス方位の発達に有用な元素であり、そのために
は少なくとも0.01%含有するのが好ましい。しかし
ながら0.10%を超えて含有すると却ってゴス方位に
乱れが生じるので上限としては0.10%程度が好まし
い。C: 0.01 to 0.10 ivt% (hereinafter simply expressed as %)
C is an element useful not only for uniform refinement of the structure during hot rolling and cold rolling, but also for the development of Goss orientation, and for this purpose, it is preferably contained at least 0.01%. However, if the content exceeds 0.10%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.10%.
Si : 2.0〜4.5%
Siは、鋼板の比抵抗を高め、鉄損の低減に有効に寄与
するが、Siが4.5%を超えると冷延性が損なわれ、
一方2.0%未満では比抵抗が低下するだけでなく、2
次再結晶・純化のために行われる最終高温焼鈍中にα−
T変態によって結晶方位のランダム化を生し、十分な鉄
損改善効果が得られない。よってSiの含有量は2.0
〜4.5%程度とするのが好ましい。Si: 2.0-4.5% Si increases the resistivity of the steel sheet and effectively contributes to reducing iron loss, but if Si exceeds 4.5%, cold rollability is impaired,
On the other hand, if it is less than 2.0%, not only the specific resistance decreases, but also 2.0%.
During the final high temperature annealing for the next recrystallization and purification, α−
The T-transformation causes randomization of crystal orientation, and a sufficient iron loss improvement effect cannot be obtained. Therefore, the Si content is 2.0
It is preferable to set it to about 4.5%.
Mn : 0.02〜0.12%
Mnは、熱間脆性を防止するため少なくとも0,02%
程度含有する必要があるが、あまり多すぎると磁気特性
を劣化させるので上限は0.12%程度とするのが好ま
しい。Mn: 0.02-0.12% Mn is at least 0.02% to prevent hot embrittlement
It is necessary to contain a certain amount, but if it is too large, the magnetic properties will be deteriorated, so the upper limit is preferably about 0.12%.
インヒビターとしては、いわゆるMn S 、 MnS
e系とAIN系とがある。Mn S 、 MnSe系の
場合はSe、 Sのうちから選ばれる少なくとも1種
を0.005〜0.06%の範囲で含有させる。As inhibitors, so-called MnS, MnS
There are e-type and AIN-type. In the case of MnS and MnSe, at least one selected from Se and S is contained in a range of 0.005 to 0.06%.
Se、 Sはいずれも、方向性けい素鋼板の2次再結
晶を制御するインヒビターとして有力な元素である。抑
制力確保の観点からは少なくとも0.005%程度必要
であるが、0゜06%を超えるとその効果が損なわれる
ので、その上限、下限についてはそれぞれ0.005%
、0.06%程度とするのが好ましい。Both Se and S are effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. From the perspective of securing suppressive power, it is necessary to have at least 0.005%, but if it exceeds 0.06%, the effect will be impaired, so the upper and lower limits should be 0.005% each.
, is preferably about 0.06%.
AIN系の場合は、Al : 0.005〜0.10%
、N:0.004〜0.015%、
A1およびNの範囲についても、上述したMnSMnS
e系の場合と同様の理由により、上記の範囲とした。For AIN type, Al: 0.005-0.10%
, N: 0.004 to 0.015%, the range of A1 and N is also the same as the above-mentioned MnSMnS
The above range was set for the same reason as in the case of e series.
なお、上記のインヒビターはそれぞれ併用が可能である
。Note that the above inhibitors can be used in combination.
インヒビターとしては上記した成分の他、Cu5n、叶
、 Ge、 Sb、 Mo、 Te、 BiおよびPな
ども有利に適合するので、それぞれ少量併せて含有させ
ることもできる。ここに上記成分の好適添加範囲はそれ
ぞれCu、 Sn、 Crについては0.01〜0.1
5%、Ge。In addition to the above-mentioned components, Cu5n, Ge, Sb, Mo, Te, Bi, and P are also advantageously suitable as inhibitors, so they can also be contained in small amounts. Here, the preferred addition range of the above components is 0.01 to 0.1 for Cu, Sn, and Cr, respectively.
5% Ge.
Sb+ Mo、 Te、 B+については0.005〜
0.1%、Pについては0.01〜0.2%程度であり
、これらの各インヒビター成分についても、単独使用、
複合使用のいずれでもよい。0.005~ for Sb+ Mo, Te, B+
0.1%, P is about 0.01 to 0.2%, and each of these inhibitor components can be used alone,
Can be used in combination.
この発明に従い一方向性けい素鋼板を製造した実験にお
ける該鋼板の磁気特性を調査した結果を表−1に示す。Table 1 shows the results of investigating the magnetic properties of a unidirectional silicon steel sheet in an experiment in which the steel sheet was manufactured according to the present invention.
なお、この実験で用いた鋼板は、C: 0.044%、
Si : 3.39%、Mn : 0.068%、Se
: 0.020%、5b=0.025%、Mo :
0.012% を含み残部実質的にFeよりなるけい素
鋼スラブを、1360°Cで4時間加熱したのち、熱間
圧延して2.4M厚の熱延板にし、さらに970°Cで
3分の中間焼鈍をはさむ2回の冷間圧延を施して0.2
0mm厚の最終冷延板とし、これを825°Cの湿水素
中で脱炭1次再結晶焼鈍を施したのち、柵板表面上にM
nOを主成分とする焼鈍分離剤をスラリー塗布し、その
後850°Cで50時間の2次再結晶焼鈍を行ってゴス
方位2次再結晶粒を優先成長させ、次いで1200°C
の軟水素中で5時間の純化焼鈍を施し、さらに鋼板表面
上にりん酸塩とコロイダルシリカを主成分とする絶縁皮
膜を被成したものを用い、下記の条件で鋼板の幅方向に
平行に電子ビームを照射した。The steel plate used in this experiment had C: 0.044%,
Si: 3.39%, Mn: 0.068%, Se
: 0.020%, 5b=0.025%, Mo:
A silicon steel slab containing 0.012% and the remainder substantially Fe was heated at 1360°C for 4 hours, then hot rolled into a 2.4M thick hot rolled sheet, and further heated at 970°C for 3 hours. Cold rolled twice with intermediate annealing for 0.2 min.
A final cold-rolled plate with a thickness of 0 mm was obtained, and after decarburization and primary recrystallization annealing was performed in wet hydrogen at 825°C, M was applied on the surface of the fence plate.
An annealing separator mainly composed of nO was applied as a slurry, and then secondary recrystallization annealing was performed at 850°C for 50 hours to preferentially grow Goss-oriented secondary recrystallized grains, and then at 1200°C.
The steel sheet was subjected to purification annealing in soft hydrogen for 5 hours, and an insulating film containing phosphate and colloidal silica as main components was formed on the surface of the steel sheet. irradiated with an electron beam.
1、加速電圧: 150 KV、加速電流: 1.5m
A、ビーム径: 0.13mm、鋼板の長手方向に5m
m間隔で銅板の幅方向に平行に照射(第2図の電子ビー
ムA)。1. Accelerating voltage: 150 KV, accelerating current: 1.5m
A, Beam diameter: 0.13mm, 5m in the longitudinal direction of the steel plate
Irradiate parallel to the width direction of the copper plate at m intervals (electron beam A in Figure 2).
2、加速電圧: 150 KV、加速電流: 1.5m
A、ビーム径:O,13mm、鋼板の長手方向に5胴間
隔で鋼板の幅方向に平行に照射、これに引き続き加速電
圧: 15KV、加速電圧: 150mA、ビーム径=
90mとして鋼板の幅方向に平行に照射(第2図の電子
ビームA+B)。2. Accelerating voltage: 150 KV, accelerating current: 1.5m
A, Beam diameter: O, 13mm, Irradiation parallel to the width direction of the steel plate at intervals of 5 cylinders in the longitudinal direction of the steel plate, followed by acceleration voltage: 15KV, Acceleration voltage: 150mA, Beam diameter =
Irradiate parallel to the width direction of the steel plate at a beam of 90 m (electron beam A+B in Figure 2).
3、加速電圧: 15KV、加速電流150mA、ビー
ム径:90mmとして鋼板の幅方向に平行に照射(第2
図の電子ビームB)。3. Irradiate parallel to the width direction of the steel plate with accelerating voltage: 15 KV, accelerating current 150 mA, beam diameter: 90 mm (second
Electron beam B) in the figure.
4、電子ビーム照射なし。4. No electron beam irradiation.
表−1
表−1から明らかなように、ビーム加速エネルギーの異
なる少なくとも2種の電子ビームを照射した条件No、
2では鉄損が顕著に向上することが注目される。これ
は、高電圧・小電流で発生させた電子ビームを照射する
ことによって地鉄界面の溶解、皮膜の圧入によって凹状
となる一方、低電圧・大電流で発生させた電子ビームに
て、その近傍域のひずみが除去され、そのために磁気特
性、とくに鉄損特性が向上したものと考えられる。Table-1 As is clear from Table-1, the conditions No.
It is noteworthy that in No. 2, the iron loss is significantly improved. Irradiation with an electron beam generated at a high voltage and small current creates a concave shape due to the melting of the substrate interface and the press-in of the film, while the electron beam generated at a low voltage and large current creates a concave shape. It is thought that the strain in the area was removed, and as a result, the magnetic properties, especially the iron loss properties, were improved.
なお、この発明においては、電子ビームの照射に際して
は、ハツチタイプの真空装置を適用することもできるが
、大気を遮断するための複数個のケーシングをつないで
その内部を高真空に維持した差圧装置へ連続的にけい素
鋼板を導き、そこで電子ビームを照射するのが最適であ
る。電子ビームの照射は鋼板の片面でも効果があるが、
両面照射を行ってもよい。In this invention, a hatch-type vacuum device can be used for electron beam irradiation, but a differential pressure device that maintains a high vacuum inside by connecting multiple casings to block the atmosphere may also be used. It is best to continuously guide the silicon steel plate to the surface and irradiate it with an electron beam. Irradiation with an electron beam is effective even on one side of a steel plate, but
Both sides may be irradiated.
(実施例)
C: 0.76%、Si : 3.38%、Al :
0.028%、S二0.025%、Cu : 0.06
%、Sn : 0.05%(No、 1 )又はC:
0.044%、Si : 3.41%、Mn : 0.
072%、Se:0.025%、Sb : 0.025
%、Mo : 0.013%(No、2)を、それぞれ
含有し残部実質的にFeよりなるけい素崎のフォルステ
ライト質皮膜つき仕上焼鈍板(0,20mm厚)に、上
掲第2図に示したような構成になる装置を適用して、該
焼鈍板の幅方向に平行に電子ビームを照射し、さらに表
1の中のNα2の条件の下にひずみ取り焼鈍を施し、得
られた各鋼板の磁気特性について調査した。その結果を
下記に比較して示す。(Example) C: 0.76%, Si: 3.38%, Al:
0.028%, S2 0.025%, Cu: 0.06
%, Sn: 0.05% (No, 1) or C:
0.044%, Si: 3.41%, Mn: 0.
072%, Se: 0.025%, Sb: 0.025
%, Mo: 0.013% (No, 2), respectively, and the remainder was substantially made of Fe on a finish annealed plate (0.20 mm thick) with a forsterite film of Sisuzaki, as shown in Fig. 2 above. Applying an apparatus having the configuration shown in , the annealed plate was irradiated with an electron beam in parallel to the width direction, and strain relief annealing was performed under the condition of Nα2 in Table 1. The magnetic properties of each steel plate were investigated. The results are shown below for comparison.
なお、No、 1の鋼板における電子ビームの照射条件
は、加速電圧: 150 KV、加速電流: 1.3
mA、 ビーム径0.15唾、ビームスポットの中心間
隔:300μm、走査間隔:5mmとして高電圧・小電
流の電子ビームを鋼板の幅方向に沿って断続的に照射し
、これに引き続いて加速電圧: 15 KV、加速電流
:150mA、 ビーム径70anとして電子ビーム
を照射した場合の例であり1、No、2の綱板は加速電
圧: 15 KV。Note that the electron beam irradiation conditions for No. 1 steel plate are acceleration voltage: 150 KV, acceleration current: 1.3
mA, beam diameter of 0.15, beam spot center spacing: 300 μm, scanning interval: 5 mm, a high voltage, small current electron beam is intermittently irradiated along the width direction of the steel plate, followed by accelerating voltage. : 15 KV, accelerating current: 150 mA, this is an example of electron beam irradiation with a beam diameter of 70 ant, and the acceleration voltage for the steel plates 1, No., and 2 is 15 KV.
加速電流: 150mA、ビーム径70mmとして電子
ビームを照射した場合の例である。This is an example in which an electron beam is irradiated with an accelerating current of 150 mA and a beam diameter of 70 mm.
銅板Nα1 : Be =1.93T、 WI7/So
=0.76W/kg鋼板Nα2 : Be =1.9
0T WI、/S。−0,77W/kg(発明の効果
)
かくしてこの発明によれば、一方向性けい素鋼板の表面
に被成した皮膜を地鉄中に局所的に圧入する局部ひずみ
の導入によって磁区の細分化を図るに当たって加速エネ
ルギーの異なる少なくとも2種の電子ビームを照射する
ようにしたから、ひずみ取り焼鈍を施してもこの局部ひ
ずみが消滅するようなことがなく、また皮膜に生じたひ
ずみも緩和されるので鉄損のより一層の低減が期待でき
る。Copper plate Nα1: Be = 1.93T, WI7/So
=0.76W/kg Steel plate Nα2: Be =1.9
0T WI,/S. -0.77 W/kg (Effects of the Invention) Thus, according to the present invention, the magnetic domains are subdivided by introducing local strain that locally presses the film formed on the surface of the unidirectional silicon steel sheet into the base steel. In order to achieve this, at least two types of electron beams with different acceleration energies are irradiated, so even if strain relief annealing is performed, this local strain will not disappear, and the strain generated in the film will also be alleviated. Therefore, further reduction in iron loss can be expected.
第1図はこの発明に従って電子ビームを照射した場合の
鋼板の要部断面図
第2図はこの発明に用いて好適な電子ビーム照射装置の
構成説明図である。
1.2・・・電子ビーム照射系
la、2a・・・電子銃
Ib、2b・・・フィラメント
lc、2c・・・ウェネルト
ld、2d・・・アノード
le、2e・・・負荷抵抗
if、2f・・・ブランキング電極
3.4・・・集束レンズ 5.6・・・偏向コイルP
・・・電源 h・・・被膜A、B・・・電
子ビーム hl・・・絶縁被膜K・・・網板
h2・・・フォルステライト被膜
第1図FIG. 1 is a sectional view of a main part of a steel plate when irradiated with an electron beam according to the present invention. FIG. 2 is an explanatory diagram of the configuration of an electron beam irradiation apparatus suitable for use in the present invention. 1.2...Electron beam irradiation system la, 2a...electron gun Ib, 2b...filament lc, 2c...Wehnelt ld, 2d...anode le, 2e...load resistance if, 2f ...Blanking electrode 3.4...Focusing lens 5.6...Deflection coil P
...Power supply h...Coating A, B...Electron beam hl...Insulating coating K...Mesh plate h2...Forsterite coating Figure 1
Claims (1)
被成したのち、該鋼板の幅方向に沿って連続または断続
的に電子ビームを照射して絶縁皮膜を局所的に鋼板の地
金に圧入するに当たり、 上記電子ビームとして、加速エネルギーの 異なる少なくとも2種の電子ビームを照射することを特
徴とする低鉄損一方向性けい素鋼板の製造方法。[Claims] 1. After forming an insulating film on a unidirectional silicon steel plate that has been subjected to finish annealing, the insulating film is formed by continuously or intermittently irradiating the steel plate with an electron beam along the width direction. A method for producing a low core loss unidirectional silicon steel sheet, which comprises irradiating at least two types of electron beams with different acceleration energies as the electron beam when locally press-fitting into the base metal of the steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2138511A JPH0432517A (en) | 1990-05-30 | 1990-05-30 | Production of grain-oriented silicon steel sheet reduced in iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2138511A JPH0432517A (en) | 1990-05-30 | 1990-05-30 | Production of grain-oriented silicon steel sheet reduced in iron loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0432517A true JPH0432517A (en) | 1992-02-04 |
Family
ID=15223854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2138511A Pending JPH0432517A (en) | 1990-05-30 | 1990-05-30 | Production of grain-oriented silicon steel sheet reduced in iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0432517A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5296051A (en) * | 1993-02-11 | 1994-03-22 | Kawasaki Steel Corporation | Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics |
US6929704B2 (en) * | 1996-10-21 | 2005-08-16 | Jfe Steel Corporation | Grain-oriented electromagnetic steel sheet |
JP2012126995A (en) * | 2010-11-26 | 2012-07-05 | Jfe Steel Corp | Method for manufacturing grain-oriented electromagnetic steel sheet |
JP2012172215A (en) * | 2011-02-23 | 2012-09-10 | Nippon Steel Corp | Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic |
JP2012177164A (en) * | 2011-02-25 | 2012-09-13 | Jfe Steel Corp | Method for manufacturing grain-oriented magnetic steel sheet |
JP2013159850A (en) * | 2012-02-08 | 2013-08-19 | Jfe Steel Corp | Grain-oriented magnetic steel sheet and method for producing the same |
-
1990
- 1990-05-30 JP JP2138511A patent/JPH0432517A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5296051A (en) * | 1993-02-11 | 1994-03-22 | Kawasaki Steel Corporation | Method of producing low iron loss grain-oriented silicon steel sheet having low-noise and superior shape characteristics |
US6929704B2 (en) * | 1996-10-21 | 2005-08-16 | Jfe Steel Corporation | Grain-oriented electromagnetic steel sheet |
JP2012126995A (en) * | 2010-11-26 | 2012-07-05 | Jfe Steel Corp | Method for manufacturing grain-oriented electromagnetic steel sheet |
JP2012172215A (en) * | 2011-02-23 | 2012-09-10 | Nippon Steel Corp | Method for producing grain-oriented electromagnetic steel sheet excellent in iron loss characteristic |
JP2012177164A (en) * | 2011-02-25 | 2012-09-13 | Jfe Steel Corp | Method for manufacturing grain-oriented magnetic steel sheet |
JP2013159850A (en) * | 2012-02-08 | 2013-08-19 | Jfe Steel Corp | Grain-oriented magnetic steel sheet and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6157360B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
KR101421387B1 (en) | Grain oriented electrical steel sheet and method for manufacturing the same | |
JP3023242B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics | |
JP5742294B2 (en) | Method for producing grain-oriented electrical steel sheet | |
US10431359B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP2022027234A (en) | Directional electromagnetic steel plate | |
JP6116796B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
EP0339475A2 (en) | High-flux density, grain-oriented electrical steel sheet having highly improved watt loss characteristic and process for preparation thereof | |
JP3399991B2 (en) | Method for producing low iron loss unidirectional silicon steel sheet | |
JP3726289B2 (en) | Oriented electrical steel sheet with low iron loss | |
JP6465048B2 (en) | Method for producing grain-oriented electrical steel sheet | |
US5146063A (en) | Low iron loss grain oriented silicon steel sheets and method of producing the same | |
JPH062042A (en) | Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core | |
JPH0432517A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
US5223048A (en) | Low iron loss grain oriented silicon steel sheets and method of producing the same | |
JPH07320922A (en) | One directional electromagnetic steel sheet at low iron loss | |
JPH03260020A (en) | Method for radiating eb | |
JP2638180B2 (en) | Low iron loss unidirectional silicon steel sheet and method for producing the same | |
JPH05179355A (en) | Production of low-iron loss unidirectionally oriented silicon steel sheet | |
JPH03260022A (en) | Method for radiating linear eb | |
JPH0543945A (en) | Manufacture of low iron loss grain-oriented silicon steel sheet | |
JPH05311241A (en) | Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam | |
JPH03287725A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
JPH0565543A (en) | Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing | |
JPH04214819A (en) | Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet |