JPH03104823A - Production of grain-oriented silicon steel sheet with superlow iron loss - Google Patents

Production of grain-oriented silicon steel sheet with superlow iron loss

Info

Publication number
JPH03104823A
JPH03104823A JP24189089A JP24189089A JPH03104823A JP H03104823 A JPH03104823 A JP H03104823A JP 24189089 A JP24189089 A JP 24189089A JP 24189089 A JP24189089 A JP 24189089A JP H03104823 A JPH03104823 A JP H03104823A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
silicon steel
recrystallization annealing
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24189089A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24189089A priority Critical patent/JPH03104823A/en
Publication of JPH03104823A publication Critical patent/JPH03104823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a grain-oriented silicon steel sheet reduced in iron loss by applying hot rolling and cold rolling to a slab of a high silicon steel to form a steel sheet of the final sheet thickness, performing decarburizing and primary recrystallization annealing, irradiating the steel sheet surface with an electron beam under specific conditions, if necessary, and then applying secondary recrystallization annealing and purification annealing to the above steel sheet. CONSTITUTION:A slab of a low-carbon high-silicon steel containing 2.0-4.5% Si is hot-rolled, and the resulting hot rolled plate is cold-rolled once or is cold-rolled twice while process- annealed between the cold rolling stages so as to be formed into a cold rolled steel sheet of the final sheet thickness. Subsequently, after decarburizing and primary recrystallization annealing in warm hydrogen, a slurry of a separation agent at annealing composed essentially of MgO is applied to the steel sheet to carry out secondary recrystallization annealing and purification annealing, or, after decarburizing and primary recrystallization annealing, the steel sheet surface is irradiated with an electron beam so that this electron beam reaches a position at a depth of 1/10 of sheet thickness from the surface of the steel sheet 1, that is, a region 2 where Goss orientation secondary recrystallized grains are preferentially generated, and then, a separation agent at annealing is applied to the above surface to carry out secondary recrystallization annealing and purification annealing. By this method, the grain- oriented silicon steel sheet free from deterioration in iron loss characteristics even if subjected to stress relief annealing treatment can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、鉄損の低い一方向性珪素鋼板に関し、とく
に2次再結晶発生位置におけるゴス方位粒の核を制御す
ることにより、鉄撰を低減しようとするものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a unidirectional silicon steel sheet with low iron loss, and in particular, the present invention relates to a unidirectional silicon steel sheet with low iron loss, and in particular, to improve the iron forming process by controlling the nuclei of Goss-oriented grains at the positions where secondary recrystallization occurs. The aim is to reduce the

(従来の技術) 一方向性珪素鋼板は製品の2次再結晶粒をゴス方位に高
度に集積させ、また鋼板表面上にはフォルステライト質
被膜を形威し、さらにその上に熱膨張係数の小さい絶縁
被膜を破戒したもので、厳格な制御を必要とする複雑、
多岐にわたる工程を経て製造される。
(Prior art) In unidirectional silicon steel sheets, secondary recrystallized grains of the product are highly concentrated in the Goss orientation, and a forsterite film is formed on the surface of the steel sheet. It is a breakthrough in small insulating coatings, and is complex and requires strict control.
It is manufactured through a wide variety of processes.

このような一方向性珪素鋼板は、主として変圧器、その
他電気機器の鉄心として使用されており、磁気特性とし
て製品の磁束密度(B.。値で代表される)が高く、鉄
損(W+7/S。値で代表される)が低いこと、さらに
表面性状が良好な絶縁被膜を有することが要求されてい
る。
Such unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and their magnetic properties include high magnetic flux density (represented by B. value) and iron loss (W+7/ It is required to have a low S. value) and an insulating film with good surface properties.

とくにエネルギー危機を境にして電力損失の低減を至上
とする要請が著しく強まり、変圧器用鉄心材料としての
鉄鎖のより低い一方向性珪素′iFI仮の必要性は増々
重要なものとなってきている。
Particularly in the wake of the energy crisis, the need to prioritize reducing power loss has become significantly stronger, and the need for unidirectional silicon 'iFI' with lower iron chain strength as a core material for transformers has become increasingly important. .

さて一方向性珪素鋼板の鉄損改善の歴史は、ゴス方位2
次再結晶集合組織の改善の歴史であると言っても過言で
はない。このような2次再結晶粒を制御する方法として
、AIN. MnS. MnSe及びsb等の1次再結
晶粒威長抑制剤、いわゆるインヒビターを用いてゴス方
位2次再結晶粒を優先或長させる方法が実施されている
Now, the history of iron loss improvement of unidirectional silicon steel sheets is based on Goss direction 2.
It is no exaggeration to say that this is a history of improvements in the secondary recrystallization texture. As a method for controlling such secondary recrystallized grains, AIN. MnS. A method of preferentially elongating secondary recrystallized grains in the Goss orientation using a so-called inhibitor, which suppresses the length of primary recrystallized grains such as MnSe and sb, has been implemented.

一方これら2次再結晶集合組織を制御する方法とは全く
異なる方法、すなわち鋼板表面にレーザー照射{市山 
正:鉄と鋼, 69(1983),P.895、特公昭
57−2252号、同57−53419号、同58−2
4605号、同58−24606号各公報参照}又はプ
ラズマ照射{特開昭62−96617号、同62−15
1511号、同62−151516号および同62−1
51517号各公報参照}により局部微小歪を導入して
磁区を細分化し、もって銖損を低下する画期的な方法が
提案された。
On the other hand, there is a completely different method to control the secondary recrystallization texture, namely laser irradiation on the steel plate surface {Ichiyama
Correct: Tetsu to Hagane, 69 (1983), P. 895, Special Publication No. 57-2252, No. 57-53419, No. 58-2
4605, 58-24606} or plasma irradiation {JP-A-62-96617, JP-A-62-15
No. 1511, No. 62-151516 and No. 62-1
No. 51517] proposed an innovative method of introducing local microstrain to subdivide the magnetic domain and thereby reduce the iron loss.

しかしながらこれらの方法はいずれもコストアップにな
るのに加えて、歪取り焼鈍を施すと磁区細分化効果が消
失する。このため積鉄心用にしか使用できないという問
題があった。
However, all of these methods increase costs and, in addition, the effect of magnetic domain refining disappears when strain relief annealing is performed. For this reason, there was a problem that it could only be used for stacked iron cores.

(発明が解決しようとする課題) この発明は、上記の問題を解消し得る、従来とは異なる
方法によって磁区細分化を図ることを意図したものであ
って、歪取り焼鈍を施してもその効果が消失しない一方
向性珪素鋼板の製造方法を提案することを目的とする。
(Problems to be Solved by the Invention) The present invention is intended to achieve magnetic domain refining by a method different from the conventional method, which can solve the above problems, and the effect of strain relief annealing is The purpose of this study is to propose a method for producing unidirectional silicon steel sheets that do not lose their properties.

(課題を解決するための手段) この発明は、含珪素鋼スラブに熱間圧延を施し、次いで
1回ないし中間焼鈍をはさむ2回の冷間圧延を施して最
終板厚とした後、脱炭・1次再結晶焼鈍を施し、引き続
き鋼板表面に焼鈍分離剤を塗布した後、2次再結晶焼鈍
および純化焼鈍を施す一連の工程からなる一方向性珪素
鋼板の製造方法において、 2次再結晶焼鈍前の銅板につき、その表面から板厚の1
710の深さに及ぶ電子ビームを、鍛板の表面に点状ま
たは線状で照射した後、2次再結晶焼鈍を施すことを特
徴とする超低鉄損一方向性珪素畑板の製造方法である。
(Means for Solving the Problems) This invention hot-rolls a silicon-containing steel slab, then cold-rolls it once or twice with intermediate annealing to give it a final thickness, and then decarburizes it.・In the manufacturing method of unidirectional silicon steel sheet, which consists of a series of steps of performing primary recrystallization annealing, subsequently applying an annealing separator to the surface of the steel sheet, and then performing secondary recrystallization annealing and purification annealing. For copper plates before annealing, 1 of the plate thickness from the surface
A method for producing an ultra-low iron loss unidirectional silicon plate, which comprises irradiating the surface of a forged plate in dots or lines with an electron beam having a depth of 710 mm, followed by secondary recrystallization annealing. It is.

この発明では鋼板の表面から板厚の1710の深さに及
ぶ電子ビームを用いることが肝要で、具体的にはIIc
D法にて小電流、高電圧で発生させたものが有利に適合
する。
In this invention, it is important to use an electron beam that extends from the surface of the steel plate to a depth of 1710 mm, specifically IIc
Those generated using a small current and high voltage using the D method are advantageously suitable.

(作 用) 次にこの発明について実験例に基いて詳細に述べる。(for production) Next, this invention will be described in detail based on experimental examples.

C : 0.063 wt%(以下単に%と示す)+ 
si : 3.39%, Mn : 0.072%, 
Al 7 0.025%, Se : 0.026%,
Sn : 0.015%, Mo : 0.013%を
含有する珪素鋼スラブを1420゜Cで加熱後、熱間圧
延して1.8mm厚の熱延板とした後、1050’Cで
3分の中間焼鈍をはさむ2回の冷間圧延を施して0.2
0mm厚の最終冷延板とした。その後、次の(八)〜(
C)に示す処理を行った。
C: 0.063 wt% (hereinafter simply referred to as %) +
si: 3.39%, Mn: 0.072%,
Al7 0.025%, Se: 0.026%,
A silicon steel slab containing Sn: 0.015% and Mo: 0.013% was heated at 1420°C, hot-rolled into a hot-rolled sheet with a thickness of 1.8 mm, and then heated at 1050°C for 3 minutes. Cold rolling was performed twice with intermediate annealing of 0.2
A final cold-rolled sheet with a thickness of 0 mm was obtained. After that, the following (8) to (
The treatment shown in C) was performed.

(A) 150kV, 1.2mAの高電圧、低電流で
発生させ、かつ300mmの広角に偏向させたEBを、
間隔1000μm,幅8mmで鋼板表面に照射した後、
840゜Cの湿水素中で脱炭・1次再結晶焼鈍を施した
(A) EB generated at a high voltage of 150 kV, 1.2 mA and low current and deflected at a wide angle of 300 mm.
After irradiating the steel plate surface with an interval of 1000 μm and a width of 8 mm,
Decarburization and primary recrystallization annealing were performed in wet hydrogen at 840°C.

(B) 840’Cの湿水素中で脱炭1次再結晶焼鈍を
施した後、150kV, 1.2mAの高電圧、低電流
で発生させ、かつ300mmの広角に偏向させたEBを
、間隔1000μm,幅8IIlmで鋼板表面に照射し
た。
(B) After decarburizing primary recrystallization annealing in wet hydrogen at 840'C, EB generated at a high voltage of 150 kV, 1.2 mA and low current and deflected at a wide angle of 300 mm was The surface of the steel plate was irradiated with a beam of 1000 μm and a width of 8 IIlm.

(C) 840゜Cの湿水素中で脱炭1次再結晶焼鈍を
施した。
(C) Primary recrystallization annealing for decarburization was performed in wet hydrogen at 840°C.

得られた製品の磁気特性を、第1表に示す。The magnetic properties of the obtained product are shown in Table 1.

第l表 同表から明らかなように、上記(A)および(B)の条
件に従って処理した製品は、B1。値が1.94Tと通
常の処理(C)を経た製品と同程度であるが、WI?/
50が0.09〜0.11 W/kgと大幅に向上して
いることがわかる。
As is clear from Table I, the product treated according to the conditions of (A) and (B) above is B1. The value is 1.94T, which is about the same as the product that underwent normal processing (C), but WI? /
50 is significantly improved to 0.09 to 0.11 W/kg.

このように、(A)および(B)の条件に従って処理し
た試料の鉄損が他のものに比して大幅に向上する理由は
、第1図に示すように、鋼板1表面から板厚の1710
の深さの位置、すなわちゴス方位2次再結晶粒が優先生
戒する領域2にまで及ぶEBを照射することによりゴス
粒の戒長を促進できるためである。
The reason why the iron loss of the samples treated according to the conditions (A) and (B) is significantly improved compared to other samples is that the thickness of the steel plate increases from the surface of the steel plate 1 as shown in Figure 1. 1710
This is because the lengthening of the Goss grains can be promoted by irradiating the EB that extends to the depth position, that is, the region 2 where the Goss-oriented secondary recrystallized grains preferentially grow.

鋼板表面から板厚の1/10の深さの位置にまで及ぶE
Bは、加速条件を高電圧、小電流とすることで得られる
。すなわち高電圧、小電流にて発生させたEBは、従来
の60kV程度で発生させていたEBに比べ、ビーム径
を絞れるため、ゴス粒の発生位置にまでビームを侵入さ
せることができる。
E extends from the steel plate surface to a depth of 1/10 of the plate thickness
B can be obtained by setting the acceleration conditions to high voltage and small current. That is, the beam diameter of EB generated at high voltage and small current can be narrowed down compared to the conventional EB generated at about 60 kV, so that the beam can penetrate to the location where Goss grains are generated.

またEB照射を鋼板表面の大きな面積(例えば板幅方向
に3501の範囲)にわたり均一に施すために、加速電
流をEBの走査方向に自動的に制御するダイナ旦ツクフ
ォーカスおよび、このダイナコツタフォーカスの実施に
よって起こる、走査方向端部でのビーム焦点を自動調整
するスティングマトールを適用することが望ましい。す
なわちEBをゴス方位2次再結晶粒が優先生威する位置
にまで侵入させてゴス核を発生させるとともに、この処
理を板幅方向の広い範囲で一様に施すことによってゴス
粒を多量に威長させ、ゴス核の制御を高精度で行うもの
である。
In addition, in order to apply EB irradiation uniformly over a large area of the steel sheet surface (for example, a range of 3501 in the width direction of the sheet), there is a dynako single focus that automatically controls the accelerating current in the EB scanning direction, and a dynako double focus that automatically controls the accelerating current in the EB scanning direction. It is desirable to apply a stingmatol that automatically adjusts the beam focus at the end of the scanning direction, which occurs depending on the implementation. In other words, by infiltrating EB to the position where Goss-oriented secondary recrystallized grains preferentially grow to generate Goss nuclei, and by applying this treatment uniformly over a wide range in the sheet width direction, a large amount of Goss grains can be destroyed. This is to control the Goss nucleus with high precision.

なお上記した処理は、100kV以上の高電圧で、0.
05〜10mAの小電流にて発生させた、細く絞ったE
Bを、鋼板表面に0.5〜1 0mmの間隔で均一に照
射することが好ましい。
Note that the above-mentioned treatment is performed at a high voltage of 100 kV or more and at a voltage of 0.
Narrowly narrowed E generated with a small current of 05 to 10mA
It is preferable to uniformly irradiate the surface of the steel plate with B at intervals of 0.5 to 10 mm.

なおこの発明の素材である含けい素鋼としては、従来公
知の或分組成のものいずれもが適合するが、代表組或を
掲げると次のとおりである。
As the silicon-containing steel that is the material of this invention, any conventionally known steel with a certain composition is suitable, but representative compositions are as follows.

C : 0.01〜0.10% Cは、熱間圧延、冷間圧延中の組織の均一微細化のみら
なす、ゴス方位の発達に有用な元素であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.1
0%を超えて含有されるとかえってゴス方位に乱れが生
じるので上限は0. 10%程度が好ましい。
C: 0.01-0.10% C is an element useful for the development of Goss orientation, which results in uniform refinement of the structure during hot rolling and cold rolling, and addition of at least 0.01% or more. is preferred. However, 0.1
If the content exceeds 0%, the Goss orientation will be disturbed, so the upper limit is 0. About 10% is preferable.

Si:2.O〜4.5% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5%を上回ると冷延性が損なわれ、一方2.
0%に満たないと比抵抗が低下するだけでなく、2次再
結晶・純化のために行われる最終高温焼鈍中にα一γ変
態によって結晶方位のランダム化を生し、十分な鉄損改
善効果が得られないので、Si量は2.0〜4.5%程
度とするのが好ましい。
Si:2. O~4.5% Si increases the specific resistance of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
If it is less than 0%, not only will the resistivity decrease, but also randomization of crystal orientation will occur due to α-γ transformation during the final high-temperature annealing performed for secondary recrystallization and purification, resulting in sufficient iron loss improvement. Since no effect can be obtained, the amount of Si is preferably about 2.0 to 4.5%.

Mn : 0.02〜0. 12% Mnは、熱間脆化を防止するため少なくとも0.02%
程度を必要とするが、あまりに多すぎると磁気特性を劣
化させるので上限は0.12%程度に定めるのが好まし
い。
Mn: 0.02-0. 12% Mn is at least 0.02% to prevent hot embrittlement
It is preferable to set the upper limit at about 0.12%, since too much content deteriorates the magnetic properties.

インヒビターとしては、いわゆるMnS, MnSe系
とAIN系とがある。MnS, MnSe系の場合は、
Se,Sのうちから選ばれる少なくとも1種: 0.0
05〜0.06% Se,  Sはいずれも、方向性けい素鋼板の2次再結
晶を制御するインヒビターとして有力な元素である。抑
制力確保の観点からは、少なくとも0.005%程度を
必要とするが、0.06%を超えるとその効果が損なわ
れるので、その下限、上限はそれぞれ0.01%, 0
.06%程度とするのが好ましい。
Inhibitors include so-called MnS, MnSe and AIN inhibitors. In the case of MnS, MnSe,
At least one selected from Se, S: 0.0
05 to 0.06% Se and S are both effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. From the perspective of ensuring suppressive power, at least 0.005% is required, but if it exceeds 0.06%, the effect will be impaired, so the lower and upper limits are 0.01% and 0, respectively.
.. It is preferable to set it to about 0.06%.

A1{4系の場合は、 AI : 0.005〜0.10%  N : 0.0
04〜0.015%AIおよびNの範囲についても、上
述した聞3, MnSe系の場合と同様な理由により、
上記の範囲に定めた。ここに上記したMnS, MnS
e系およびAIN系はそれぞれ併用が可能である。
In the case of A1{4 system, AI: 0.005-0.10% N: 0.0
Regarding the range of 0.04 to 0.015% AI and N, for the same reasons as in the case of the MnSe system mentioned above,
It is set within the above range. Here, the above-mentioned MnS, MnS
The e system and the AIN system can each be used in combination.

インヒビター戒分としては上記したS, Se, AI
の他、Cu, Sn, Cr, Ge, Sb, Mo
. Te, BiおよびPなども有利に適合するので、
それぞれ少量併せて含有させることもできる。ここに上
記戒分の好適添加範囲はそれぞれ、Cu, Sn. C
r : 0.01〜0.15%、Ge, Sb, Mo
, Te, Bi : 0.005〜0.1%、P:0
.01〜0.2%であり、これらの各インヒビター戒分
についても、単独使用および複合使用いずれもが可能で
ある。
The inhibitor precepts are S, Se, AI mentioned above.
In addition to Cu, Sn, Cr, Ge, Sb, Mo
.. Te, Bi, and P are also advantageously compatible, so
They can also be contained together in small amounts. Here, the preferred addition ranges of the above precepts are Cu, Sn. C
r: 0.01-0.15%, Ge, Sb, Mo
, Te, Bi: 0.005-0.1%, P: 0
.. 01 to 0.2%, and each of these inhibitors can be used alone or in combination.

(実施例) 実益班上 (1) C : 0.043%、Si : 3.36%
,Se  : 0.022%、Sb : 0.025%
およびジo : 0.013%を含有し、残部実質的に
Feよりなる珪素鋼スラブを加熱後、熱間圧延して得ら
れた2.2mm厚の熱延板または、(2) C : 0
.069  %、Si : 3.49%、Aj2  :
 0.023%、Se : 0.025%、Cu : 
0.05%、Sn : 0.1%およびMo : 0.
013%を含有し、残部実質的にFeよりなる珪素鋼ス
ラブを加熱後、熱間圧延を施し、次いで1100゜C、
2分間の中間焼鈍をはさむ2回の冷間圧延を施して得ら
れた、0.20mm厚の最終冷延板、 に、それぞれ次の(a)〜(C)の処理を施した。
(Example) Practical profit group (1) C: 0.043%, Si: 3.36%
, Se: 0.022%, Sb: 0.025%
and a 2.2 mm thick hot-rolled plate obtained by heating and hot rolling a silicon steel slab containing 0.013% of C: 0 and the remainder substantially consisting of Fe, or (2) C: 0
.. 069%, Si: 3.49%, Aj2:
0.023%, Se: 0.025%, Cu:
0.05%, Sn: 0.1% and Mo: 0.
After heating a silicon steel slab containing 0.13% and the remainder substantially consisting of Fe, it was hot rolled and then heated to 1100°C.
A final cold-rolled sheet with a thickness of 0.20 mm obtained by cold rolling twice with an intermediate annealing of 2 minutes in between was subjected to the following treatments (a) to (C), respectively.

(aH75kV, 1.0mA (7)高電圧、小電流
テ発生サセタ、300mm幅の広角偏向のEBを、鋼板
表面に800μm間隔で10mm幅にて照射した後、8
30 ’Cの湿水素中で脱炭・1次再結晶焼鈍を施した
(aH75kV, 1.0mA (7) After irradiating the steel plate surface with EB with a wide angle deflection of 300mm width using a high voltage, small current generating susseter, at 10mm width at 800μm intervals,
Decarburization and primary recrystallization annealing were performed in wet hydrogen at 30'C.

Cb)8 3 0″Cの湿水素中で脱炭・1次再結晶焼
鈍を施した後、175kL 1.0mAの高電圧、小電
流で発生させた、300mm幅の広角偏向のEBを、鋼
板表面に800 a m間隔で10mm幅にて照射した
Cb) After decarburization and primary recrystallization annealing in wet hydrogen at 830"C, a 300mm wide wide-angle deflection EB generated with a high voltage of 175kL 1.0mA and a small current was applied to the steel plate. The surface was irradiated with a width of 10 mm at intervals of 800 am.

(C)8 3 0゜Cの湿水素中で脱炭・1次再結晶焼
鈍を施した。
(C) Decarburization and primary recrystallization annealing were performed in wet hydrogen at 830°C.

次いで上記の処理を経た鋼板の表面に、MgOを主威分
とする焼鈍分離剤をスラリー塗布した後、上記(1)の
素材に850″Cで50時間の2次再結晶焼鈍を施し、
上記(2)素材に850゜Cから10’C/hで105
0゜Cまで昇温してゴス方位2次再結晶粒を発達させた
後、1230″Cの乾水素中で8時間の純化焼鈍を施し
た。
Next, after applying a slurry of an annealing separator mainly containing MgO to the surface of the steel plate that has undergone the above treatment, the material of (1) above is subjected to secondary recrystallization annealing at 850"C for 50 hours,
105 at 10'C/h from 850°C to the above (2) material
After raising the temperature to 0°C to develop Goss-oriented secondary recrystallized grains, purification annealing was performed in dry hydrogen at 1230″C for 8 hours.

かくして得られた製品の磁気特性について調べた結果を
第2表に示すように、この発明に従って得られた製品は
とくに鉄損の向上が著しいことがわかる。
As shown in Table 2, the results of an investigation of the magnetic properties of the products thus obtained show that the products obtained according to the present invention have a particularly remarkable improvement in core loss.

第2表 (発明の効果) この発明によれば、歪取り焼鈍によっても鉄損の劣化し
ない一方向性珪素鋼板を安定して製造する方法を提供で
きる。
Table 2 (Effects of the Invention) According to the present invention, it is possible to provide a method for stably manufacturing a unidirectional silicon steel plate in which iron loss does not deteriorate even when subjected to strain relief annealing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の磁気特性向上のメカニズムを示す鋼
板の断面図である。 1一方向性珪素鋼板 2・−ゴス方位1次再結晶粒の優先生或領域第1図
FIG. 1 is a cross-sectional view of a steel plate showing the mechanism of improving magnetic properties of the present invention. 1. Unidirectional silicon steel plate 2. Preferential formation of primary recrystallized grains in -Goss orientation Figure 1

Claims (1)

【特許請求の範囲】 1、含珪素鋼スラブに熱間圧延を施し、次いで1回ない
し中間焼鈍をはさむ2回の冷間圧延を施して最終板厚と
した後、脱炭・1次再結晶焼鈍を施し、引き続き鋼板表
面に焼鈍分離剤を塗布した後、2次再結晶焼鈍および純
化焼鈍を施す一連の工程からなる一方向性珪素鋼板の製
造方法において、 2次再結晶焼鈍前の鋼板につき、その表面から板厚の1
/10の深さに及ぶ電子ビームを、鋼板の表面に点状ま
たは線状で照射した後、2次再結晶焼鈍を施すことを特
徴とする超低鉄損一方向性珪素鋼板の製造方法。
[Claims] 1. After hot rolling a silicon-containing steel slab and then cold rolling once or twice with intermediate annealing to obtain the final thickness, decarburization and primary recrystallization. In a method for manufacturing a unidirectional silicon steel sheet, which consists of a series of steps of annealing, subsequently applying an annealing separator to the surface of the steel sheet, and then performing secondary recrystallization annealing and purification annealing, for the steel sheet before secondary recrystallization annealing. , 1 of the plate thickness from the surface
1. A method for producing an ultra-low core loss unidirectional silicon steel sheet, which comprises irradiating the surface of the steel sheet in dots or lines with an electron beam having a depth of /10, followed by secondary recrystallization annealing.
JP24189089A 1989-09-20 1989-09-20 Production of grain-oriented silicon steel sheet with superlow iron loss Pending JPH03104823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24189089A JPH03104823A (en) 1989-09-20 1989-09-20 Production of grain-oriented silicon steel sheet with superlow iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24189089A JPH03104823A (en) 1989-09-20 1989-09-20 Production of grain-oriented silicon steel sheet with superlow iron loss

Publications (1)

Publication Number Publication Date
JPH03104823A true JPH03104823A (en) 1991-05-01

Family

ID=17081073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24189089A Pending JPH03104823A (en) 1989-09-20 1989-09-20 Production of grain-oriented silicon steel sheet with superlow iron loss

Country Status (1)

Country Link
JP (1) JPH03104823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145490A (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2021172854A (en) * 2020-04-24 2021-11-01 Jfeスチール株式会社 Grain oriented electrical steel sheet and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145490A (en) * 2016-02-19 2017-08-24 Jfeスチール株式会社 Manufacturing method of oriented electromagnetic steel sheet
JP2021172854A (en) * 2020-04-24 2021-11-01 Jfeスチール株式会社 Grain oriented electrical steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6319605B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
US10431359B2 (en) Method for producing grain-oriented electrical steel sheet
JP2012177149A (en) Grain-oriented silicon steel sheet, and method for manufacturing the same
WO2017155057A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3357578B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JPH06136449A (en) Production of low iron loss grain-oriented silicon steel sheet
JP7318675B2 (en) Grain-oriented electrical steel sheet, manufacturing method thereof, and strain introduction device
JPH03260020A (en) Method for radiating eb
JP2014194073A (en) Method for manufacturing oriented electromagnetic steel sheet
JPH03104823A (en) Production of grain-oriented silicon steel sheet with superlow iron loss
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JPH03287725A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPH03260022A (en) Method for radiating linear eb
JPH10183312A (en) Grain oriented silicon steel sheet low in core loss and excellent in strain resisting characteristic and execution characteristic, and manufacture therefor
JPH06256846A (en) Production of grain oriented electrical steel sheet having stable high magnetic flux density
JP6866869B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR100627453B1 (en) Method for final annealing grain oriented electrical steel sheet
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPH02115319A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2023116341A (en) Production method of electromagnetic steel sheet