JP3174451B2 - Method for producing low iron loss oriented silicon steel sheet and plasma generator - Google Patents

Method for producing low iron loss oriented silicon steel sheet and plasma generator

Info

Publication number
JP3174451B2
JP3174451B2 JP33563893A JP33563893A JP3174451B2 JP 3174451 B2 JP3174451 B2 JP 3174451B2 JP 33563893 A JP33563893 A JP 33563893A JP 33563893 A JP33563893 A JP 33563893A JP 3174451 B2 JP3174451 B2 JP 3174451B2
Authority
JP
Japan
Prior art keywords
steel sheet
plasma
anode
silicon steel
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33563893A
Other languages
Japanese (ja)
Other versions
JPH07192891A (en
Inventor
道郎 小松原
昌義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33563893A priority Critical patent/JP3174451B2/en
Publication of JPH07192891A publication Critical patent/JPH07192891A/en
Application granted granted Critical
Publication of JP3174451B2 publication Critical patent/JP3174451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Plasma Technology (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、最終仕上焼鈍済の方
向性けい素鋼板の表面に、線状に熱歪みを付与して磁区
の細分化を図り、鉄損のより一層低減しようとする技術
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims to further reduce the core loss by imparting a linear thermal strain to the surface of a grain-oriented silicon steel sheet which has been subjected to final finish annealing so as to subdivide magnetic domains. It is about technology.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器、
その他の電気機器の鉄心として利用され、その磁化特性
が優れていること、とくに鉄損(最大磁束密度1.7 T,
50Hzの周波数で交番に磁化した時の鉄損であるW17/50
や最大磁束密度1.5 T,60Hz の周波数で交番に磁化した
時の鉄損であるW15/60 で代表される) が低いことが要
求されている。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used in transformers,
It is used as an iron core for other electrical equipment and has excellent magnetizing properties, especially iron loss (maximum magnetic flux density 1.7 T,
W 17/50 which is iron loss when magnetized alternately at a frequency of 50 Hz
And a maximum magnetic flux density of 1.5 T, represented by W15 / 60, which is iron loss when magnetized alternately at a frequency of 60 Hz).

【0003】そのためには、第一に、鋼板中の二次再結
晶粒を (110)[001] 方位 (通常、ゴス方位と呼称され
る) に高度に揃えることが必要であり、第二には、最終
製品の鋼中に存在する不純物や析出物をできるだけ減少
させる必要がある。
[0003] For that purpose, first, it is necessary to highly align secondary recrystallized grains in a steel sheet to the (110) [001] orientation (usually called Goss orientation). It is necessary to reduce impurities and precipitates present in the final product steel as much as possible.

【0004】かかる配慮の基に製造される方向性けい素
鋼板は、今日まで大きくの改善努力によって、その鉄損
値も年を追って改善され、最近では板厚0.23mmの製品で
17 /50 の値が、0.83w/kg,W15/60 の値が0.35w/lb
の低鉄損のものが得られている。
[0004] oriented silicon steel sheet to be produced to such a consideration of the group, by efforts to improve significantly until today, the iron loss value is also improved over the years, W 17/50 product with a thickness of 0.23mm in recent years Is 0.83 w / kg, W 15/60 is 0.35 w / lb
Low iron loss.

【0005】ところで、近年、鋼板の表面に対し物理的
な手段で不均一性を導入し、磁区の幅を細分化して鉄損
を低減する技術が開発されてきた。
[0005] In recent years, techniques have been developed to introduce non-uniformity to the surface of a steel sheet by physical means and to reduce the magnetic loss by reducing the magnetic domain width.

【0006】例えば、特公昭57-2252 号公報には、最終
製品板の表面に、圧延方向にほぼ直角にレーザービーム
を数mm間隔で照射し、鋼板表層に高転位密度領域を導入
することにより磁区の幅を微細化し鉄損を低減する技術
が提案されている。
For example, Japanese Patent Publication No. 57-2252 discloses that a surface of a final product sheet is irradiated with a laser beam at an interval of several mm substantially perpendicular to the rolling direction to introduce a high dislocation density region into the surface layer of the steel sheet. Techniques have been proposed for reducing the width of magnetic domains and reducing iron loss.

【0007】また、特開昭62-96617号公報には、プラズ
マ炎を局部的に鋼板の表層に放射しこれによって磁区の
幅を微細化して鉄損の低減を図る技術が提案されてい
る。
Japanese Patent Application Laid-Open No. Sho 62-96617 proposes a technique in which a plasma flame is locally radiated to the surface layer of a steel sheet to thereby reduce the width of a magnetic domain to reduce iron loss.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、特公昭
57-2252 号公報に開示されているようにパルスレーザー
を照射する方法や特開昭59-33802号公報に開示されてい
るような連続レーザーを照射する方法では、鋼板表面の
絶縁被膜が剥離し、変圧器等において短絡による機器の
損傷を招くため再コーティングが不可欠である他、レー
ザー励起用ランプの寿命が長くないことや鋼板表面の色
調の変化に従ってレーザー光の吸収率の変動が不可避で
あるためにその効果が一定でない欠点があった。
[Problems to be solved by the invention]
In the method of irradiating a pulse laser as disclosed in JP 57-2252 or the method of irradiating a continuous laser as disclosed in JP-A-59-33802, the insulating coating on the steel sheet surface is peeled off. In addition, recoating is indispensable to cause equipment damage due to short circuit in transformers, etc. In addition, the life of laser excitation lamps is not long, and the change in the absorptivity of laser light according to the change in the color tone of the steel sheet surface is inevitable. Therefore, there is a disadvantage that the effect is not constant.

【0009】これに対して、特開昭62-96617号公報に開
示されているプラズマ炎の放射技術は、レーザーを照射
する場合のような問題の解決をある程度避けることはで
きるけれども、鋼板の鉄損低減効果の安定性の確保と絶
縁被膜の剥離, 脱落を回避するまでには至っていなのが
現状であった。
On the other hand, the plasma flame emission technique disclosed in Japanese Patent Application Laid-Open No. 62-96617 can avoid the problem of irradiating a laser to some extent. At present, it has not been possible to ensure the stability of the loss reduction effect and to avoid peeling and falling off of the insulating coating.

【0010】その理由は、プラズマ炎の安定性が悪いた
めであり、以下に述べるように、プラズマ炎の収束性の
変動によって突発的な欠陥が発生するためであった。
[0010] The reason is that the stability of the plasma flame is poor, and as described below, a sudden defect occurs due to the fluctuation of the convergence of the plasma flame.

【0011】すなわち、従来から使用されているプラズ
マ発生装置は先端部分にオリフィスを有するトーチを備
えた構造になっていて (図2参照) 、これによって発生
する熱プラズマは円筒状のジェットであり、鋼板表面に
プラズマが放射されるとその部分は円状となるため、鋼
板にプラズマ炎を放射するに当たっては、それを線状
に、しかも板の長手方向である圧延方向に対してほぼ直
交する向きに放射すべく、かかるトーチを移動させる必
要があることにより、以下の2点が問題となっていた。
That is, a conventionally used plasma generator has a structure having a torch having an orifice at the tip (see FIG. 2), and the thermal plasma generated by this is a cylindrical jet. When plasma is radiated on the surface of the steel sheet, the part becomes circular. Therefore, when irradiating the plasma flame to the steel sheet, make it linear and in a direction substantially perpendicular to the rolling direction, which is the longitudinal direction of the sheet. Since the torch needs to be moved in order to radiate the light, the following two problems have been raised.

【0012】まず、第1の問題としては、プラズマ流の
収束性が悪いのでトーチの先端から鋼板表面に至るまで
の間の間隔を0.3 〜1.0 mm程度に制御しなければなら
ず、この調整が不十分である場合、例えば上記の間隔が
大き過ぎる場合には、プラズマ炎の放射による鉄損低減
効果が得られず、逆に間隔が小さ過ぎる場合には、鋼板
表面の絶縁被膜が剥離、脱落するといった不具合があっ
た。
First, as a first problem, since the convergence of the plasma flow is poor, the interval from the tip of the torch to the steel sheet surface must be controlled to about 0.3 to 1.0 mm. If it is insufficient, for example, if the above interval is too large, the effect of reducing the iron loss due to the emission of the plasma flame cannot be obtained, and if the interval is too small, the insulating coating on the steel sheet surface peels off and falls off. There was a problem such as doing.

【0013】第2の問題としては、プラズマトーチを鋼
板の長手方向に移動させる場合、トーチの先端から鋼板
表面に至るまでの距離を一定に保つように調整する必要
があるため、その移動速度が極めて遅いものとならざる
を得ず、処理効率が極めて悪かった。
The second problem is that when moving the plasma torch in the longitudinal direction of the steel sheet, it is necessary to adjust the distance from the tip of the torch to the surface of the steel sheet so that the moving speed is low. It had to be extremely slow, and the processing efficiency was extremely poor.

【0014】このような状況下で、現実的な処理効率を
確保しようとすれば、プラズマトーチの設置個数を増や
すのが有効であるが、数百本のトーチを付設した設備を
実際に稼働させた場合には、個々のトーチの位置調整、
電圧制御、キャリアガスの流量制御、さらには維持管理
が大変であり、稼働率が却って急激に低下する一方で、
鋼板の磁気特性の不良や絶縁被膜の剥離、脱落といった
品質不良を引き起こすことが懸念された。
Under these circumstances, it is effective to increase the number of plasma torches to ensure a practical processing efficiency. However, it is necessary to actually operate equipment equipped with several hundred torches. Adjustment of the position of each torch,
Voltage control, flow control of carrier gas, and maintenance are difficult, and the operating rate drops sharply,
It was feared that it would cause poor quality such as poor magnetic properties of the steel sheet and peeling or falling off of the insulating coating.

【0015】この発明の目的は、プラズマ炎を放射する
際にしばしば発生する鉄損低減効果の不安定さ、絶縁被
膜の剥離, 脱落による欠陥の発生、さらには、本質的に
高能率化を図ることができないという問題に対してこれ
を解決し、極めて低い鉄損を有する方向性けい素鋼板を
得ることができる方法および装置を提案するところにあ
る。
An object of the present invention is to achieve instability of the effect of reducing iron loss, which often occurs when radiating a plasma flame, generation of defects due to peeling or falling off of an insulating film, and further, essentially increase efficiency. It is an object of the present invention to solve this problem and to propose a method and an apparatus capable of obtaining a grain-oriented silicon steel sheet having extremely low iron loss.

【0016】[0016]

【課題を解決するための手段】この発明は、鋼板の板幅
方向に沿って延びたスリット状の開口を有する陽極とこ
の陽極の開口に望んで配置される陰極とを備えたプラズ
マトーチと、陽極および陰極の先端部分を取り囲む磁界
発生装置を用いてシート状のプラズマ炎を形成し、これ
を最終仕上焼鈍済の方向性けい素鋼板の表面に放射して
磁区の細分化を図ることを特徴とする低鉄損方向性けい
素鋼板の製造方法(第1発明)である。
According to the present invention, there is provided a plasma torch having an anode having a slit-shaped opening extending along a width direction of a steel sheet and a cathode disposed as desired in the opening of the anode. Using a magnetic field generator surrounding the tips of the anode and cathode, a sheet-shaped plasma flame is formed and radiated to the surface of the grain-oriented silicon steel plate that has been subjected to final finish annealing to subdivide magnetic domains. (A first invention).

【0017】また、この発明は、鋼板の板幅方向に沿っ
て延びたスリット状の開口を有する陽極とこの陽極の開
口に望んで配置される陰極とを備えたプラズマトーチ
の、該開口部分から最終仕上焼鈍済の方向性けい素鋼板
に向けてプラズマ炎を放射する装置であって、上記装置
に、陰極および陽極の先端部分を取り囲む磁界発生装置
を配置してなる、プラズマ発生装置(第2発明)であ
る。
Further, the present invention provides a plasma torch having an anode having a slit-like opening extending along the width direction of a steel sheet and a cathode disposed as desired in the opening of the anode, from the opening portion of the plasma torch. A plasma generator for radiating a plasma flame toward a grain-oriented silicon steel sheet which has been subjected to a final finish annealing, wherein the apparatus is provided with a magnetic field generator surrounding a tip portion of a cathode and an anode. Invention).

【0018】さて、図1にこの発明に従う装置の構成を
示す。図中1は陽極であって、この陽極1には鋼板Sの
幅方向に沿って延びるスリット状の開口 (オリフィス)
1aを有する。
FIG. 1 shows the configuration of an apparatus according to the present invention. In the figure, reference numeral 1 denotes an anode, which has a slit-shaped opening (orifice) extending along the width direction of the steel sheet S.
1a.

【0019】また、2は陰極であり、この陰極2は陽極
1の開口1aにのぞむように配置され、陽極1と陰極2
とによってプラズマトーチを構成する。また3は陽極1
と陰極2との間に配置される直流電源、4は、陽極1お
よび陰極2の先端部分を取り囲む磁界発生装置であっ
て、この磁界発生装置4は交流電源4aを有する。5は
プラズマトーチ内にキャリアガスを供給するための導入
管、そして6は陽極1と陰極2との間に配置される絶縁
物である。
Reference numeral 2 denotes a cathode, and the cathode 2 is disposed so as to be viewed from the opening 1a of the anode 1, and the anode 1 and the cathode 2
Thus, a plasma torch is formed. 3 is the anode 1
A DC power supply 4 disposed between the cathode 1 and the cathode 2 is a magnetic field generator that surrounds the tips of the anode 1 and the cathode 2, and the magnetic field generator 4 has an AC power supply 4a. Reference numeral 5 denotes an inlet tube for supplying a carrier gas into the plasma torch, and reference numeral 6 denotes an insulator disposed between the anode 1 and the cathode 2.

【0020】上記の構成になるリニア型の装置において
は、陽極1の開口1aが矩形状に、また、陰極2の先端
部分も直線状になっており、これらの間に直流電圧を印
加することによって陽極1の先端と陰極2先端との一部
の間で熱プラズマを発生させる。導入管5より供給され
たキャリアガスはプラズマ流の担い手になるとともに、
それによる冷却によってプラズマの収束性が高められる
一方、磁界発生装置4による磁界の走査によってシート
状のプラズマ (図1のP) となって開口1aから鋼板S
の表面へ向けて放射される。
In the linear type apparatus having the above-described configuration, the opening 1a of the anode 1 is rectangular, and the tip of the cathode 2 is also linear. Thereby, thermal plasma is generated between a part of the tip of the anode 1 and a part of the tip of the cathode 2. The carrier gas supplied from the introduction pipe 5 serves as a carrier of the plasma flow,
The cooling thereby increases the convergence of the plasma, while the magnetic field generator 4 scans the magnetic field to form a sheet-like plasma (P in FIG. 1), and the steel sheet S passes through the opening 1a.
Radiated toward the surface of the

【0021】[0021]

【作用】従来のプラズマトーチにて発生する熱プラズマ
は、プラズマ内の温度分布が大きく、鋼板の長手方向に
沿ってトーチを移動させる場合にもこの温度分布を解消
することはできない。また、かかるトーチを複数個配列
した配列した場合にも当然、鋼板の長手方向に温度分布
が発生し、これが熱歪分布となり鉄損低減効果の不均一
をもたらしていたが、この発明によれば、熱プラズマを
スリット状にできるためその温度分布は均一であり、板
の長手方向における熱歪分布も非常に小さくなる。
The thermal plasma generated by the conventional plasma torch has a large temperature distribution in the plasma, and the temperature distribution cannot be eliminated even when the torch is moved along the longitudinal direction of the steel sheet. In addition, even when a plurality of such torches are arranged, a temperature distribution is naturally generated in the longitudinal direction of the steel sheet, which results in a thermal strain distribution, which results in an uneven iron loss reduction effect. Since the thermal plasma can be formed into a slit shape, the temperature distribution is uniform, and the thermal strain distribution in the longitudinal direction of the plate becomes very small.

【0022】また、この発明においては、磁界の走査
(揺動) によってプラズマをシート状にできるので、板
の幅方向においてトーチを移動させる必要がなくなると
同時にトーチと鋼板表面との距離を大きくできるので高
速で走行するような鋼板を対象とするような場合におい
てもその長手方向に極めて短時間でプラズマ炎を放射す
ることができ、鉄損の改善効果の安定化、絶縁被膜の剥
離, 脱落の防止を図ることができるだけでなく、設備の
簡素化 (プラズマトーチが少なくてすむ) 、電気回路系
の単純化が可能であり、さらにキャリアガス流の制御、
装置の位置の調整あるはその維持管理が極めて容易とな
る。
In the present invention, the scanning of the magnetic field is performed.
Since the plasma can be made into a sheet shape by (oscillation), it is not necessary to move the torch in the width direction of the plate, and at the same time, the distance between the torch and the surface of the steel plate can be increased, so that it is intended for steel plates that run at high speed In such cases, the plasma flame can be radiated in the longitudinal direction in a very short time, stabilizing the effect of improving iron loss, preventing peeling and falling off of the insulating coating, and simplifying the equipment. (Requires fewer plasma torches), simplification of the electric circuit system is possible, and control of carrier gas flow,
It is extremely easy to adjust the position of the device or to maintain it.

【0023】磁界の印加によってプラズマ炎の拡散が抑
制される機構は下記のとおりである。磁界を印加しない
場合、プラズマを構成する粒子間の衝突((a)同種粒
子間衝突(イオン対イオンまたは電子対電子)と(b)
異種の粒子間の衝突(イオン対電子、イオン対中性原
子、または電子対中性原子))とによって各種粒子が拡
散していく。すなわち、同種粒子の場合、クーロン反発
力によって運動方向を変えた後、2つの粒子の質量中心
をプラズマ炎の中心として、プラズマ炎から遠ざかる方
向へ移動して、これが拡散の駆動力となる。
The mechanism by which the diffusion of the plasma flame is suppressed by the application of a magnetic field is as follows. When a magnetic field is not applied, collision between particles constituting the plasma ((a) collision between similar particles (ion-to-ion or electron-to-electron) and (b)
Various particles are diffused by collision between different kinds of particles (ion-pair electrons, ion-pair neutral atoms, or electron-pair neutral atoms). That is, in the case of the same kind of particles, after the direction of movement is changed by Coulomb repulsion, the two particles move in the direction away from the plasma flame with the center of mass of the particles as the center of the plasma flame, and this becomes the driving force for diffusion.

【0024】また異種の粒子間の衝突の場合、イオン対
電子の衝突により中性電子となるか、各速度を反対にし
て飛び出す。その際、質量の違いから電子は大きく跳ね
飛び大きく拡散していくが、イオンは電子との頻繁な衝
突の結果わずかに移動するにすぎない。さらにイオンと
中性原子との衝突の場合には中性原子の速度とは無関係
にイオンは最初の位置から遠ざかってしまう。
In the case of collision between different kinds of particles, neutral electrons are generated by ion-pair electron collision, or the particles fly out with the opposite speed. At this time, the electrons jump and largely diffuse due to the difference in mass, but the ions move only slightly as a result of frequent collisions with the electrons. Further, in the case of collision between ions and neutral atoms, the ions move away from the initial position regardless of the speed of the neutral atoms.

【0025】このように、各種衝突によってイオンなら
びに電子は本質的にプラズマ炎中心から遠ざかる方向へ
移動して拡散していくが、ここで磁界が存在する場合、
磁界に垂直な平面において、イオンならびに電子は磁力
線を中心として旋回運動をしている。この時、上記の各
種、衝突の結果、イオンならびに電子の速度と向きは変
化するが、その後は、衝突前と異なる磁力線を軸として
旋回運動を継続するので、衝突後もプラズマ炎の中心か
ら遠ざかることはない。かかる機構によって各種粒子の
拡散が抑制され、プラズマ炎の収束性が向上するわけで
ある。したがって、印加する磁界の向きはプラズマ炎の
方向と平行であることが必要で、この磁界は、プラズマ
発生装置の陽極および陰極の先端部分を取り囲む電導体
のコイルに電流を流すことによって発生させることがで
きる。
As described above, ions and electrons are essentially moved in a direction away from the center of the plasma flame and diffused by various collisions.
In a plane perpendicular to the magnetic field, the ions and the electrons are orbiting about the magnetic field lines. At this time, as a result of the above various collisions, the speed and direction of the ions and electrons change, but thereafter, the swirling motion is continued around the line of magnetic force different from that before the collision, so that the distance from the center of the plasma flame is kept after the collision. Never. The diffusion of various particles is suppressed by such a mechanism, and the convergence of the plasma flame is improved. Therefore, the direction of the applied magnetic field must be parallel to the direction of the plasma flame, and this magnetic field must be generated by applying a current to the coil of the conductor surrounding the anode and cathode tips of the plasma generator. Can be.

【0026】次に、この発明に適合する鋼板の製造要領
について説明する。
Next, a description will be given of a method of manufacturing a steel sheet conforming to the present invention.

【0027】この発明に適合する素材は、公知の製鋼
法、たとえば転炉、電気炉などによって製鋼し、さらに
造塊から分塊法または連続鋳造法などによってスラブ
(鋼片)としたのち、熱間圧延によって熱延コイルが適用
できる。
The material conforming to the present invention is manufactured by a known steel making method, for example, a converter, an electric furnace or the like, and is further subjected to slab-forming from a slab ingot or a continuous casting method.
(Slab), hot-rolled coils can be applied by hot rolling.

【0028】上記の熱延コイルは、Siを2.0 〜4.5 %程
度含有する組成になるものであることが不可欠である。
というのは、Siが2.0 %未満では鉄損の劣化が大きく、
一方、4.5 %を超えると冷間加工性が劣化するからであ
る。その他の成分については方向性けい素鋼板の素材成
分であればいずれも適用可能である。
It is essential that the above-mentioned hot rolled coil has a composition containing about 2.0 to 4.5% of Si.
This is because if the Si content is less than 2.0%, the iron loss deteriorates greatly,
On the other hand, if it exceeds 4.5%, the cold workability deteriorates. Any other components can be applied as long as they are the material components of the grain-oriented silicon steel sheet.

【0029】上記の熱延コイルは、最終目標板厚になる
まで冷間圧延するが、かかる冷間圧延は1回もしくは中
間焼鈍を挟む2回の冷間圧延を行う。この冷間圧延に際
しては、必要に応じて熱延板焼鈍や冷間圧延に替わる温
間圧延や圧延パス間において時効処理を施すこともでき
る。
The above-mentioned hot-rolled coil is cold-rolled until it reaches the final target thickness, and the cold-rolling is performed once or twice with intermediate annealing. At the time of this cold rolling, aging treatment may be performed between warm rolling and rolling passes in place of hot-rolled sheet annealing and cold rolling as necessary.

【0030】最終板厚に仕上げた冷延鋼板は脱炭焼鈍を
兼ねた1次再結晶焼鈍に供し、その後、焼鈍分離剤を鋼
板表面に塗布しコイル状に巻き取ってから最終仕上焼鈍
に供する。最終仕上焼鈍においては、2次再結晶が進行
し鋼板の結晶組織が完成していくとともに、鋼板内のS
やN等の有害不純物が除去される純化現象が進行してい
き、さらに鋼板の表面にはセラミックス多結晶質の絶縁
被膜が形成される。
The cold rolled steel sheet finished to the final thickness is subjected to primary recrystallization annealing also serving as decarburization annealing, and thereafter, an annealing separating agent is applied to the surface of the steel sheet, wound into a coil, and then subjected to final finish annealing. . In the final finish annealing, secondary recrystallization progresses to complete the crystal structure of the steel sheet,
A purifying phenomenon in which harmful impurities such as N and N are removed proceeds, and furthermore, a ceramic polycrystalline insulating film is formed on the surface of the steel sheet.

【0031】最終仕上焼鈍後は、未反応分離剤を鋼板表
面より除去してから、平滑化処理を施すが、この時、必
要に応じて絶縁コーティングを塗布、焼き付けるように
してもよい。
After the final finish annealing, the unreacted separating agent is removed from the surface of the steel sheet and then subjected to a smoothing treatment. At this time, an insulating coating may be applied and baked if necessary.

【0032】プラズマ炎の放射は、最終仕上焼鈍後であ
れば、いずれの段階でも、その効果を有するが、通常、
絶縁コーティングの焼付け後に行うのがよい。
The radiation of the plasma flame has its effect at any stage after the final finish annealing.
It is good to do it after baking the insulating coating.

【0033】プラズマ炎の放射に際して、最も効率のよ
い鉄損低減効果を得るには、プラズマ炎の線の厚さを20
〜1000μm 程度とするのがよく、その方向は板を横切る
向きであればよいが、より大きな効果を期待するには板
の長手方向に直交する向きとする。
In order to obtain the most efficient iron loss reduction effect when the plasma flame is radiated, the thickness of the line of the plasma flame must be 20 mm.
The thickness is preferably about 1000 μm, and the direction may be any direction that crosses the plate. However, in order to expect a greater effect, the direction is perpendicular to the longitudinal direction of the plate.

【0034】プラズマ炎の板の長手方向に沿う放射間隔
は、最も効果が現れる3〜30mm程度とする。
The radiation interval along the longitudinal direction of the plate of the plasma flame is about 3 to 30 mm at which the effect is most exhibited.

【0035】プラズマトーチと鋼板表面との距離は、0.
1 〜50mmの範囲内で行う。
The distance between the plasma torch and the surface of the steel plate is set to 0.
Perform within a range of 1 to 50 mm.

【0036】プラズマ炎の放射は、鋼板の巻きもどし中
(走行している状態) の平面状態で行うようにしてもよ
く、またドラム等への巻き付け中の曲面状態で行うよう
にしてもよく、この点についてはとくに限定されない。
The radiation of the plasma flame occurs during unwinding of the steel sheet.
This may be performed in a flat state (running state), or may be performed in a curved state during winding around a drum or the like, and this point is not particularly limited.

【0037】[0037]

【実施例】C:0.078 %, Si:3.26%, Mn:0.068 %,
P:0.01%、S:0.004 %, Se:0.019 %, Sb:0.026
%, N:0.0075%を含有する鋼スラブを1420℃の温度で
10分間加熱均熱したのち、熱間圧延により1.7 mmの熱延
コイルとし、次いでこれを1150℃で30秒間の焼鈍を施し
てからミストを用いて急冷、酸洗し、180 ℃の温度のも
とでゼンジマーミルにより厚さ0.19mmまで圧延し、さら
にH2:50%、露点:60℃, N2バランスの雰囲気下、850
℃,90 秒間の脱炭焼鈍を施し、TiO25%を含有するMgO
を塗布したのちコイル状に巻き取り最終仕上焼鈍に供し
た。最終仕上焼鈍の条件は、840 ℃で40時間のN2中での
保持と25%N2と75%H2の雰囲気で10℃/hr の速度で1200
℃までの昇温とH2中での1200℃,10 時間の保持とその後
の冷却を含むものである。最終仕上焼鈍後は、コイル表
面の未反応焼鈍分離剤を除去したのち、50%コロイダル
シリカと50%のりん酸マグネシウムを主成分とする張力
絶縁コーティングを塗布し平たん化処理を兼ねて800 ℃
で焼付け処理を施した。
Example: C: 0.078%, Si: 3.26%, Mn: 0.068%,
P: 0.01%, S: 0.004%, Se: 0.019%, Sb: 0.026
%, N: 0.0075% steel slab at a temperature of 1420 ° C
After heating and soaking for 10 minutes, a hot-rolled coil of 1.7 mm was formed by hot rolling.Then, this was annealed at 1150 ° C for 30 seconds, quenched with a mist, pickled, and heated at a temperature of 180 ° C. rolled to a thickness of 0.19mm by Zenjimamiru between further H 2: 50%, dew point: 60 ° C., under an atmosphere of N 2 balance, 850
Decarburization annealing for 90 seconds at ℃, MgO containing 5% TiO 2
, And wound up in a coil shape for final finish annealing. The conditions of the final annealing were as follows: holding in N 2 at 840 ° C. for 40 hours and 1200 ° C. in an atmosphere of 25% N 2 and 75% H 2 at a rate of 10 ° C./hr.
1200 ° C. in in the heating of H 2 up to ° C., is intended to include the 10 hour hold and subsequent cooling. After the final finish annealing, the unreacted annealing separating agent on the coil surface is removed, then a tension insulating coating containing 50% colloidal silica and 50% magnesium phosphate as main components is applied, and the flattening treatment is also performed at 800 ° C.
Baking treatment.

【0038】上記の要領にて得たコイルにつき、上掲図
1に示し装置を用いて下記の条件でプラズマ炎を放射し
て磁区の細分化処理を行い、コイルの10箇所について磁
気特性、絶縁被膜の剥離, 脱落状況について調査した。
その結果を通常の磁区細分化処理を行った場合の結果と
ともに表1に示す。
The coil obtained in the above manner is subjected to a magnetic domain subdivision treatment by radiating a plasma flame under the following conditions using the apparatus shown in FIG. The state of peeling and falling off of the coating was investigated.
The results are shown in Table 1 together with the results obtained when ordinary magnetic domain refinement was performed.

【0039】条件 トーチの電圧:30V トーチの電流:50000 A トーチの出力:1500 kW トーチ先端からコイル表面に至るまでの距離:15mm コイルの通板速度:30m/min 磁場の印加条件 磁束密度:5000ガウス キャリア
ガス:Ar コイルの長手方向におけるプラズマ炎の放射間隔:5mm プラズマ炎の照射幅 (線の幅) :150 μm
Conditions Torch voltage: 30 V Torch current: 50000 A Torch output: 1500 kW Distance from torch tip to coil surface: 15 mm Coil passing speed: 30 m / min Magnetic field application condition Magnetic flux density: 5000 Gaussian carrier gas: Plasma flame emission interval in the longitudinal direction of the Ar coil: 5 mm Plasma flame irradiation width (line width): 150 μm

【0040】[0040]

【表1】 [Table 1]

【0041】従来の処理条件 図2に示したトーチを20列にしてコイルの長手方向に5
個並べてトーチを機械的にコイルの幅方向に移動させて
プラズマ炎を放射 トーチの電圧:45V トーチの電流:3000A トーチの出力:135 kW トーチ先端からコイル表面に至るまでの距離:0.5 mm コイルの通板速度:10m/min キャリアガス:Ar コイルの長手方向におけるプラズマ炎の放射間隔:5mm プラズマ炎の放射幅 (線の幅) :150 μm
Conventional processing conditions The torches shown in FIG.
A torch is moved in the width direction of the coil and the plasma flame is radiated. Torch voltage: 45 V Torch current: 3000 A Torch output: 135 kW Distance from torch tip to coil surface: 0.5 mm Passing speed: 10m / min Carrier gas: Radiation interval of plasma flame in the longitudinal direction of Ar coil: 5mm Radiation width of plasma flame (line width): 150 μm

【0042】表1より明らかなように、この発明に従っ
て処理したコイルは磁気特性の改善効果が大きく、被膜
の剥離, 脱落も全くなく品質が安定していたのに対し
て、従来の要領に従って処理したものについては品質の
ばらつきがみられた。
As is clear from Table 1, the coil treated according to the present invention had a large effect of improving the magnetic properties and was stable in quality without any peeling or falling off of the coating. For those that did, there was variation in quality.

【0043】[0043]

【発明の効果】かくして、この発明によれば、プラズマ
炎の放射効率を改善することができるだけでなく放射効
果の安定性が増すため磁気特性、被膜特性の優れた方向
性けい素鋼板の安定供給が可能となる。
As described above, according to the present invention, not only the radiation efficiency of the plasma flame can be improved, but also the stability of the radiation effect increases, so that a stable supply of grain-oriented silicon steel sheets having excellent magnetic properties and coating properties can be achieved. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に従う装置の構成説明図である。FIG. 1 is an explanatory diagram of a configuration of a device according to the present invention.

【図2】従来方式の装置の構成を示した図である。FIG. 2 is a diagram showing a configuration of a conventional system.

【符号の説明】[Explanation of symbols]

1 陽極 1a オリフィス 2 陰極 3 直流電源 4 磁界発生装置 5 ガス導入孔 6 絶縁物 S 鋼板 P プラズマ炎 DESCRIPTION OF SYMBOLS 1 Anode 1a Orifice 2 Cathode 3 DC power supply 4 Magnetic field generator 5 Gas introduction hole 6 Insulator S Steel plate P Plasma flame

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 H01F 1/16 H05H 1/24 - 1/52 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 H01F 1/16 H05H 1/24-1/52

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼板の板幅方向に沿って延びたスリット
状の開口を有する陽極とこの陽極の開口に望んで配置さ
れる陰極とを備えたプラズマトーチと、陽極および陰極
の先端部分を取り囲む磁界発生装置を用いてシート状の
プラズマ炎を形成し、これを、最終仕上焼鈍済の方向性
けい素鋼板の表面に放射して磁区の細分化を図ることを
特徴とする低鉄損方向性けい素鋼板の製造方法。
1. A plasma torch including an anode having a slit-shaped opening extending along the width direction of a steel sheet and a cathode disposed as desired in the opening of the anode, and surrounding the anode and the tip of the cathode. Low iron loss directionality characterized by forming a sheet-like plasma flame using a magnetic field generator and radiating this to the surface of a grain-oriented silicon steel sheet that has been subjected to final finish annealing to subdivide magnetic domains. Manufacturing method of silicon steel sheet.
【請求項2】 鋼板の板幅方向に沿って延びたスリット
状の開口を有する陽極とこの陽極の開口に望んで配置さ
れる陰極とを備えたプラズマトーチの、該開口部分から
最終仕上焼鈍済の方向性けい素鋼板に向けてプラズマ炎
を放射する装置であって、 上記装置に、陰極および陽極の先端部分を取り囲む磁界
発生装置を配置してなる、プラズマ発生装置。
2. A plasma torch having an anode having a slit-like opening extending along the width direction of a steel sheet and a cathode arranged as desired in the opening of the anode, and a final finish annealing from the opening portion of the plasma torch. An apparatus for radiating a plasma flame toward a grain-oriented silicon steel sheet according to any one of claims 1 to 3, wherein the apparatus is provided with a magnetic field generator surrounding a tip portion of a cathode and an anode.
JP33563893A 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator Expired - Fee Related JP3174451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33563893A JP3174451B2 (en) 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33563893A JP3174451B2 (en) 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator

Publications (2)

Publication Number Publication Date
JPH07192891A JPH07192891A (en) 1995-07-28
JP3174451B2 true JP3174451B2 (en) 2001-06-11

Family

ID=18290842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33563893A Expired - Fee Related JP3174451B2 (en) 1993-12-28 1993-12-28 Method for producing low iron loss oriented silicon steel sheet and plasma generator

Country Status (1)

Country Link
JP (1) JP3174451B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081297A1 (en) * 2004-02-25 2005-09-01 Hiroshima Industrial Promotion Organization Thin film heat treating method, heat treating device, thin-film semiconductor device manufacturing method, and electro-optic device
KR101693516B1 (en) * 2014-12-24 2017-01-06 주식회사 포스코 Grain-orientied electrical steel sheet and method for manufacturing the smae
CN114026258B (en) 2019-06-17 2023-10-31 杰富意钢铁株式会社 Grain-oriented electrical steel sheet and method for producing same
CA3218916A1 (en) 2021-05-31 2022-12-08 Jfe Steel Corporation Grain-oriented electrical steel sheet
US20240233991A1 (en) 2021-05-31 2024-07-11 Jfe Steel Corporation Grain-oriented electrical steel sheet
WO2022255014A1 (en) 2021-05-31 2022-12-08 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
JPH07192891A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
KR100297046B1 (en) Very low iron loss oriented electrical steel sheet and its manufacturing method
JP5477438B2 (en) Method for producing grain-oriented electrical steel sheet
JP3023242B2 (en) Method for producing low iron loss unidirectional silicon steel sheet with excellent noise characteristics
US4545828A (en) Local annealing treatment for cube-on-edge grain oriented silicon steel
JP3174451B2 (en) Method for producing low iron loss oriented silicon steel sheet and plasma generator
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH0772300B2 (en) Method for manufacturing low iron loss grain oriented silicon steel sheet
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
WO2023195470A1 (en) Oriented electromagnetic steel sheet and method for producing same
WO2023195466A1 (en) Grain-oriented electromagnetic steel sheet and production method for same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JP3482833B2 (en) Grain-oriented electrical steel sheets with excellent iron loss, distortion resistance and magnetic properties in actual machines
JPH0222423A (en) Iron loss reduction continuous treating equipment for grain oriented silicon steel sheet
JPH05179355A (en) Production of low-iron loss unidirectionally oriented silicon steel sheet
JP3383555B2 (en) Grain-oriented electrical steel sheet with low iron loss and excellent strain resistance and actual machine properties, and method for producing the same
JP2002241906A (en) Grain-oriented silicon steel sheet having excellent coating film characteristic and magnetic property
JPH0543944A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH1017931A (en) Production of grain oriented silicon steel sheet
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam
JPH07188755A (en) Method for reducing iron loss in grain-oriented silicon steel sheet
JPH0543945A (en) Manufacture of low iron loss grain-oriented silicon steel sheet
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP2599739B2 (en) Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees