JPH0772300B2 - Method for manufacturing low iron loss grain oriented silicon steel sheet - Google Patents

Method for manufacturing low iron loss grain oriented silicon steel sheet

Info

Publication number
JPH0772300B2
JPH0772300B2 JP60236271A JP23627185A JPH0772300B2 JP H0772300 B2 JPH0772300 B2 JP H0772300B2 JP 60236271 A JP60236271 A JP 60236271A JP 23627185 A JP23627185 A JP 23627185A JP H0772300 B2 JPH0772300 B2 JP H0772300B2
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
oriented silicon
silicon steel
low iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60236271A
Other languages
Japanese (ja)
Other versions
JPS6296617A (en
Inventor
文二郎 福田
甫朋 杉山
圭司 佐藤
厚人 本田
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP60236271A priority Critical patent/JPH0772300B2/en
Priority to US06/921,523 priority patent/US4772338A/en
Priority to CA000521084A priority patent/CA1325372C/en
Priority to EP86308239A priority patent/EP0220940B1/en
Priority to DE8686308239T priority patent/DE3678099D1/en
Priority to KR1019860008936A priority patent/KR910000009B1/en
Publication of JPS6296617A publication Critical patent/JPS6296617A/en
Priority to US07/209,845 priority patent/US4846448A/en
Publication of JPH0772300B2 publication Critical patent/JPH0772300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は変圧器等に使用される方向性珪素鋼板の鉄損を
著しく低減させる製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a manufacturing method for significantly reducing the iron loss of grain-oriented silicon steel sheets used in transformers and the like.

方向性珪素鋼板の鉄損は変圧器等の鉄心に使用された鋼
板が発生する熱エネルギー損で、近年のエネルギー事情
を背景にしてその低減、すなわち方向性珪素鋼板の鉄損
低減に対する要求はますます高まりつつある。
The iron loss of grain-oriented silicon steel sheet is a thermal energy loss generated by the steel sheet used for the iron core of transformers, etc., and there is a demand for reduction of iron loss of grain-oriented silicon steel sheet due to the recent energy situation. It is increasing.

ところで鉄損を減少させるには鋼板の結晶方位を(11
0)<001>方位により高度に揃えること、Si含有量を上
げ鋼板の電気抵抗を増加させること及び不純物を減少さ
せることさらに近年では鋼板の板厚を薄くすることなど
が種々試みられた。
By the way, in order to reduce iron loss, the crystal orientation of the steel sheet should be (11
0) Various attempts have been made to make the steel sheet highly aligned by the <001> orientation, increase the Si content to increase the electrical resistance of the steel sheet, reduce impurities, and in recent years, reduce the thickness of the steel sheet.

しかしこれらの治金学的方法による鉄損低減はほぼ限界
に達している。
However, iron loss reduction by these metallurgical methods has almost reached the limit.

(従来の技術) そこで治金学的な方法以外に鉄損を改良する方法が種々
提案されている。これらのなかで現在工業化されている
ものは、特公昭57−2252号公報等に示されているパルス
レーザー照射による鉄損低減法である。この方法を用い
ることにより従来に較べ鉄損の大巾減少が可能になった
が装置が高価なことレーザー励起用ランプの寿命がなが
くないことによるイニシアルコスト及びランニングコス
ト増が避けがたい。また使用するレーザーは可視光でな
い場合が多く安全上の対策もかかせない。
(Prior Art) Various methods for improving iron loss have been proposed in addition to metallurgical methods. Among these, the one currently industrialized is the iron loss reduction method by pulse laser irradiation disclosed in Japanese Patent Publication No. 57-2252. By using this method, the iron loss can be greatly reduced compared with the conventional method, but it is inevitable that the initial cost and the running cost increase due to the expensive equipment and the short life of the laser excitation lamp. In addition, the laser used is often not visible light, so safety measures are essential.

また特開昭59−33802号,59−92506号各公報には連続レ
ーザーを照射する方法が開示されているが、パルスレー
ザーイーと同様な欠点の他、鉄損低減効果が少ないこと
や鋼板のレーザー光吸収率が不可避器に変動するため効
果が一定しないという欠点を有している。
Further, Japanese Patent Laid-Open Nos. 59-33802 and 59-92506 disclose a method of irradiating continuous laser. However, in addition to the same drawbacks as pulsed laser E, there is little iron loss reduction effect and There is a drawback that the effect is not constant because the laser light absorptance fluctuates inevitably.

(発明が解決しようとする問題点) 上記のような欠点がなく、生産性、作業性、安全性、コ
スト面より有利な手段で著しく鉄損を低減させ得る新た
な低鉄損方向性珪素鋼板の製造方法を提供することが本
発明の目的である。
(Problems to be Solved by the Invention) A new low iron loss grain oriented silicon steel sheet which does not have the above-mentioned drawbacks and can significantly reduce iron loss by means advantageous in terms of productivity, workability, safety and cost It is an object of the present invention to provide a method of manufacturing

(問題点を解決するための手段) さて発明者らは上記の問題を解決すべく鋭意実験を重ね
た結果、仕上焼鈍された方向性珪素鋼板の表面にプラズ
マ炎を放射することにより著しい鉄損低減効果が得られ
ることを新たに知見しこの発明を完成するに到った。
(Means for Solving Problems) As a result of intensive experiments to solve the above problems, the inventors have found that significant iron loss is caused by radiating a plasma flame to the surface of the finish-annealed grain-oriented silicon steel sheet. The inventors have newly found that the reduction effect can be obtained and have completed the present invention.

すなわちこの発明は仕上焼鈍された方向性珪素鋼板に2.
0mmφ以下のノズル穴から放出されるプラズマ炎を放射
することから成る鉄損方向性珪素鋼板の製造方法であ
る。
In other words, this invention applies to finish-annealed grain-oriented silicon steel sheets 2.
A method for manufacturing an iron loss grain oriented silicon steel sheet, which comprises radiating a plasma flame emitted from a nozzle hole having a diameter of 0 mm or less.

以下この発明を由来した実験結果に基づき具体的に説明
する。
The present invention will be specifically described below based on the experimental results.

仕上焼鈍済の0.23mm厚の鋼板にノズル穴0.05mmφ〜2.5m
mφを持つトーチよりプラズマ炎を放射した。
Nozzle hole 0.05 mmφ ~ 2.5 m in 0.23 mm thick steel plate that has been finish annealed
A plasma flame was emitted from a torch with mφ.

プラズマ発生はタングステンを主成分とする陰極と陽極
間に電圧を印加したアルゴン又はアルゴンと水素の混合
ガスを流すことにより発生させた。
The plasma was generated by flowing argon or a mixed gas of argon and hydrogen with a voltage applied between a cathode containing tungsten as a main component and an anode.

出力電流はノズル穴径が大きい程大電流を流せるが1A〜
300Aの範囲で変えた。
Larger output current can flow with larger nozzle hole diameter, but 1A ~
I changed it in the range of 300A.

プラズマ炎の放射は鋼板の圧延方法とほぼ直角な向きに
連続な線状に放射し、圧延方向の放射間隔は6.35mmであ
る。プラズマ放射滞留時間を決めるプラズマ炎と鋼板の
相対速度は1mm/sec〜400cm/secの間で変えた。
The radiation of the plasma flame radiates in a continuous line in a direction almost perpendicular to the rolling method of the steel sheet, and the radiation interval in the rolling direction is 6.35 mm. The relative velocity between the plasma flame and the steel plate, which determines the plasma radiation residence time, was varied between 1 mm / sec and 400 cm / sec.

これらの広範囲な実験条件で実験した結果ノズル穴径が
2.0mmφより大きい場合を除いて各ノズル穴径で出力電
流、プラズマ炎と鋼板の相対速度を適切に選ぶことによ
り鉄損が向上することを新規に見いだした。これらの実
験結果を第1図に示す。図にプラズマ炎放射前後の鉄損
差ΔW17/50(磁束密度1.7T,50Hz)を示したがノズル穴
径2.0mmφ以下で鉄損の大巾な減少が認められた。
As a result of experimenting under these wide range of experimental conditions, the nozzle hole diameter is
It was newly found that iron loss is improved by appropriately selecting the output current, the relative velocity of the plasma flame and the steel plate at each nozzle hole diameter except when it is larger than 2.0 mmφ. The results of these experiments are shown in FIG. The figure shows the iron loss difference ΔW 17/50 (flux density 1.7T, 50Hz) before and after plasma flame radiation, but a large reduction in iron loss was observed when the nozzle hole diameter was 2.0mmφ or less.

プラズマ炎の放射の方向は圧延方向に垂直な方向にて最
も鉄損の低減をもたらすがその方向より450までづれて
いても鉄損低減効果が認められた。
The direction of radiation of the plasma flame was the most perpendicular to the rolling direction, but the iron loss reduction effect was recognized even if the direction was up to 45 0 .

さらに連続した線状でなく非連続な直線あるいは曲線状
でも鉄損低減効果が認められた。放射部位は局所的であ
ることが望ましく、線状である場合は圧延方向の放射間
隔は2〜30mmが望ましい。
Further, the effect of reducing iron loss was recognized not only in a continuous linear shape but also in a discontinuous linear or curved shape. It is desirable that the radiating parts are local, and if they are linear, the radiating distance in the rolling direction is preferably 2 to 30 mm.

(作 用) プラズマ炎放射によって鉄損の減少する理由はプラズマ
炎が放射された部分が磁気的に硬質になりそれによって
磁区が細分されたものと推定される。
(Operation) It is presumed that the reason why the iron loss decreases due to the plasma flame radiation is that the part where the plasma flame is radiated becomes magnetically hard and the magnetic domains are subdivided by it.

この発明のプラズマ炎放射に用いる鋼板は、MnS,MnSe,A
lN及びSbなどをインヒビターとして含む熱延鋼板を1回
または中間焼鈍をはさむ2回の冷間圧延により最終板厚
とした後、脱炭焼鈍を施し次いでMgOを主成分とする焼
鈍分離剤を塗布してから約1200℃の高温で仕上焼鈍した
鋼板であり、二次再結晶が完了している鋼板である。
The steel plate used for plasma flame radiation of this invention is MnS, MnSe, A
l Hot rolled steel sheet containing N and Sb as inhibitors is cold-rolled once or twice with intermediate annealing to obtain the final thickness, then decarburized and then annealed and separated with MgO as the main component. After that, it is a steel sheet that has been finish annealed at a high temperature of about 1200 ° C, and that has undergone secondary recrystallization.

通常仕上焼鈍済鋼板には仕上焼鈍時に生成するフオルス
テライト被膜で覆われているがフラズマ炎放射はこのフ
オルステライト上からでもまたフオルステライトが無い
状態、さらには通常フオルステライト上に上塗りするリ
ン酸塩を主成分するコーチング上から行っても良い。
Normally, the finish-annealed steel sheet is covered with the forsterite coating formed during the finishing annealing, but the flame radiant radiation is in the absence of forsterite even from above the forsterite, and the phosphate to be overcoated on the ordinary forsterite. It may be performed from the top of the main coating.

又プラズマ放射後再コーチングしても良い。Further, recoating may be performed after plasma irradiation.

プラズマ炎の放射は非移行型、移行型どちらでも良いが
非移行型の方が放射が容易である。プラズマ炎発生の為
の電圧、電流は特に規制はしないが安定してプラズマ炎
が発生すること及びノズルの寿命等を勘案して決める必
要がある。プラズマ発生のためのガスはAr,N2,H2等の不
活性及び非酸化性ガスならびにこれ等の混合ガスが望ま
しいが酸化性ガスおよびこれらの混合でもかまわない。
また減圧下でプラズマ放射を行っても良い。
The plasma flame may be either non-transfer type or transfer type, but the non-transfer type is easier to radiate. The voltage and the current for generating the plasma flame are not particularly limited, but it is necessary to determine in consideration of stable generation of the plasma flame and the life of the nozzle. The gas for generating plasma is preferably an inert or non-oxidizing gas such as Ar, N 2 or H 2 and a mixed gas thereof, but an oxidizing gas or a mixture thereof may be used.
Further, plasma irradiation may be performed under reduced pressure.

プラズマ放射時には鋼板に張力を加えても良くまたロー
ル上に曲げた状態で放射しても良い。
At the time of plasma irradiation, tension may be applied to the steel sheet, or the steel sheet may be bent and emitted.

(実施例) 最終焼鈍した0.23および0.30mm厚の方向性珪素鋼板に0.
1mmφ及び2.5mmφのノズル穴径を持つトーチによりプラ
ズマ炎を放射した。ガスはアルゴンガスを用いた。出力
電流は0.1mmφノズルで7A,2.5mmφノズルで50Aであっ
た。放射の方向は圧延方向と垂直な方向で連続の線状に
放射し圧延方向の間隔は6mm間隔である。
(Example) A 0.23 and 0.30 mm thick grain oriented silicon steel sheet was finally annealed.
A plasma flame was emitted by a torch with nozzle hole diameters of 1 mmφ and 2.5 mmφ. Argon gas was used as the gas. The output current was 7A for the 0.1mmφ nozzle and 50A for the 2.5mmφ nozzle. The direction of radiation is perpendicular to the rolling direction and radiates in a continuous linear manner with a spacing of 6 mm in the rolling direction.

放射前後の特性を単板磁気試験装置で測定した結果を表
1に示す。0.1mmφのノズル穴径でBIO値(磁界1000A/m
の磁束密度)の比較的低い材料でも大巾な鉄損向上が見
られた。
Table 1 shows the results of measurement of the characteristics before and after radiation with a single-plate magnetic test device. B IO values nozzle hole diameter of 0.1 mm? (Magnetic field 1000A / m
A large improvement in iron loss was observed even for materials with relatively low magnetic flux density.

(発明の効果) この発明によりプラズマ炎放射によって方向性珪素鋼板
の鉄損を著しく減少させることが可能になった。
(Effect of the Invention) According to the present invention, it is possible to significantly reduce the iron loss of grain-oriented silicon steel sheet by plasma flame radiation.

【図面の簡単な説明】[Brief description of drawings]

第1図はプラズマ炎の、ノズル穴径と鉄損減少高ΔWの
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the nozzle hole diameter and the iron loss reduction height ΔW of plasma flame.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本田 厚人 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭60−89523(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsuto Honda, 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (56) References JP-A-60-89523 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】仕上焼鈍済の方向性珪素鋼板に2.0mmφ以
下のノズル穴から放出されるプラズマ炎を放射すること
を特徴とする低鉄損方向性珪素鋼板の製造方法。
1. A method for producing a low iron loss grain-oriented silicon steel sheet, which comprises radiating a plasma flame emitted from a nozzle hole having a diameter of 2.0 mm or less to a grain-finished grain-oriented silicon steel sheet.
JP60236271A 1985-10-24 1985-10-24 Method for manufacturing low iron loss grain oriented silicon steel sheet Expired - Lifetime JPH0772300B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60236271A JPH0772300B2 (en) 1985-10-24 1985-10-24 Method for manufacturing low iron loss grain oriented silicon steel sheet
US06/921,523 US4772338A (en) 1985-10-24 1986-10-21 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
CA000521084A CA1325372C (en) 1985-10-24 1986-10-22 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
EP86308239A EP0220940B1 (en) 1985-10-24 1986-10-23 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
DE8686308239T DE3678099D1 (en) 1985-10-24 1986-10-23 METHOD AND DEVICE FOR IMPROVING THE IRON LOSS OF SHEETS IN ELECTROMAGNETIC STEEL OR AMORPHOUS MATERIAL.
KR1019860008936A KR910000009B1 (en) 1985-10-24 1986-10-24 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
US07/209,845 US4846448A (en) 1985-10-24 1988-06-22 Apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236271A JPH0772300B2 (en) 1985-10-24 1985-10-24 Method for manufacturing low iron loss grain oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS6296617A JPS6296617A (en) 1987-05-06
JPH0772300B2 true JPH0772300B2 (en) 1995-08-02

Family

ID=16998305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236271A Expired - Lifetime JPH0772300B2 (en) 1985-10-24 1985-10-24 Method for manufacturing low iron loss grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0772300B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11000920B2 (en) 2016-01-22 2021-05-11 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
US11072838B2 (en) 2016-01-22 2021-07-27 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
US11254994B2 (en) 2016-12-23 2022-02-22 Posco Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor
US11772189B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Grain-oriented electrical steel sheet and magnetic domain refining method therefor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470475B2 (en) 1995-11-27 2003-11-25 Jfeスチール株式会社 Grain-oriented electrical steel sheet with extremely low iron loss and its manufacturing method
JP3260290B2 (en) * 1996-01-26 2002-02-25 旭光学工業株式会社 Waterproof structure of lens barrel
DE69810852T2 (en) * 1997-07-17 2003-06-05 Kawasaki Steel Co Grain-oriented electrical steel sheet with excellent magnetic properties and its manufacturing process
TWI305548B (en) 2005-05-09 2009-01-21 Nippon Steel Corp Low core loss grain-oriented electrical steel sheet and method for producing the same
JP5471839B2 (en) * 2010-05-28 2014-04-16 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
MX353179B (en) 2010-08-06 2018-01-05 Jfe Steel Corp Grain-oriented electrical steel sheet, and method for producing same.
RU2569269C1 (en) 2011-09-28 2015-11-20 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electric steel plates, and method of its manufacturing
US10920323B2 (en) * 2015-03-27 2021-02-16 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same
CN107429402B (en) 2015-03-27 2020-03-06 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet with insulating coating and method for producing same
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8324643D0 (en) * 1983-09-14 1983-10-19 British Steel Corp Production of grain orientated steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11000920B2 (en) 2016-01-22 2021-05-11 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
US11060163B2 (en) 2016-01-22 2021-07-13 Posco Method for refining magnetic domains of grain-oriented electrical steel plates, and apparatus therefor
US11072838B2 (en) 2016-01-22 2021-07-27 Posco Method and device for magnetic domain refinement of oriented electrical steel plate
US11254994B2 (en) 2016-12-23 2022-02-22 Posco Method for refining magnetic domain of grain-oriented electrical steel plate and device therefor
US11772189B2 (en) 2017-12-26 2023-10-03 Posco Co., Ltd Grain-oriented electrical steel sheet and magnetic domain refining method therefor

Also Published As

Publication number Publication date
JPS6296617A (en) 1987-05-06

Similar Documents

Publication Publication Date Title
JPH0772300B2 (en) Method for manufacturing low iron loss grain oriented silicon steel sheet
EP0525467B1 (en) Grain oriented silicon steel sheet having excellent primary glass film properties
EP0334223B1 (en) Ultra-rapid heat treatment of grain oriented electrical steel
EP0571705A2 (en) Method of producing low iron loss, low-noise grain-oriented silicon steel sheet, and low-noise stacked transformer
KR930001948B1 (en) Ultra-rapid annealing of nonoriented electrical steel
US6280534B1 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
JP3399991B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JPH01230721A (en) Manufacture of grain-oriented silicon steel sheet having high saturation magnetic flux density
US4623406A (en) Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
JP3846064B2 (en) Oriented electrical steel sheet
JP2018154881A (en) Production method of grain-oriented electromagnetic steel sheet
JP3174451B2 (en) Method for producing low iron loss oriented silicon steel sheet and plasma generator
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
CN115917020A (en) Method for producing grain-oriented electromagnetic steel sheet
JPH066745B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
US4915749A (en) Method of reducing iron loss of grain oriented silicon steel sheet
EP0535651B1 (en) Method of manufacturing grain oriented silicon steel sheets
KR920008690B1 (en) Making method for electric steel plates
JPS6324046B2 (en)
JPH02228425A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPS62151511A (en) Method for decreasing iron loss of grain oriented silicon steel sheet
JPH0672265B2 (en) Iron loss improvement method for grain-oriented silicon steel sheet
JPS62151516A (en) Improvement of iron loss of grain oriented silicon steel sheet
KR102149826B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same