JPS62151511A - Method for decreasing iron loss of grain oriented silicon steel sheet - Google Patents

Method for decreasing iron loss of grain oriented silicon steel sheet

Info

Publication number
JPS62151511A
JPS62151511A JP60291841A JP29184185A JPS62151511A JP S62151511 A JPS62151511 A JP S62151511A JP 60291841 A JP60291841 A JP 60291841A JP 29184185 A JP29184185 A JP 29184185A JP S62151511 A JPS62151511 A JP S62151511A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
oriented silicon
iron loss
plasma flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291841A
Other languages
Japanese (ja)
Inventor
Bunjiro Fukuda
福田 文二郎
Mototomo Sugiyama
杉山 甫朋
Keiji Sato
圭司 佐藤
Atsuto Honda
厚人 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60291841A priority Critical patent/JPS62151511A/en
Priority to US06/921,523 priority patent/US4772338A/en
Priority to CA000521084A priority patent/CA1325372C/en
Priority to DE8686308239T priority patent/DE3678099D1/en
Priority to EP86308239A priority patent/EP0220940B1/en
Priority to KR1019860008936A priority patent/KR910000009B1/en
Publication of JPS62151511A publication Critical patent/JPS62151511A/en
Priority to US07/209,845 priority patent/US4846448A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Abstract

PURPOSE:To considerably decrease an iron loss with good safety by radiating a plasma flame to a grain oriented silicon steel sheet having a prescribed average grain size and magnetic flux density. CONSTITUTION:The plasma flame is radiated to the grain oriented silicon steel sheet having >=3mm average secondary recrystallization grain size and >=1.85T magnetic flux density at 1,000A/m magnetization force. The plasma flame in this stage is preferably radiated linearly in the direction approximately perpendicular to the rolling direction. The angle may be inclined by about 45 deg. and the radiation may not be linear but be spot-like or curvilinear. Since the iron loss of the steel sheet is extremely low according to the above-mentioned method, the energy loss of an electrical apparatus such as transformer for the iron core of which the grain oriented silicon steel sheet is used is considerably decreased.

Description

【発明の詳細な説明】 (産業上の利用分野) 変圧器などの鉄芯に用いられている方向性珪素鋼板にお
ける鉄損低減に関しこの明細書では、プラズマ炎放射の
有効性についての開発研究の成果に関連して以下に述べ
る。
[Detailed Description of the Invention] (Industrial Application Field) This specification describes the development and research on the effectiveness of plasma flame radiation with regard to reducing iron loss in grain-oriented silicon steel sheets used in iron cores of transformers. The results are described below.

方向性珪素鋼板の鉄損を低減させる手法については古く
から種々に試みられてきた。先ず冶金学的には2次再結
晶粒の結晶方位の(110) 〔001)方位からのづ
れを小さくすること、Si量を増大させること、製品板
厚を薄くすることなどがそれである。しかしこのような
方法で確かに鉄損は減少するが例えば0.30mm厚の
鋼板ではl’l17/S。(磁束密度1.7T、周波数
50Hzでの鉄損)が約1.00111/kg0.23
+++m厚の鋼板ではW17/Soが約0.90W/k
gが限度であった。
Various attempts have been made for a long time to reduce the iron loss of grain-oriented silicon steel sheets. First, from a metallurgical point of view, these include reducing the deviation of the crystal orientation of secondary recrystallized grains from the (110) [001) orientation, increasing the amount of Si, and reducing the thickness of the product plate. However, although iron loss is certainly reduced by this method, for example, in a steel plate with a thickness of 0.30 mm, the iron loss is l'l17/S. (Iron loss at magnetic flux density 1.7T and frequency 50Hz) is approximately 1.00111/kg0.23
W17/So is approximately 0.90W/k for +++m thick steel plate
g was the limit.

(従来の技術) 特公昭57−2252号公報などには、冶金学的以外の
方法としてパルスレーザ−を照射する方法が開示されて
いる。この方法は確かに鉄損の低減が見られるが、装置
が高価なことレーザーに対する安全上の対策が必要なこ
と、レーザー励起用ランプの寿命が短いことなどからイ
ニシャルコスト及びランニングコスト増がさけがたい。
(Prior Art) Japanese Patent Publication No. 57-2252 discloses a method of irradiating with a pulsed laser as a non-metallurgical method. Although this method does reduce iron loss, the initial cost and running cost are unavoidable due to the expensive equipment, the need for safety measures against the laser, and the short lifespan of the laser excitation lamp. sea bream.

(発明が解決しようとする問題点) 従来の技術につき上記したような問題がなく、生産性、
作業性、安全性、コスト面でより有利な手段で著しく鉄
損を低減させ得る方法を提供することが、この発明の目
的である。
(Problems to be solved by the invention) The conventional technology does not have the above-mentioned problems, and improves productivity and
It is an object of the present invention to provide a method that can significantly reduce iron loss by means that are more advantageous in terms of workability, safety, and cost.

(問題点を解決するための手段) この発明は平均2次再結晶粒径3mm以上、磁化力10
00A/mにおける磁束密度1.85T以上の方向性珪
素鋼板に、プラズマ炎を放射することを特徴とする方向
性珪素鋼板の鉄損低減方法である。
(Means for solving the problems) This invention has an average secondary recrystallized grain size of 3 mm or more, a magnetizing force of 10
This is a method for reducing iron loss of a grain-oriented silicon steel sheet, which is characterized by radiating a plasma flame onto the grain-oriented silicon steel sheet having a magnetic flux density of 1.85 T or more at 00 A/m.

発明者らはプラズマ炎放射につき鋭意実験を重ねた結果
、平均2次再結晶粒径(以下平均粒径と呼ぶ)が3肛以
上、磁化力1000A/mにおける磁束密度、B、Oが
1.85T以上の方向性珪素鋼板にプラズマ炎を放射す
ることにより大幅な鉄損の低減がもたらされることを新
規に見いだしこの発明を完成するに到った。
As a result of intensive experiments on plasma flame radiation, the inventors found that the average secondary recrystallized grain size (hereinafter referred to as average grain size) is 3 or more, and the magnetic flux density, B, and O at a magnetizing force of 1000 A/m are 1. This invention was completed based on the new discovery that iron loss can be significantly reduced by radiating a plasma flame onto grain-oriented silicon steel sheets of 85T or higher.

以下この発明を由来した実験結果に基づき具体的に説明
する。
The present invention will be explained in detail below based on experimental results.

平均粒径(2次再結晶粒を円と近似した場合の平均の直
径)が1〜10IIIIOの範囲にあり磁化力1000
A/mにおける磁束密度BIGが1.80〜1.96T
の範囲にある方向性珪素鋼板にプラズマ炎を放射した。
The average grain size (the average diameter when secondary recrystallized grains are approximated as a circle) is in the range of 1 to 10IIIO, and the magnetizing power is 1000
Magnetic flux density BIG at A/m is 1.80 to 1.96T
A plasma flame was radiated onto a grain-oriented silicon steel plate in the range of .

ここにプラズマ炎はタングステンを主成分とする陰極と
陽極間に電圧を印加しアルゴンガスを流すことにより発
生させ、ノズル径0.1〜2.0+++[Ilのノズル
から放射させた。放射は鋼板の圧延方向にほぼ直角に線
状に放射し、放射の間隔は5〜15mmにとった。なふ
出力電流はノズル穴径が大きい程大電流を流せるがIA
〜300Aの範囲で変えた。
Here, the plasma flame was generated by applying a voltage between a cathode and an anode mainly composed of tungsten and flowing argon gas, and was emitted from a nozzle with a nozzle diameter of 0.1 to 2.0+++[Il]. The radiation was linearly radiated almost perpendicularly to the rolling direction of the steel plate, and the interval between the radiations was set at 5 to 15 mm. The larger the nozzle hole diameter, the larger the output current can flow, but IA
It was varied in the range of ~300A.

用いた鋼板の厚さは0.30mm、 0.27mm及び
0.23mmで、プラズマ炎放射前後の磁気特性を単板
磁気測定装置により測定した。
The thicknesses of the steel plates used were 0.30 mm, 0.27 mm, and 0.23 mm, and the magnetic properties before and after plasma flame radiation were measured using a single plate magnetometer.

第1図に鉄損(ltL7zso)のプラズマ炎放射前後
′の差を、BNI及び平均粒径に対して示した。○印は
プラズマ炎放射によりW 、 、□5oが0y03W/
kg以上向上したものであるが、プラズマ炎放射による
鉄損向上高は最大0.2511i/kgであった。
FIG. 1 shows the difference in iron loss (ltL7zso) before and after plasma flame irradiation with respect to BNI and average particle size. The ○ mark indicates that W, , □5o is 0y03W/ due to plasma flame radiation.
However, the maximum iron loss improvement due to plasma flame radiation was 0.2511i/kg.

図から明らかなように平均粒径が3mm以上でB1゜値
が1.857以上の鋼板においてプラズマ炎を放射する
ことにより鉄損の大幅な減少が認められた。
As is clear from the figure, a significant reduction in iron loss was observed by irradiating plasma flame on steel plates with an average grain size of 3 mm or more and a B1° value of 1.857 or more.

以上の効果は平均粒径が3mm以上で81゜値が1、8
5T以上であれば、絶縁被膜の有無、鋼板の表面形状に
よらず認められた。
The above effects can be seen when the average particle size is 3 mm or more and the 81° value is 1 or 8.
If it was 5T or more, it was recognized regardless of the presence or absence of an insulating coating and the surface shape of the steel plate.

この発明に用いる方向性珪素鋼板は上記平均粒径、およ
びBlo値の条件を満たしていれば、その製造方法によ
らず用いることができるが、一般的には2次再結晶時の
インヒビターとして働(MnS。
The grain-oriented silicon steel sheet used in this invention can be used regardless of the manufacturing method as long as it satisfies the above average grain size and Blo value conditions, but generally it acts as an inhibitor during secondary recrystallization. (MnS.

MnSe、 AINなどを含む熱延鋼板に1回または中
間焼鈍を含む2回の冷間圧延を行って製品厚とし、その
後脱炭焼鈍を施した後2次再結晶のための最終仕上焼鈍
を行って、必要に応じてその後絶縁被膜を施して得られ
る。
A hot-rolled steel plate containing MnSe, AIN, etc. is cold rolled once or twice including intermediate annealing to achieve the product thickness, then subjected to decarburization annealing and final finish annealing for secondary recrystallization. Then, if necessary, an insulating coating can be applied afterwards.

通常仕上焼純情鋼板は仕上焼鈍時に生成するフォルステ
ライト被膜で覆われているが、プラズマ炎放射はこのフ
ォルステライト上からでもまたフォルステライトが無い
状態、さらには通常フォルステライト上に上塗りするリ
ン酸塩を主成分とするコーティング上から行っても良い
Normally, finish-burning pure steel sheets are covered with a forsterite film that is produced during finish annealing, but plasma flame radiation can be applied even from above this forsterite to a state in which there is no forsterite, and furthermore, the phosphate that is usually overcoated on the forsterite. It may also be applied over a coating containing as the main component.

またプラズマ放射後回コーティングしても良い。Further, coating may be performed after plasma irradiation.

プラズマ炎の放射は圧延方向とほぼ直角な方向に線状に
放射するのが望ましいが、この角度が45゜程度まで傾
いていてもかまわない。また直線状でなく点線状又は曲
線状でもよい。線状に放射する場合はその線間隔は2〜
30mm程度が望ましい。
It is desirable that the plasma flame be radiated linearly in a direction substantially perpendicular to the rolling direction, but this angle may be inclined up to about 45°. Moreover, the shape may be a dotted line or a curved line instead of a straight line. When radiating in a line, the line spacing is 2~
Approximately 30 mm is desirable.

プラズマ炎は非移行型で放射するのが容易でありノズル
穴径は2鮒φ以下が望ましい。
The plasma flame is non-transferable and easy to radiate, and the nozzle hole diameter is preferably 2 carp diameter or less.

プラズマ炎の放射は非移行型、移行型どちらでも良いが
非移行型の方が放射が容易である。プラズマ炎発生の為
の電圧、電流は特に規制はしないが安定してプラズマ炎
が発生すること及びノズルの寿命等を勘案して決める必
要がある。プラズマ発生のためのガスはAr、 N21
82等の不活性及び非酸化性ガスならびにこの等の混合
ガスが望ましいが酸化性ガスおよびこれらの混合でもか
まわない。
Plasma flame radiation can be either non-transfer type or transfer type, but the non-transfer type is easier to emit. The voltage and current for generating plasma flame are not particularly regulated, but must be determined taking into consideration the stable generation of plasma flame and the lifespan of the nozzle. Gas for plasma generation is Ar, N21
Inert and non-oxidizing gases such as 82 and mixtures thereof are preferred, but oxidizing gases and mixtures thereof may also be used.

(作 用) この発明により鉄損が減少する理由はプラズマ炎を放射
した部分が磁気的に硬質になり磁区を細分化し渦電流損
を減少させるためと推察される。
(Function) The reason why iron loss is reduced by this invention is presumed to be that the part where the plasma flame is radiated becomes magnetically hard, subdividing the magnetic domain and reducing eddy current loss.

(実施例) 表1に示す平均粒径とB+O値を持つ仕上焼鈍した0、
23n+m厚の方向性珪素鋼板に0.15mmφのノズ
ル穴径を持つプラズマトーチより鋼板にプラズマ炎を放
射した。ガスはアルゴンを用い、電圧は30Vで電流は
7Aとした。
(Example) Finish annealed 0 with the average grain size and B+O value shown in Table 1,
A plasma flame was radiated onto a grain-oriented silicon steel plate having a thickness of 23n+m from a plasma torch having a nozzle hole diameter of 0.15mmφ. Argon was used as the gas, the voltage was 30V, and the current was 7A.

放射は鋼板の圧延方向と直角な方向に線状に放射し放射
間隔は8.5mmでトーチの走査速度は200mm/s
とした。放射前後の鉄損W+7/Soを表1に示したよ
うに、この発明に従う適合例では著しい鉄損の減少がみ
られた。
The radiation is emitted linearly in the direction perpendicular to the rolling direction of the steel plate, the radiation interval is 8.5 mm, and the scanning speed of the torch is 200 mm/s.
And so. As shown in Table 1, the iron loss W+7/So before and after radiation, a significant reduction in iron loss was observed in the adapted example according to the present invention.

(発明の効果) この発明により方向性珪素鋼板の鉄損を大幅に低減する
ことが可能になり、変圧器のような方向性珪素鋼板を鉄
芯に用いる電気機器のエネルギー損を大幅に低減できる
(Effects of the invention) This invention makes it possible to significantly reduce the iron loss of grain-oriented silicon steel sheets, and significantly reduces the energy loss of electrical equipment such as transformers that use grain-oriented silicon steel sheets for their iron cores. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラズマ炎放射の効果を、放射した鋼板の平均
粒径、8、。値に対して示したものである。 軒 〔 書 特許出願人 川崎製鉄株式会社  賓 改 ■ 第1図 o wt%0力rO,03酔穎ト以上向上は毛のx  
Wr’l/so力翫°゛子変力゛劣イビしf:モのt8
0      /、85     1QOf、Q5  
   2.00B2.値(T)
Figure 1 shows the effect of plasma flame radiation on the average grain size of the irradiated steel plate, 8. This is shown for the value. Eaves〔Patent applicant: Kawasaki Steel Co., Ltd.
Wr'l/so 力翫°゛子发力゛Inferior Ibishi f: Mo's t8
0 /, 85 1QOf, Q5
2.00B2. Value (T)

Claims (1)

【特許請求の範囲】[Claims] 1、平均2次再結晶粒径3mm以上、磁化力1000A
/mにおける磁束密度1.85T以上の方向性珪素鋼板
に、プラズマ炎を放射することを特徴とする方向性珪素
鋼板の鉄損低減方法。
1. Average secondary recrystallized grain size 3 mm or more, magnetizing power 1000 A
1. A method for reducing iron loss in a grain-oriented silicon steel sheet, the method comprising radiating a plasma flame onto the grain-oriented silicon steel sheet having a magnetic flux density of 1.85 T or higher at a temperature of 1.85 T or more.
JP60291841A 1985-10-24 1985-12-26 Method for decreasing iron loss of grain oriented silicon steel sheet Pending JPS62151511A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60291841A JPS62151511A (en) 1985-12-26 1985-12-26 Method for decreasing iron loss of grain oriented silicon steel sheet
US06/921,523 US4772338A (en) 1985-10-24 1986-10-21 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
CA000521084A CA1325372C (en) 1985-10-24 1986-10-22 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
DE8686308239T DE3678099D1 (en) 1985-10-24 1986-10-23 METHOD AND DEVICE FOR IMPROVING THE IRON LOSS OF SHEETS IN ELECTROMAGNETIC STEEL OR AMORPHOUS MATERIAL.
EP86308239A EP0220940B1 (en) 1985-10-24 1986-10-23 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
KR1019860008936A KR910000009B1 (en) 1985-10-24 1986-10-24 Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
US07/209,845 US4846448A (en) 1985-10-24 1988-06-22 Apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291841A JPS62151511A (en) 1985-12-26 1985-12-26 Method for decreasing iron loss of grain oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS62151511A true JPS62151511A (en) 1987-07-06

Family

ID=17774111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291841A Pending JPS62151511A (en) 1985-10-24 1985-12-26 Method for decreasing iron loss of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS62151511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208421A (en) * 1988-02-16 1989-08-22 Nippon Steel Corp Manufacture of unidirectional electrical sheet having high magnetic flux density and excellent iron loss
US5141573A (en) * 1988-04-23 1992-08-25 Nippon Steel Corporation High flux density grain-oriented electrical steel sheet having improved watt loss characteristic and process for preparation thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656605A (en) * 1979-10-13 1981-05-18 Inoue Japax Res Inc Treatment of magnetic material
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS59229419A (en) * 1983-06-11 1984-12-22 Nippon Steel Corp Improvement of iron loss characteristic of grain-oriented electrical steel sheet
JPS6089523A (en) * 1983-09-14 1985-05-20 ブリティッシュ、スティール、パブリック、リミテッド、カンパニー Oriented steel manufacture and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656605A (en) * 1979-10-13 1981-05-18 Inoue Japax Res Inc Treatment of magnetic material
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
JPS59229419A (en) * 1983-06-11 1984-12-22 Nippon Steel Corp Improvement of iron loss characteristic of grain-oriented electrical steel sheet
JPS6089523A (en) * 1983-09-14 1985-05-20 ブリティッシュ、スティール、パブリック、リミテッド、カンパニー Oriented steel manufacture and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208421A (en) * 1988-02-16 1989-08-22 Nippon Steel Corp Manufacture of unidirectional electrical sheet having high magnetic flux density and excellent iron loss
US5141573A (en) * 1988-04-23 1992-08-25 Nippon Steel Corporation High flux density grain-oriented electrical steel sheet having improved watt loss characteristic and process for preparation thereof

Similar Documents

Publication Publication Date Title
RU2721255C1 (en) Laser-scribed textured silicon steel, which is resistant to stress relieving annealing, and method of its manufacturing
EP0219611B1 (en) Method for producing a grain-oriented electrical steel sheet
JP5158285B2 (en) Oriented electrical steel sheet
EP0087587B1 (en) An electromagnetic steel sheet treated by laser-beam irradiation
US11638971B2 (en) Grain-oriented silicon steel with low core loss and manufacturing method therefore
JP5471839B2 (en) Method for producing grain-oriented electrical steel sheet
KR930001948B1 (en) Ultra-rapid annealing of nonoriented electrical steel
JPH0772300B2 (en) Method for manufacturing low iron loss grain oriented silicon steel sheet
JPS62151511A (en) Method for decreasing iron loss of grain oriented silicon steel sheet
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
US4623406A (en) Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
Ushigami et al. Development of low-loss grain-oriented silicon steel
JPH0240724B2 (en)
JP3174451B2 (en) Method for producing low iron loss oriented silicon steel sheet and plasma generator
JPS62151517A (en) Improvement of iron loss of grain oriented silicon steel sheet
KR100336851B1 (en) Method for manufacturing high magnetic density electric steel sheet with low iron loss
JPS63262421A (en) Method for reducing iron loss in grain-oriented silicon steel sheet
KR20200076503A (en) Grain oriented electrical steel sheet and method for manufacturing the same
WO2020130641A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JPS62151518A (en) Method for decreasing iron loss of grain oriented silicon steel sheet
KR102133910B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JPS62151516A (en) Improvement of iron loss of grain oriented silicon steel sheet
KR20030053795A (en) Method for Magnetic annealing high permeability grain oriented electrical steel with low magnetostriction
JPH03130321A (en) Production of wound core reduced in core loss
JPS5850297B2 (en) Electrical steel sheet with excellent magnetic properties