JPH0240724B2 - - Google Patents

Info

Publication number
JPH0240724B2
JPH0240724B2 JP57024498A JP2449882A JPH0240724B2 JP H0240724 B2 JPH0240724 B2 JP H0240724B2 JP 57024498 A JP57024498 A JP 57024498A JP 2449882 A JP2449882 A JP 2449882A JP H0240724 B2 JPH0240724 B2 JP H0240724B2
Authority
JP
Japan
Prior art keywords
grain
boundaries
loss
iron loss
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57024498A
Other languages
Japanese (ja)
Other versions
JPS58144424A (en
Inventor
Hiroshi Shimanaka
Isao Ito
Bunjiro Fukuda
Keiji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2449882A priority Critical patent/JPS58144424A/en
Publication of JPS58144424A publication Critical patent/JPS58144424A/en
Publication of JPH0240724B2 publication Critical patent/JPH0240724B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気的性質、特に低鉄損方向性電磁
鋼板の製造方法に関するものである。 方向性電磁鋼板は、いわゆるゴス方位と呼ばれ
る(110)<001>結晶集合組織を持つ鋼板であつ
て、圧延方向に磁化容易軸<001>が揃つており、
その方向の磁気特性が優れている。この特徴を生
かして鋼板は変圧器やターボ発電機等の鉄心とし
て用いられている。鋼板の磁気特性として特に重
要なことは、鉄心として用いられた時のエネルギ
ー損失すなわち鉄損が低いことである。昨今のエ
ネルギー事情から特に鉄損の低い鋼板が要求され
ている。 方向性珪素鋼板の鉄損は二つの部分から構成さ
れている。一つはヒステリシス損と呼ばれるもの
で結晶方位の揃い具合が良い程、またSi量が多い
程この損失は減少する。近年の冶金学的手法によ
り結晶方位の揃い具合は、ほぼ単結晶に近い程ま
でに向上しており、またSi量も冷間圧延できる限
度近くまで増やされている。このようにヒステリ
シス損を下げる手法はほぼ限度に近づいている。
鉄損の他の構成部分としては渦電流損があげられ
る。電磁鋼板のような強磁性体はその内部が磁区
と呼ばれる磁石の集まりからできており、磁区と
磁区との境界を磁壁という。鋼板が磁化する際に
はこの磁壁が動くことにより磁化されるが磁壁が
動く際にはそのまわりに渦電流が流れいわゆるジ
ユール損失を生じる。この損失は渦電流損失と呼
ばれている。 渦電流損失を減少させる方法としては、板厚を
薄くすることあるいは比抵抗を上昇させる手段が
先ず考えられる。しかし板厚は規格によつて決め
られており、また比抵抗を上昇させるためにSi量
を増加させることは上述のように冷間圧延可能な
限度の限界に近くなり、従つてこれらの手段によ
つて渦電流損を減少させることは実際上不可能に
近い。 渦電流損を減少させる他の方法として、方向性
電磁鋼板の磁壁の大多数を占める180゜磁壁の間隔
を狭め磁壁の移動速度を減少させ渦電流損を減少
させる手段が考えられる。その一つの方法として
鋼板の圧延方向に引張応力を加える方法があるが
ある程度の効果はあるものの磁束密度1.7T、周
波数50Hzでの鉄損W17/50で1.00W/Kg以下の鋼
板を造ることは不可能であつた。 本発明は、従来の方向性電磁鋼板の鉄損値より
もさらに低鉄損の方向性電磁鋼板の製造方法を提
供することを目的とするものであり、特許請求の
範囲記載の方法、すなわち仕上焼鈍済みの方向性
電磁鋼板の二次再結晶粒の粒径を検出し、その平
均粒径が3mm以上の鋼板に擬結晶粒界を導入する
ことによる低鉄損方向性電磁鋼板の製造方法を提
供することによつて前記目的を達成することがで
きる。 次に本発明を詳細に説明する。 本発明者らは、まず前記180゜磁壁の間隔が何に
よつて決まるかを調査した結果、それはほとんど
二次再結晶粒の大きさ、すなわち二次再結晶粒径
(以下単に粒径と称す)によつて決まることを新
規に知見した。 しかしながら冶金学的に粒径を小さくすると結
晶方位の揃いが悪くなることが多く、大きな鉄損
の減少が見られなかつた。更に検討を加えた結
果、平均粒径(結晶粒を円として近似した場合の
平均の直径)3mm以上の仕上焼鈍後の鋼板に擬結
晶粒界を導入することにより結晶の方位の揃いを
悪くすることなく鉄損を大巾に低下できることを
新たに見いだし本発明に想到した。ここでいう擬
結晶粒界とは、二次再結晶粒内に人工的に生じさ
せた磁気的に硬質な微少領域で磁気的に結晶粒界
と同一の働きをするものである。 第1図に後に述べる実施例に示した方法により
導入した擬結晶粒界の効果を示す。本発明の大き
な特徴の一つは、この擬結晶粒界の効果が平均粒
径3mmより小さい鋼板では全く見られずむしろ鉄
損を劣化させるのに対して、平均粒径3mm以上の
鋼板では鉄損が著しく向上するという新たな知見
によるものである。擬結晶粒界は電子ビーム加工
によつて二次再結晶粒内に線状、鎖線状、点状あ
るいは曲線状に結晶格子の歪んだ領域を生じさせ
ることにより導入される。この線の巾及び点の直
径は特に限定はしないが0.1μm〜2mm程度の範囲
内が好ましい。この粒界の導入場所は二次再結晶
粒を圧延方向に等分するような場所が望ましいが
1〜50mmの間隔で等間隔で入れてもかまわない。 擬結晶粒界導入の際上述のような加工を行う
が、この加工時の加工のエネルギーによつて擬結
晶粒界の効果が左右されることが判明した。すな
わち加工のエネルギーに対して種々検討した結
果、擬結晶粒界の効果は、加工のエネルギー密度
(単位面積当りのエネルギー)に依存するのでは
なく加工のパワー密度(単位時間、単位面積当り
のエネルギー)に依存しており、パワー密度1.0
×105W/cm2以下での加工では擬結晶粒界の効果
が出ないばかりか時として鋼板の鉄損を劣化させ
ることが明らかとなつた。その一例を第2図に示
す。これは仕上焼鈍後の鋼板に種々のパワー密度
の電子ビームを照射して擬結晶粒界を導入したも
のであるが、パワー密度1.0×105W/cm2以下では
効果が無いか劣化しており、パワー密度1.0×
105W/cm2以上で平均粒径3mm以上の鋼板では明
らかな鉄損の向上が認められる。 以上述べた擬結晶粒界の効果は平均粒径3mm以
上の仕上焼鈍後、すなわち二次再結晶完了後の鋼
板であれば絶縁被膜の有無、鋼板の表面形状によ
らず認められた。 擬結晶粒界の導入方法としては、電子ビーム加
工法を用い、そのパワー密度が1.0×105watt/cm2
以上であれば擬結晶粒界を導入でき、平均粒径3
mm以上の鋼板では大巾な鉄損の減少が認められ
た。 次に本発明を実施例について説明する。 実施例 1 平均粒径の異なる5種類の仕上焼鈍後の方向性
電磁鋼板にパワー密度5.6×106W/cm2の電子ビー
ムを用いて擬結晶粒界を導入した。擬結晶粒界の
方向は圧延方向に垂直方向であり均一に5mm間隔
で導入した。擬結晶粒界の巾は約0.2mmであつた。
擬結晶粒界導入前後の磁場1000A/mにおける磁
束密度、B10と磁束密度1.7T、周波数50Hzにおけ
る鉄損W17/50を第1表に示す。平均二次粒径が
3mmより小さい鋼板では鉄損、磁束密度共劣化す
るのに較べ二次粒径3mm以上の鋼板では磁束密度
は劣化せず鉄損の大巾向上が認められた。
The present invention relates to magnetic properties, particularly to a method of manufacturing a grain-oriented electrical steel sheet with low core loss. A grain-oriented electrical steel sheet is a steel sheet that has a (110) <001> crystal texture called the Goss orientation, and the axis of easy magnetization <001> is aligned in the rolling direction.
It has excellent magnetic properties in that direction. Taking advantage of this feature, steel plates are used as cores for transformers, turbo generators, etc. A particularly important magnetic property of steel sheets is that they have low energy loss, ie, iron loss, when used as iron cores. Due to the current energy situation, steel plates with particularly low iron loss are required. The iron loss of grain-oriented silicon steel plate consists of two parts. One is called hysteresis loss, and this loss decreases as the crystal orientation becomes more aligned and the amount of Si increases. Recent metallurgical techniques have improved the alignment of crystal orientation to the point where it is almost like a single crystal, and the amount of Si has been increased to near the limit that can be cold rolled. This method of reducing hysteresis loss is almost reaching its limit.
Another component of iron loss is eddy current loss. The interior of a ferromagnetic material such as an electrical steel sheet is made up of a collection of magnets called magnetic domains, and the boundaries between magnetic domains are called domain walls. When a steel plate is magnetized, it is magnetized by the movement of this domain wall, but when the domain wall moves, eddy currents flow around it, causing so-called Joule loss. This loss is called eddy current loss. As a method of reducing eddy current loss, first of all, methods to reduce the plate thickness or to increase the specific resistance can be considered. However, the plate thickness is determined by standards, and increasing the amount of Si in order to increase the resistivity approaches the limit of what can be cold rolled as described above, so these methods are not suitable. Therefore, it is practically impossible to reduce eddy current loss. Another possible method for reducing eddy current loss is to narrow the interval between 180° domain walls, which account for the majority of the domain walls of grain-oriented electrical steel sheets, to reduce the moving speed of the domain walls, thereby reducing eddy current loss. One method is to apply tensile stress in the rolling direction of the steel plate, but although it is somewhat effective, it is difficult to make a steel plate with a magnetic flux density of 1.7T and an iron loss of W17/50 at a frequency of 50Hz, which is less than 1.00W/Kg. It was impossible. An object of the present invention is to provide a method for producing grain-oriented electrical steel sheets having an iron loss lower than that of conventional grain-oriented electrical steel sheets. A method for manufacturing grain-oriented electrical steel sheets with low core loss by detecting the grain size of secondary recrystallized grains in annealed grain-oriented electrical steel sheets and introducing pseudograin boundaries into steel sheets whose average grain size is 3 mm or more. The above objective can be achieved by providing the following. Next, the present invention will be explained in detail. The present inventors first investigated what determines the spacing between the 180° domain walls, and found that it is mostly the size of the secondary recrystallized grains, that is, the secondary recrystallized grain size (hereinafter simply referred to as grain size). ) has been newly discovered. However, when the grain size is metallurgically reduced, the alignment of crystal orientation often deteriorates, and no significant reduction in iron loss has been observed. As a result of further investigation, it was found that by introducing pseudograin boundaries into steel sheets after final annealing with an average grain size (average diameter when crystal grains are approximated as circles) of 3 mm or more, the alignment of crystal orientations could be worsened. We have newly discovered that iron loss can be significantly reduced without any problems, and have come up with the present invention. The term "pseudograin boundary" as used herein refers to a small magnetically hard region artificially created within a secondary recrystallized grain, which functions magnetically in the same way as a grain boundary. FIG. 1 shows the effect of pseudograin boundaries introduced by the method shown in Examples described later. One of the major features of the present invention is that the effect of these pseudograin boundaries is not seen at all in steel sheets with an average grain size of less than 3 mm, and rather deteriorates iron loss, whereas in steel sheets with an average grain size of 3 mm or more, the This is due to new knowledge that losses are significantly improved. Pseudo-crystal grain boundaries are introduced by producing distorted regions of the crystal lattice in the form of lines, chain lines, dots, or curves within secondary recrystallized grains by electron beam processing. The width of this line and the diameter of the dots are not particularly limited, but are preferably in the range of about 0.1 μm to 2 mm. It is preferable that the grain boundaries be introduced at a place where the secondary recrystallized grains are equally divided in the rolling direction, but they may be introduced at equal intervals of 1 to 50 mm. When introducing pseudo-grain boundaries, the above-mentioned processing is performed, and it has been found that the effect of pseudo-grain boundaries is influenced by the processing energy during this processing. In other words, as a result of various studies on machining energy, we found that the effect of pseudograin boundaries does not depend on the machining energy density (energy per unit area), but rather on the machining power density (unit time, energy per unit area). ) and has a power density of 1.0
It has become clear that processing at less than ×10 5 W/cm 2 not only does not produce the effect of pseudograin boundaries, but also sometimes deteriorates the iron loss of the steel sheet. An example is shown in FIG. This method introduces pseudocrystalline boundaries by irradiating the steel plate with electron beams of various power densities after finish annealing, but if the power density is less than 1.0 × 10 5 W/cm 2 , it is not effective or deteriorates. power density 1.0×
A clear improvement in iron loss is observed in steel sheets with an average grain size of 3 mm or more at 10 5 W/cm 2 or more. The effect of the pseudograin boundaries described above was observed regardless of the presence or absence of an insulating coating and the surface shape of the steel sheet as long as the steel sheet had an average grain size of 3 mm or more after final annealing, that is, after completion of secondary recrystallization. As a method of introducing pseudo-crystal grain boundaries, an electron beam processing method is used, and its power density is 1.0×10 5 watt/cm 2
If it is above, pseudo-crystal grain boundaries can be introduced, and the average grain size is 3
A significant reduction in iron loss was observed for steel plates with a diameter of mm or larger. Next, the present invention will be explained with reference to examples. Example 1 Pseudo-crystal grain boundaries were introduced into five types of finish-annealed grain-oriented electrical steel sheets having different average grain sizes using an electron beam with a power density of 5.6×10 6 W/cm 2 . The direction of the pseudograin boundaries was perpendicular to the rolling direction, and they were introduced uniformly at 5 mm intervals. The width of the pseudograin boundary was approximately 0.2 mm.
Table 1 shows the magnetic flux density B 10 in a magnetic field of 1000 A/m before and after the introduction of pseudograin boundaries, and the iron loss W17/50 at a magnetic flux density of 1.7 T and a frequency of 50 Hz. In steel sheets with an average secondary grain size of less than 3 mm, iron loss and magnetic flux density both deteriorate, whereas in steel sheets with a secondary grain size of 3 mm or more, magnetic flux density did not deteriorate and iron loss was significantly improved.

【表】 実施例 2 二種類の平均粒径を持つ仕上焼鈍後の方向性電
磁鋼板にパワー密度4.8×104W/cm2及び2.3×
107W/cm2の電子ビームを照射し擬結晶粒界を導
入した。導入場所は実施例1と同じである。導入
前後の磁気特性を第2表に示す。
[Table] Example 2 A power density of 4.8×10 4 W/cm 2 and 2.3× was applied to grain-oriented electrical steel sheets after finish annealing with two types of average grain sizes
Pseudo-crystal grain boundaries were introduced by irradiation with an electron beam of 10 7 W/cm 2 . The introduction location is the same as in Example 1. Table 2 shows the magnetic properties before and after introduction.

【表】 平均粒径3mm以上、パワー密度1.0×105W/cm2
以上の場合に鉄損の大巾減少が認められた。 以上本発明によれば、仕上焼鈍済みの方向性電
磁鋼板に擬結晶粒界を導入することによつて結晶
の方位の揃いを悪くすることなく、前記鋼板の鉄
損を大巾に低下させることができる。
[Table] Average particle size 3mm or more, power density 1.0×10 5 W/cm 2
In the above cases, a significant decrease in iron loss was observed. As described above, according to the present invention, by introducing pseudo-grain boundaries into a grain-oriented electrical steel sheet that has been finish annealed, the iron loss of the steel sheet can be significantly reduced without impairing the alignment of the crystals. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は方向性電磁鋼板の仕上焼鈍後の平均二
次粒径と1.0×105watt/cm2以上のパワー密度を持
つ電子ビームを照射をして、鋼板に擬結晶粒界を
導入前後の鉄損差との関係を示す図、第2図は擬
結晶粒界導入のための加工パワー密度と導入前後
の鉄損差との関係を示す図である。
Figure 1 shows the average secondary grain size of a grain-oriented electrical steel sheet after final annealing and the results before and after introducing pseudo-crystal grain boundaries into the steel sheet by irradiating it with an electron beam with a power density of 1.0×10 5 watt/cm 2 or more. FIG. 2 is a diagram showing the relationship between the machining power density for introducing pseudo grain boundaries and the iron loss difference before and after the introduction.

Claims (1)

【特許請求の範囲】[Claims] 1 常法による方向性電磁鋼板製造の一連の工程
中、仕上焼鈍を施した後の鋼板の二次再結晶粒の
平均粒径が3mm以上である鋼板に対し、1.0×
105watt/cm2以上のパワー密度を持つ電子ビーム
を照射することにより、該鋼板に擬結晶粒界を導
入することを特徴とする低鉄損方向性電磁鋼板の
製造方法。
1. During a series of processes for producing grain-oriented electrical steel sheets using conventional methods, 1.0×
A method for producing a grain-oriented electrical steel sheet with low iron loss, characterized in that pseudo-grain boundaries are introduced into the steel sheet by irradiating the steel sheet with an electron beam having a power density of 10 5 watt/cm 2 or more.
JP2449882A 1982-02-19 1982-02-19 Manufacture of directional electromagnetic steel sheet having low iron loss Granted JPS58144424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2449882A JPS58144424A (en) 1982-02-19 1982-02-19 Manufacture of directional electromagnetic steel sheet having low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2449882A JPS58144424A (en) 1982-02-19 1982-02-19 Manufacture of directional electromagnetic steel sheet having low iron loss

Publications (2)

Publication Number Publication Date
JPS58144424A JPS58144424A (en) 1983-08-27
JPH0240724B2 true JPH0240724B2 (en) 1990-09-13

Family

ID=12139840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2449882A Granted JPS58144424A (en) 1982-02-19 1982-02-19 Manufacture of directional electromagnetic steel sheet having low iron loss

Country Status (1)

Country Link
JP (1) JPS58144424A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8324643D0 (en) * 1983-09-14 1983-10-19 British Steel Corp Production of grain orientated steel
US4772338A (en) * 1985-10-24 1988-09-20 Kawasaki Steel Corporation Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
JPS62151511A (en) * 1985-12-26 1987-07-06 Kawasaki Steel Corp Method for decreasing iron loss of grain oriented silicon steel sheet
JPH0672266B2 (en) * 1987-01-28 1994-09-14 川崎製鉄株式会社 Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
US4919733A (en) * 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
JPH0765106B2 (en) * 1988-10-26 1995-07-12 川崎製鉄株式会社 Method for manufacturing low iron loss unidirectional silicon steel sheet
JP2638180B2 (en) * 1988-10-26 1997-08-06 川崎製鉄株式会社 Low iron loss unidirectional silicon steel sheet and method for producing the same
KR101551782B1 (en) * 2011-12-22 2015-09-09 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet

Also Published As

Publication number Publication date
JPS58144424A (en) 1983-08-27

Similar Documents

Publication Publication Date Title
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
KR930001948B1 (en) Ultra-rapid annealing of nonoriented electrical steel
US4919733A (en) Method for refining magnetic domains of electrical steels to reduce core loss
Honma et al. Development of non-oriented and grain-oriented silicon steel
JPH0240724B2 (en)
US4915750A (en) Method for providing heat resistant domain refinement of electrical steels to reduce core loss
JP2004328986A (en) Stator core for motor and its manufacturing method
Nozawa et al. Magnetic properties and domain structures in domain refined grain‐oriented silicon steel
JPH11293340A (en) Low core loss oriented silicon steel sheet and its production
JP4192399B2 (en) Oriented electrical steel sheet and manufacturing method thereof
Ushigami et al. Development of low-loss grain-oriented silicon steel
US3144363A (en) Process for producing oriented silicon steel and the product thereof
Kim et al. Iron loss of grain size controlled very thin grain-oriented silicon steels
JP4585101B2 (en) Low noise transformer electrical steel sheet
EP4266331A1 (en) Grain-oriented electrical steel sheet, and magnetic domain refining method therefor
JP2004104929A (en) Magnetic steel plate for rotary equipment having split core form
JP4276618B2 (en) Low iron loss unidirectional electrical steel sheet
JP3127262B2 (en) {110} &lt;001&gt; Ultrathin electromagnetic steel strip with high degree of orientation integration and low iron loss
Kosuge et al. Microstructures and magnetic properties of heatproof domain-refined grain-oriented silicon steel sheets
Abe et al. Magnetic properties and domain structures in primary recrystallized thin-gauge Si-Fe with orientation near [110][001]
JPS5855211B2 (en) (h,k,o) Manufacturing method for unidirectional electrical steel sheet with crystals in [001] orientation and excellent iron loss
JPH021893B2 (en)
Ueno et al. The latest advance in very low core loss grain oriented silicon steels
JPS5850297B2 (en) Electrical steel sheet with excellent magnetic properties
KR840000179B1 (en) Method of a grain-oriented electromagnetic steel sheet with improved watt loss