JPH0765106B2 - Method for manufacturing low iron loss unidirectional silicon steel sheet - Google Patents

Method for manufacturing low iron loss unidirectional silicon steel sheet

Info

Publication number
JPH0765106B2
JPH0765106B2 JP63268316A JP26831688A JPH0765106B2 JP H0765106 B2 JPH0765106 B2 JP H0765106B2 JP 63268316 A JP63268316 A JP 63268316A JP 26831688 A JP26831688 A JP 26831688A JP H0765106 B2 JPH0765106 B2 JP H0765106B2
Authority
JP
Japan
Prior art keywords
steel sheet
silicon steel
iron loss
unidirectional silicon
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63268316A
Other languages
Japanese (ja)
Other versions
JPH02118022A (en
Inventor
征夫 井口
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP63268316A priority Critical patent/JPH0765106B2/en
Priority to US07/423,851 priority patent/US5146063A/en
Priority to DE89310893T priority patent/DE68909000T2/en
Priority to EP89310893A priority patent/EP0367467B1/en
Priority to CA002001213A priority patent/CA2001213C/en
Priority to KR1019890015458A priority patent/KR0134088B1/en
Publication of JPH02118022A publication Critical patent/JPH02118022A/en
Priority to US07/636,913 priority patent/US5223048A/en
Publication of JPH0765106B2 publication Critical patent/JPH0765106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一方向性けい素鋼板の製造方法に関し、と
くに仕上げ焼鈍後の鋼板表面にその圧延方向を横切る向
きにエレクトロンビーム(EB)照射を施す際のEBの照射
方法に工夫を加えることによって、効果的な磁区の細分
化ひいては鉄損特性の有利な改善を図ろうとするもので
ある。
Description: TECHNICAL FIELD The present invention relates to a method for producing a unidirectional silicon steel sheet, and particularly to a surface of a steel sheet after finish annealing, which is irradiated with an electron beam (EB) in a direction transverse to the rolling direction. The purpose of this study is to improve the EB irradiation method during the treatment to effectively subdivide the magnetic domains and thus to improve the iron loss characteristics.

一方向性けい素鋼板は、一般に熱間圧延と冷間圧延を経
た冷延薄板の2次再結晶粒を、(110)〔001〕方位(す
なわちゴス方位)に高度に集積させて所望の磁気的性質
を具備させ、主に変圧器その他の電気機器類の鉄心に使
用され、ここに磁束密度(B10値で代表される)が高く
しかも鉄損(W17/50値で代表される)の低いことが要
求されるが、これまでの研究努力により当今は、板厚0.
3mmでB10:1.90T以上、W17/50:1.05W/kg以下また、板厚
0.23mmでは、B10:1.89T以上、W17/50:0.90W/kg以下の
ような低鉄損一方向性けい素鋼板も製造され得るように
なった。
In a unidirectional silicon steel sheet, generally, secondary recrystallized grains of a cold-rolled thin sheet that has undergone hot rolling and cold rolling are highly integrated in the (110) [001] orientation (that is, Goss orientation) to obtain a desired magnetic field. It is used for the iron core of transformers and other electric devices, and has a high magnetic flux density (represented by B 10 value) and iron loss (represented by W 17/50 value). However, due to research efforts to date, the plate thickness is now 0.
3 mm B 10 : 1.90 T or more, W 17/50 : 1.05 W / kg or less
In 0.23mm, B 10: 1.89T or more, W 17/50: 0.90W / kg low iron loss grain-oriented silicon steel sheet as described below also began to be manufactured.

しかるに省エネルギーの見地で電力損失のより厳しい低
減要求は、とくに欧米にて鉄損の減少分を換価して変圧
器価格に上積みする、ロスエバリュエーション(鉄損評
価)制度にまで発展し、それも定着するに至っている。
However, from the viewpoint of energy saving, the stricter demand for reduction of electric power loss has developed into a loss evaluation system that replaces the reduced iron loss in the US and Europe and adds it to the transformer price. It has become established.

(従来の技術) 特開昭57−2252号、同57−53419号、同58−26405号及び
同58−26406号各公報には、仕上げ焼鈍後の一方向性け
い素鋼板の表面に、圧延方向とほぼ直角な向きにレーザ
照射を施すことによって局部的微小ひずみの導入による
磁区細分化をもって、鉄損の低減を図ることが開示され
ているが、この場合、いわゆるひずみ取り焼鈍を加えな
い使途では有効であっても、該焼鈍が施されたときはせ
っかく導入された局部微小ひずみが加熱保持中に解放さ
れ、磁区幅が拡大してレーザ照射による鉄損低減効果が
喪失してしまう不利がある。
(Prior Art) Japanese Unexamined Patent Publication Nos. 57-2252, 57-53419, 58-26405, and 58-26406 disclose that the surface of a unidirectional silicon steel sheet after finish annealing is rolled. It is disclosed that the laser loss is applied in a direction substantially perpendicular to the direction to reduce the core loss by subdividing the magnetic domain by the introduction of local microstrain, but in this case, so-called strain relief annealing is not used. However, even if it is effective, there is a disadvantage that when the annealing is applied, the local microstrain introduced with great care is released during heating and holding, and the magnetic domain width is expanded and the iron loss reduction effect due to laser irradiation is lost. is there.

これに対して発明者らはさきに、上記のような高温処理
にも拘らず特性劣化を伴うことのない低鉄損一方向性け
い素鋼板の製造に成功した。
On the other hand, the present inventors have succeeded in producing a low iron loss unidirectional silicon steel sheet which does not cause characteristic deterioration despite the above high temperature treatment.

すなわち方向性けい素鋼板の常法に従う最終仕上げ焼鈍
を施してから、りん酸塩とコロイダルシリカを主成分と
する絶縁被膜を形成させたのち、あるいは前記最終仕上
げ焼鈍工程を経て鋼板の外面に生成した酸化物を除去し
た後、表裏両面に研磨処理を施して鏡面状態に仕上げ、
ついでCVD、イオンプレーティングまたはイオンインプ
ランテーションなどによりTi,Zr,V,Nb,Ta,Cr,Mo,W,Mn,C
o,Ni,Al,B及びSiの窒化物及び/又は炭化物ならびにAl,
Ni,Cu,W,Si及びZnの酸化物のうちから選んだ少なくとも
1種からなる極薄張力被膜を形成後、りん酸塩とコロイ
ダルシリカを主成分とする絶縁被膜を形成させたのち、
鋼板の圧延方向を横切る向きにエレクトロンビームを照
射することによって低鉄損を達成するものである。
That is, after the final finish annealing according to the usual method of grain-oriented silicon steel sheet, after forming an insulating coating containing phosphate and colloidal silica as a main component, or after the final finish annealing step, formed on the outer surface of the steel sheet. After removing the oxides, the front and back surfaces are polished to a mirror finish.
Then Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn, C by CVD, ion plating or ion implantation.
o, Ni, Al, B and Si nitrides and / or carbides and Al,
After forming an ultra-thin tension film consisting of at least one selected from Ni, Cu, W, Si and Zn oxides, after forming an insulating film containing phosphate and colloidal silica as main components,
A low iron loss is achieved by irradiating an electron beam in a direction crossing the rolling direction of the steel sheet.

(発明が解決しようとする課題) 通常、一方向性けい素鋼板表面上へのEB照射は、鋼板の
圧延方向に対し直角の向きに行うが、そのEB強度は、電
磁レンズの電流(フォーカス電流)が一定であることか
ら、鋼板の幅方向中央部で強く、両端部で弱くなる。
(Problems to be solved by the invention) Normally, EB irradiation on the surface of a unidirectional silicon steel sheet is performed in a direction perpendicular to the rolling direction of the steel sheet. ) Is constant, it is strong in the widthwise central part of the steel sheet and weak at both ends.

そのためEB走査による鋼板の磁区細分化効果が中央部と
両端部で異なり、その結果、鋼板板面の各位置で鉄損に
違いが生じ、中央部に較べて両端部における鉄損特性が
悪いところに問題を残していた。
Therefore, the effect of EB scanning on the magnetic domain subdivision of the steel sheet differs between the central part and both ends.As a result, the iron loss differs at each position on the steel plate surface, and the iron loss characteristics at both ends are worse than at the central part. Was leaving a problem with.

この発明は、上記の問題を有利に解決するもので、仕上
げ焼鈍済みの一方向性けい素鋼板の表面にEBを照射して
鉄損の低減を図るに際し、鋼板の板面各位置における鉄
損の均一低減化を導く好適なEB照射方法を与えることを
目的とする。
This invention advantageously solves the above problems, and when irradiating the surface of the finish-annealed unidirectional silicon steel sheet with EB to reduce the iron loss, the iron loss at each position of the plate surface of the steel sheet is reduced. It is an object of the present invention to provide a suitable EB irradiation method that leads to a uniform reduction of EB.

(課題を解決するための手段) すなわちこの発明は、仕上げ焼鈍済みの一方向性けい素
鋼板の表面に、その圧延方向を横切る向きにエレクトロ
ンビームを照射して鉄損の低い一方向性けい素鋼板を製
造するに当り、 エレクトロンビームの走査に伴う鋼板表面までの距離の
変化に応じ、該ビームの焦点距離を、電磁レンズの電流
と偏向コイルの電流とのダイナミック制御により適正距
離に修正してエレクトロンビームの照射を行うことを特
徴とする低鉄損一方向性けい素鋼板の製造方法である。
(Means for Solving the Problems) That is, the present invention is directed to unidirectional silicon having a low iron loss by irradiating the surface of a finish-annealed unidirectional silicon steel sheet with an electron beam in a direction transverse to the rolling direction. When manufacturing a steel sheet, the focal length of the beam is corrected to an appropriate distance by dynamic control of the current of the electromagnetic lens and the current of the deflection coil according to the change in the distance to the surface of the steel sheet due to the scanning of the electron beam. A method for manufacturing a low iron loss unidirectional silicon steel sheet, which comprises irradiating an electron beam.

以下、この発明を具体的に説明する。The present invention will be specifically described below.

第1図に、この発明の実施に用いて好適なEB照射装置を
模式で示し、図中番号1は高圧インシュレータ、2はEB
ガン、3は陽極、4はコラム弁、5は電極レンズ、6は
偏向コイル、そして7がEBであり、8は一方向性けい素
鋼板、9,10は排気口である。
FIG. 1 schematically shows an EB irradiation apparatus suitable for carrying out the present invention. In the figure, reference numeral 1 is a high pressure insulator, and 2 is an EB.
Gun 3 is an anode, 4 is a column valve, 5 is an electrode lens, 6 is a deflection coil, 7 is an EB, 8 is a unidirectional silicon steel plate, and 9 and 10 are exhaust ports.

通常、鋼板表面上へのEB照射は、第2図aに示すように
圧延方向に対し直角の向きに行うが、その際EB強度は第
2図bに示すように、電磁レンズの電流(フォーカス電
流)が一定であることから、鋼板の幅方向中央部(7−
2′)で強く、両端部(7−1′,7−3′)で弱くな
り、このためEB走査による鋼板の磁区細分化効果が板面
各位置で異なるようになることは前述したとおりであ
る。
Normally, the EB irradiation on the surface of the steel sheet is performed in a direction perpendicular to the rolling direction as shown in Fig. 2a. At that time, the EB intensity is as shown in Fig. 2b. Since the electric current) is constant, the widthwise central portion (7-
It is strong at 2 ') and weak at both ends (7-1', 7-3 '), so that the magnetic domain subdivision effect of the steel plate by EB scanning becomes different at each position on the plate surface as described above. is there.

そこでこの発明では、上記の問題を解消するために、EB
の走査に伴う焦点位置の変化に応じてEBの焦点距離を補
正するわけであるが、かかる焦点距離の補正は、第1図
に示した電磁レンズ5の電流と偏向コイル6の電流との
ダイナミック制御を行うことによって的確に行うことが
でき、かくして第2図cに示すように鋼板の中央部と両
端部とを同じEB強度で走査することができるわけであ
る。以下、かような処理をダイナミックフォーカスィン
グと呼ぶ。
Therefore, in the present invention, in order to solve the above problems, EB
The focal length of the EB is corrected according to the change of the focal position due to the scanning of 1. The focal length is corrected by the dynamics of the current of the electromagnetic lens 5 and the current of the deflection coil 6 shown in FIG. This can be done accurately by controlling, and thus the central portion and both end portions of the steel sheet can be scanned with the same EB intensity as shown in FIG. 2c. Hereinafter, such processing is called dynamic focusing.

次に、この発明の基礎となって具体的実験結果について
説明する。
Next, specific experimental results will be described as the basis of the present invention.

C:0.043wt%(以下単に%で示す)、Si:3.39%、Mn:0.0
66%,Se:0.020%,Sb:0.023%およびMo:0.015%を含有す
るけい素鋼板用スラブを、1360℃で4時間の加熱処理
後、熱間圧延によって厚さ:2.0mmの熱延板とした。つい
で950℃で3分間の均一化焼鈍後、950℃、3分間の均一
化焼鈍後、950℃、3分間の中間焼鈍をはさむ2回の冷
間圧延を施して0.20mm厚の最終冷延板とした。
C: 0.043wt% (simply indicated by% below), Si: 3.39%, Mn: 0.0
A slab for silicon steel sheet containing 66%, Se: 0.020%, Sb: 0.023% and Mo: 0.015% was heat-treated at 1360 ° C for 4 hours and then hot-rolled to a thickness of 2.0 mm. And Then, after the uniform annealing at 950 ° C for 3 minutes, the uniform annealing at 950 ° C for 3 minutes, and the intermediate cold annealing at 950 ° C for 3 minutes. And

その後、820℃の湿水素中で脱炭・1次再結晶焼鈍を施
したのち、鋼板表面にMgOを主成分とする焼鈍分離剤を
塗布してから、850℃、50時間の2次再結晶焼鈍、つい
で乾水素中で1200℃、5時間の純化焼鈍を施した。
After that, decarburization and primary recrystallization annealing are performed in wet hydrogen at 820 ° C, and then an annealing separator containing MgO as a main component is applied to the steel sheet surface, and then secondary recrystallization at 850 ° C for 50 hours. Annealing was carried out, followed by purification annealing in dry hydrogen at 1200 ° C. for 5 hours.

その後、鋼板表面に、りん酸塩とコロイダルシリカを主
成分とする絶縁コーティング被膜を被成したのち、通常
のEB照射(a−1)およびこの発明に従うダイナミック
フォーカスィングによるEB照射(a−2)を施した。な
お比較のためEB照射を施さない鋼板も用意した。
After that, an insulating coating film containing phosphate and colloidal silica as a main component is formed on the surface of the steel sheet, and then ordinary EB irradiation (a-1) and EB irradiation by dynamic focusing according to the present invention (a-2). Was applied. For comparison, a steel plate that was not irradiated with EB was also prepared.

また上記の1次再結晶焼鈍板の表面に、Al2O3を主成分
とする焼鈍分離剤を塗布してから、上記と同じ条件で2
次再結晶焼鈍ついで純化焼鈍を施したのち、その表面を
軽く酸洗し、ついで電解研磨により鋼板表面を中心線平
均粗さRaで0.1μmの鏡面に仕上げたのち、イオンプレ
ーティング装置(HCD法で加速電圧:70V,加速電流:1000
A,真空度:7×10-4Torr)で1.0μm厚のTiNの薄膜を形成
し、しかるのち上記と同様の通常のEB照射(b−1)お
よびこの発明に従うEB照射(b−2)を行い、その後に
りん酸塩とコロイダルシリカを主成分とする絶縁被膜を
被成した。
In addition, after applying an annealing separator containing Al 2 O 3 as a main component to the surface of the above-mentioned primary recrystallization annealed plate, 2
Subsequent recrystallization annealing, followed by purification annealing, lightly pickled the surface, and then electrolytically polishing the surface of the steel plate to a mirror surface of 0.1 μm with a center line average roughness Ra, followed by ion plating (HCD method). And acceleration voltage: 70V, acceleration current: 1000
A, TiN thin film with a thickness of 1.0 μm was formed at a vacuum degree of 7 × 10 −4 Torr), and then the same ordinary EB irradiation (b-1) and the EB irradiation according to the present invention (b-2) as described above were formed. After that, an insulating coating mainly composed of phosphate and colloidal silica was formed.

さらにTiNの薄膜を被成した試料の一部については、そ
の表面にりん酸塩とコロイダルシリカを主成分とする絶
縁被膜を被成したのち、通常のEB照射(b−3)とこの
発明に従うEB照射(b−4)を施した。
Furthermore, for a part of the sample coated with a thin film of TiN, an insulating coating containing phosphate and colloidal silica as a main component was coated on the surface of the sample, followed by normal EB irradiation (b-3) and according to the present invention. EB irradiation (b-4) was performed.

なお比較のためEB照射を施さない絶縁被膜付き鋼板も用
意した。
For comparison, a steel sheet with an insulating coating that did not undergo EB irradiation was also prepared.

かくして得られた各製品板の磁気特性について調べた結
果を表1に示す。
Table 1 shows the results of examining the magnetic properties of the product plates thus obtained.

同表より明らかなように、通常のEB照射を施したものに
較べ、この発明に従いダイナミックフォーカスィングに
よるEB照射を施した場合はいずれも鉄損特性が向上して
いる。
As is clear from the table, when the EB irradiation by the dynamic focusing according to the present invention is performed, the iron loss characteristics are improved as compared with the case where the normal EB irradiation is performed.

(作用) このように一方向性けい素鋼板の仕上げ焼鈍後、絶縁コ
ーティング処理を施した一方向性けい素鋼板にEB照射を
施す際、あるいは仕上げ焼鈍板を鏡面仕上げし、その上
にTiNの被膜をコーティング処理し、ついで絶縁コーテ
ィング前後にEB照射を施す際に、板幅方向に対しダイナ
ミックフォーカスィングを採用することによって鉄損の
低減を図ることができる。
(Function) After the finish annealing of the unidirectional silicon steel sheet as described above, the EB irradiation is applied to the unidirectional silicon steel sheet with the insulating coating treatment, or the finish annealed plate is mirror-finished and TiN Iron loss can be reduced by adopting dynamic focusing in the plate width direction when coating the film and then performing EB irradiation before and after the insulating coating.

この理由は、第2図(b),(c)に模式的に示したと
ころから明らかなように、EBの走査による焦点位置の変
化に応じてビームの焦点距離を補正することにより、鋼
板の板幅方向にわたって一定の照射痕を与えることがで
きるようにしたからであり、これにより、鋼板全面にわ
たって効果的に磁区の細分化を図ることができ、その結
果、低鉄損の鋼板が得られるのである。
The reason for this is, as is clear from the schematic illustrations in FIGS. 2B and 2C, that the focal length of the beam is corrected by correcting the focal length of the beam in accordance with the change in the focal position due to the scanning of the EB. This is because it is possible to give a constant irradiation mark in the width direction of the plate, and by this, it is possible to effectively subdivide the magnetic domains over the entire surface of the steel plate, and as a result, a steel plate with low iron loss is obtained. Of.

(実施例) C:0.040%,Si:3.45%,Mo:0.015%,Se:0.025%およ
びSb:0.030% C:0.057%,Si:3.42%,solAl:0.026%,S:0.029%,C
u:0.1%およびSn:0.05% を含有するけい素鋼熱延板(厚み:2.2mm)をそれぞれ、
1050℃、2分間の中間焼鈍を挟む2回の冷間圧延によっ
て0.20mm厚の最終冷延板としてから、840℃の湿水素中
で脱炭・1次再結晶焼鈍を施したのち、 MgOを主成分とする焼鈍分離剤 Al2O3:60%,MgO:35%,ZrO2:3%,TiO2:2%の組成に
なる焼鈍分離剤 を塗布した。
(Example) C: 0.040%, Si: 3.45%, Mo: 0.015%, Se: 0.025% and Sb: 0.030% C: 0.057%, Si: 3.42%, solAl: 0.026%, S: 0.029%, C
Silicon steel hot-rolled sheet (thickness: 2.2 mm) containing u: 0.1% and Sn: 0.05%, respectively,
After the final cold-rolled sheet with a thickness of 0.20 mm was obtained by cold rolling twice with intermediate annealing at 1050 ° C for 2 minutes, decarburization and primary recrystallization annealing were performed in wet hydrogen at 840 ° C, and then MgO was added. Annealing Separator as Main Component An annealing separator having a composition of Al 2 O 3 : 60%, MgO: 35%, ZrO 2 : 3%, TiO 2 : 2% was applied.

ついでの焼鈍分離剤を用いた鋼板のうちは、850
℃、50時間の2次再結晶焼鈍後、乾H2中で1200℃、5時
間の純化焼鈍を施し、一方は、850℃から1050℃まで1
0℃/hの速度で昇温して2次再結晶させたのち、乾H2
で1220℃、8時間の純化焼鈍を施した。
Among the steel sheets with the subsequent annealing separator, 850
After secondary recrystallization annealing at 50 ° C for 50 hours, 1200 ° C in dry H 2 for 5 hours, and annealing for 5 hours.
After the temperature was raised at a rate of 0 ° C./h to carry out secondary recrystallization, purification annealing was carried out in dry H 2 at 1220 ° C. for 8 hours.

その後、これらの鋼板についてはその表面にりん酸塩と
コロイダルシリカを主成分とする絶縁被膜を被成した。
After that, an insulating coating containing phosphate and colloidal silica as a main component was formed on the surface of each of these steel sheets.

またbの焼鈍分離剤を用いた鋼板はいずれも、表面酸化
物を除去したのち、電解研磨によって鏡面状態に仕上
げ、ついでイオンプレーティング装置によって1.0μm
厚のTiNの張力被膜を被成したのち、上記と同様の絶縁
被膜を被成した。
In addition, after removing the surface oxide, all steel sheets using the annealing separating agent of b were finished to a mirror surface state by electrolytic polishing and then 1.0 μm by an ion plating device.
After depositing a thick TiN tension coating, an insulating coating similar to that described above was applied.

かくして得られた各けい素鋼板の表面に、加速電圧:70k
V,試料電流:10mA,走査間隔:200μmの条件下に、圧延方
向と直角の向きに8mm間隔でダイナミックフォーカスィ
ングによるEB照射を施したのち磁気特性(板幅方向の平
均値)について調べた結果を表2に示す。
On the surface of each silicon steel sheet thus obtained, acceleration voltage: 70k
V, sample current: 10 mA, scanning interval: 200 μm, EB irradiation by dynamic focusing at a direction perpendicular to the rolling direction at intervals of 8 mm, and then magnetic properties (average value in the width direction) were examined. Is shown in Table 2.

(発明の効果) かくしてこの発明によれば、EB照射による一方向性けい
素鋼板の鉄損改善効果を、従来に比べ大幅に向上させる
ことができる。
(Effect of the Invention) Thus, according to the present invention, the effect of improving the iron loss of the grain-oriented silicon steel sheet by EB irradiation can be significantly improved as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の実施に用いて好適なEB照射装置の
模式図、 第2図aは、EBの照射痕跡を示した図、同図b,cはそれ
ぞれ、従来法およびこの発明法に従ってEBを走査したと
きの板幅方向におけるEB強度を示した図である。 1……高圧インシュレータ 2……EBガン、3……陽極 4……コラム弁、5……電子レンズ 6……偏向コイル、7……EB 8……けい素鋼板、9,10……排気口
FIG. 1 is a schematic diagram of an EB irradiation apparatus suitable for carrying out the present invention, FIG. 2a is a diagram showing an EB irradiation trace, and FIGS. 1b and 1c are the conventional method and the method of the present invention, respectively. FIG. 6 is a diagram showing EB intensity in the plate width direction when EB is scanned according to the above. 1 …… High pressure insulator 2 …… EB gun, 3 …… Anode 4 …… Column valve, 5 …… Electron lens 6 …… Deflecting coil, 7 …… EB 8 …… Silicon steel plate, 9,10 …… Exhaust port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】仕上げ焼鈍済みの一方向性けい素鋼板の表
面に、その圧延方向を横切る向きのエレクトロンビーム
を照射して鉄損の低い一方向性けい素鋼板を製造するに
当り、 エレクトロンビームの走査に伴う鋼板表面までの距離の
変化に応じ、該ビームの焦点距離を、電磁レンズの電流
と偏向コイルの電流とのダイナミック制御により適正距
離に修正してエレクトロンビームの照射を行うことを特
徴とする低鉄損一方向性けい素鋼板の製造方法。
1. A method for producing a unidirectional silicon steel sheet having a low iron loss by irradiating the surface of a finish-annealed unidirectional silicon steel sheet with an electron beam in a direction transverse to the rolling direction of the unidirectional silicon steel sheet. According to the change in the distance to the surface of the steel plate due to the scanning of, the focal length of the beam is corrected to an appropriate distance by the dynamic control of the current of the electromagnetic lens and the current of the deflection coil to irradiate the electron beam. And a method for producing a low iron loss unidirectional silicon steel sheet.
JP63268316A 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet Expired - Lifetime JPH0765106B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63268316A JPH0765106B2 (en) 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet
US07/423,851 US5146063A (en) 1988-10-26 1989-10-18 Low iron loss grain oriented silicon steel sheets and method of producing the same
DE89310893T DE68909000T2 (en) 1988-10-26 1989-10-23 Grain-oriented silicon steel sheets with low wattage losses and method for producing the same.
EP89310893A EP0367467B1 (en) 1988-10-26 1989-10-23 Low iron loss grain oriented silicon steel sheets and method of producing the same
CA002001213A CA2001213C (en) 1988-10-26 1989-10-23 Low iron loss grain oriented silicon steel sheets and method of producing the same
KR1019890015458A KR0134088B1 (en) 1988-10-26 1989-10-26 Low iron loss grain oriented silicon steel sheets & method of producing the same
US07/636,913 US5223048A (en) 1988-10-26 1991-01-02 Low iron loss grain oriented silicon steel sheets and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268316A JPH0765106B2 (en) 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH02118022A JPH02118022A (en) 1990-05-02
JPH0765106B2 true JPH0765106B2 (en) 1995-07-12

Family

ID=17456841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268316A Expired - Lifetime JPH0765106B2 (en) 1988-10-26 1988-10-26 Method for manufacturing low iron loss unidirectional silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0765106B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046716A1 (en) 2011-09-28 2013-04-04 Jfeスチール株式会社 Directional electromagnetic steel plate and manufacturing method therefor
WO2013094218A1 (en) 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
WO2013100200A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2013099281A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Grain-oriented electric steel sheet and method for manufacturing same
WO2013118512A1 (en) 2012-02-08 2013-08-15 Jfeスチール株式会社 Grain-oriented electrical steel plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL214717B1 (en) 1998-10-09 2013-09-30 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
KR100442099B1 (en) * 2000-05-12 2004-07-30 신닛뽄세이테쯔 카부시키카이샤 Low iron loss and low noise grain-oriented electrical steel sheet and a method for producing the same
JP5594302B2 (en) * 2012-02-08 2014-09-24 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6221999B2 (en) * 2014-08-22 2017-11-01 Jfeスチール株式会社 Electron beam irradiation apparatus and electron beam irradiation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144424A (en) * 1982-02-19 1983-08-27 Kawasaki Steel Corp Manufacture of directional electromagnetic steel sheet having low iron loss
US4468551A (en) * 1982-07-30 1984-08-28 Armco Inc. Laser treatment of electrical steel and optical scanning assembly therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046716A1 (en) 2011-09-28 2013-04-04 Jfeスチール株式会社 Directional electromagnetic steel plate and manufacturing method therefor
US10011886B2 (en) 2011-09-28 2018-07-03 Jfe Steel Corporation Grain-oriented electrical steel sheet and manufacturing method thereof
WO2013094218A1 (en) 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same
WO2013100200A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Oriented electromagnetic steel plate and manufacturing method therefor
WO2013099281A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Grain-oriented electric steel sheet and method for manufacturing same
US9984800B2 (en) 2011-12-28 2018-05-29 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
WO2013118512A1 (en) 2012-02-08 2013-08-15 Jfeスチール株式会社 Grain-oriented electrical steel plate
US9761361B2 (en) 2012-02-08 2017-09-12 Jfe Steel Corporation Grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH02118022A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0765106B2 (en) Method for manufacturing low iron loss unidirectional silicon steel sheet
KR0134088B1 (en) Low iron loss grain oriented silicon steel sheets & method of producing the same
JPH08222423A (en) Grain oriented silicon steel plate of low core loss and its manufacture
JP4331900B2 (en) Oriented electrical steel sheet and method and apparatus for manufacturing the same
JPS6335684B2 (en)
JP2638180B2 (en) Low iron loss unidirectional silicon steel sheet and method for producing the same
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JPH04362139A (en) Manufacture of low core loss grain-oriented electrical steel sheet excellent in flatness degree
JPH01298118A (en) Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH0619113B2 (en) Method for producing grain-oriented electrical steel sheet with extremely low iron loss
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH0327633B2 (en)
JPS6237367A (en) Iron loss decreasing device for grain oriented silicon steel sheet
JPS62290844A (en) Grain-oriented silicon steel sheet having very small iron loss
JPH04272166A (en) Manufacture of ultralow core loss grain-oriented silicon steel sheet
JPS6332850B2 (en)
JP3280898B2 (en) Ultra-low iron loss unidirectional silicon steel sheet
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPH0741861A (en) Production of grain-oriented silicon steel sheet
JPS6230302A (en) Manufacture of super-low iron loss unidirectional silicon steel plate
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPH04231415A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPS6324018A (en) Production of extra-low iron loss grain oriented silicon steel sheet