JPH01298118A - Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet - Google Patents

Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet

Info

Publication number
JPH01298118A
JPH01298118A JP12854088A JP12854088A JPH01298118A JP H01298118 A JPH01298118 A JP H01298118A JP 12854088 A JP12854088 A JP 12854088A JP 12854088 A JP12854088 A JP 12854088A JP H01298118 A JPH01298118 A JP H01298118A
Authority
JP
Japan
Prior art keywords
steel sheet
electron beam
iron loss
steel plate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12854088A
Other languages
Japanese (ja)
Inventor
Masao Iguchi
征夫 井口
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12854088A priority Critical patent/JPH01298118A/en
Publication of JPH01298118A publication Critical patent/JPH01298118A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Abstract

PURPOSE:To effectively reduce iron loss of a steel by curving the steel sheet as arc-state so as to become equal distance to an electron beam source to irradiate the electron beam on the surface of the steel sheet at uniform intensity at the time of improving the iron loss characteristic by irradiating the electron beam on the grain-oriented silicon steel sheet in a vacuum chamber. CONSTITUTION:The grain-oriented silicon steel sheet S is introduced in the vacuum treating chamber 2 and the electron beam 11 is scanned to irradiated to crossing direction to rolling direction of the steel sheet S to subdivided magnetic domain of the steel sheet and the iron loss characteristic is improved. In this case, by holding facing posture to sheet width direction of the steel sheet S to the irradiating source of the electron irradiating device 10 to the recessed shape along the arc centering the irradiating source with a steel sheet bending device 12, the center part and the edge parts to the width direction of the steel sheet S become the equal distance to the irradiating source and the electron beam 11 is uniformly radiated to width direction of the steel sheet S, and the magnetic domain in the steel sheet S is subdivided to reduce the iron loss.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一方向性けい素鋼板の鉄損低減連続処理設
備に関し、とくに真空を利用し、鋼板表面に連続的にエ
レクトロンビームを照射することによって、効果的な磁
区の細分化ひいては鉄損特性の安定した改善を図ろうと
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to continuous treatment equipment for reducing iron loss of unidirectional silicon steel sheets, and in particular, uses vacuum to continuously irradiate the surface of the steel sheet with an electron beam. By doing so, the aim is to achieve effective subdivision of magnetic domains and stable improvement of core loss characteristics.

一方向性けい素鋼板は、一般に熱間圧延と冷間圧延を経
た冷延薄板の2次再結晶粒を、(110)(001)方
位すなわちゴス方位に高度に集積させて所望の磁気的性
質を具備させ、主に変圧器その他の電気機器類の鉄心に
使用され、ここに磁束密度(B11141!で代表され
る)が高くしかも鉄損(1117150値で代表される
)の低いことが要求されるが、これまでの研究努力によ
り今日では、板厚0.311IIllでB1゜: 1.
90T以上、1./、。: 1.05 W/kg以下、
また板厚0.23mm+ではB、。: 1.89T以上
、Wl?/+1゜: 0.90W/kg以下のような超
低鉄損の一方向性けい素鋼板も製造できるようになった
Unidirectional silicon steel sheets generally have the desired magnetic properties by highly accumulating the secondary recrystallized grains of a cold-rolled thin sheet through hot rolling and cold rolling in the (110)(001) orientation, that is, the Goss orientation. It is mainly used in the iron core of transformers and other electrical equipment, and is required to have high magnetic flux density (represented by B11141!) and low iron loss (represented by 1117150 value). However, thanks to past research efforts, today it is possible to achieve B1°: 1.
90T or more, 1. /,. : 1.05 W/kg or less,
Also, B for plate thickness 0.23mm+. : 1.89T or more, Wl? /+1°: It has become possible to manufacture unidirectional silicon steel sheets with ultra-low core loss of 0.90 W/kg or less.

しかるに省エネルギーの見地で電力損失のより厳しい低
減要求は、とくに欧米にて鉄損の減少分を換価して変圧
器価格に上積みする、ロスエバリュエーシゴン(鉄損評
価)制度にまで発展し、それも定着するに至っている。
However, from the perspective of energy conservation, demands for more stringent reductions in power loss have led to a loss evaluation system, particularly in Europe and the United States, in which the reduced iron loss is converted into cash and added to the transformer price. , which has also become established.

このようにか酷な要請に応えるため発明者らは、一方向
性けい素鋼板の特性改善それも極限的な鉄損低減を目指
して研究活動を続けて来たが、方向性けい素鋼板の最終
焼鈍、つまり仕上げ焼鈍後の操作、とくに被膜処理につ
いての革新的な手法を試み、顕著な鉄損低域の成果を得
、引続く検討と研漕を加えて、以下に述べる一方向性け
い素鋼板の鉄損低減連続処理設備の適合を解明した。
In order to meet these severe demands, the inventors have continued their research activities with the aim of improving the properties of grain-oriented silicon steel sheets and reducing iron loss to the utmost. We tried an innovative method for the final annealing, that is, the operation after the final annealing, especially the coating treatment, and achieved remarkable results in lower iron loss. We have clarified the suitability of continuous processing equipment for reducing iron loss of raw steel sheets.

(従来の技術) 特開昭57−2252号、同57−53419号、同5
B−26405号及び同58−26406号各公報には
、仕上げ焼鈍後の一方向性けい素鋼板の表面に、圧延方
向とほぼ直角な向きにレーザ照射を施すことによって局
部的微小ひずみの導入による磁区細分化をもって、鉄損
の低減を図ることが開示されているが、この場合、いわ
ゆるひずみ取り焼鈍を加えない使途では有効であっても
、該焼鈍が施されたときはせっかく導入された局部微小
ひずみが加熱保持中に解放され、磁区幅が拡大してレー
ザ照射による鉄損低減効果が喪失してしまう不利がある
(Prior art) JP-A-57-2252, JP-A-57-53419, JP-A-5
B-26405 and No. 58-26406 disclose that the surface of a unidirectional silicon steel sheet after finish annealing is irradiated with a laser in a direction substantially perpendicular to the rolling direction to introduce local minute strain. It has been disclosed that magnetic domain refining is used to reduce iron loss, but in this case, although it is effective in applications where so-called strain relief annealing is not added, when such annealing is performed, the introduced local There is a disadvantage that microstrains are released during heating and holding, the magnetic domain width expands, and the iron loss reduction effect by laser irradiation is lost.

これに対して発明者らはさきに、上記のような高温処理
にも拘らず特性劣化を伴うことのない低鉄損一方向性け
い素鋼板の製造に成功した。
On the other hand, the inventors have previously succeeded in producing a low core loss unidirectional silicon steel sheet that does not suffer from characteristic deterioration despite the above-mentioned high-temperature treatment.

すなわち方向性けい素鋼板の常法に従う最終仕上げ焼鈍
工程を経た後、りん酸塩とコロイダルシリカを主成分と
する絶縁被膜を形成させたのち、あるいは前記最終仕上
げ焼鈍工程を経て鋼板の外面に生成した酸化物を除去し
た後、表裏両面に研磨処理を施して鏡面状態に仕上げ、
ついでCVD、イオンブレーティングおよびイオンイン
プランテーションなどによりTi、 Zr、 V、 N
b、 Ta、 Cr、 Mo+W、 Mn、 Co、 
Ni、 A1. B及びSiの窒化物及び/又は炭化物
ならびにAI+ Ni+ Cu、 WI Ss及びZn
の酸化物のうちから選んだ少なくとも1種からなる極薄
張力被膜を形成させた後、りん酸塩とコロイダルシリカ
を主成分とする絶縁被膜を形成させたのち、鋼板の圧延
方向を横切る向きにエレクトロンビームを照射すること
によって低鉄損を達成するものである。
That is, after going through a final finish annealing process according to the usual method for grain-oriented silicon steel sheets, an insulating film mainly composed of phosphate and colloidal silica is formed, or after the final annealing process described above, the insulating film is formed on the outer surface of the steel sheet. After removing the oxides, the front and back surfaces are polished to a mirror finish.
Next, Ti, Zr, V, N are formed by CVD, ion blating, ion implantation, etc.
b, Ta, Cr, Mo+W, Mn, Co,
Ni, A1. B and Si nitrides and/or carbides and AI+ Ni+ Cu, WI Ss and Zn
After forming an ultra-thin tensile coating consisting of at least one kind of oxide selected from the following oxides, an insulating coating mainly composed of phosphate and colloidal silica is formed, and then a tensile coating is applied across the rolling direction of the steel plate. Low iron loss is achieved by irradiating with an electron beam.

(発明が解決しようとする課題) 上記の成功を導いた実験的成果を基盤として、工業的規
模における、その有利な適合を成就すべき、一方向性け
い素鋼板の鉄損低減連続処理設備を与えることが、この
発明の目的である。
(Problem to be solved by the invention) Based on the experimental results that led to the above-mentioned success, we have developed a continuous processing equipment for iron loss reduction of grain-oriented silicon steel sheets, which should achieve its advantageous adaptation on an industrial scale. It is an object of this invention to provide.

(課題を解決するための手段) すなわちこの発明は、一方向性けい素鋼板の常法に従う
仕上げ焼鈍工程を経た鋼板に対し、その圧延方向を横切
る向きにエレクトロンビームを照射するエレクトロンビ
ーム照射装置およびエレクトロンビーム照射時における
該照射源に対する鋼板板幅方向の対向姿勢を、該照射源
を中心とする円弧に沿う凹形状に保持する鋼板湾曲装置
を有する真空処理槽と、この真空処理槽の入側と出側に
て、該処理槽に向けて漸次に高真空度に調圧したそれぞ
れ複数の予備排気槽列とをそなえてなる、一方向性けい
素鋼板の鉄損低減連続処理設備である。
(Means for Solving the Problem) That is, the present invention provides an electron beam irradiation device that irradiates an electron beam in a direction transverse to the rolling direction of a steel plate that has undergone a final annealing process according to a conventional method for unidirectional silicon steel sheets; A vacuum processing tank having a steel plate bending device that maintains a steel plate facing the irradiation source in a concave shape along an arc centered on the irradiation source in the width direction of the steel plate during electron beam irradiation, and an entrance side of the vacuum processing tank. This is a continuous processing equipment for reducing iron loss of unidirectional silicon steel sheets, which is equipped with a plurality of preliminary exhaust tank rows each having a pressure gradually regulated to a high degree of vacuum toward the processing tank on the exit side.

第1図に、この発明に従う連続処理設備の好適例を模式
で示す。
FIG. 1 schematically shows a preferred example of continuous processing equipment according to the present invention.

図中番号1はアンコイラ−12は真空処理槽、そして3
.4はそれぞれ真空処理槽2の入側および出側に配置し
た予備排気槽列であり、これらの予備排気槽列3,4は
いずれも、真空処理槽2に向けて漸次に高真空度に調圧
区分した予備排気槽3al 3bt 3C,3d、 3
eおよび4a、 ’4b、 4c+ 4dt 4eから
なる。
In the figure, number 1 is the uncoiler, 12 is the vacuum processing tank, and 3
.. Reference numerals 4 denote preliminary evacuation tank rows placed on the inlet and outlet sides of the vacuum processing tank 2, and both of these pre-evacuation tank rows 3 and 4 gradually adjust to a high degree of vacuum toward the vacuum processing tank 2. Pressure-divided preliminary exhaust tank 3al 3bt 3C, 3d, 3
Consists of e and 4a, '4b, 4c+ 4dt 4e.

5は巻取り機、6はシャー、7a〜7Cはそれぞれ回転
真空ポンプ、また8はメカニカルブースタポンプと回転
真空ポンプ、9は油拡散ポンプと回転真空ポンプである
5 is a winding machine, 6 is a shear, 7a to 7C are rotary vacuum pumps, 8 is a mechanical booster pump and a rotary vacuum pump, and 9 is an oil diffusion pump and a rotary vacuum pump.

そして10がエレクトロンビーム照射装置であり、11
でエレクトロンビームを表わす。
10 is an electron beam irradiation device, and 11
represents an electron beam.

又12が、エレクトロンビーム照射時に鋼板の幅方向が
エレクトロンビーム照射源に対して凹形状となるように
鋼板を湾曲させる鋼板湾曲装置である。
Reference numeral 12 denotes a steel plate bending device that bends the steel plate so that the width direction of the steel plate is concave with respect to the electron beam irradiation source during electron beam irradiation.

なおこの発明では、エレクトロンビーム照射領域の真空
度を一層高めるために、第2図に示したように真空処理
槽2内に高真空室を設けることもできる。すなわち同図
に示したところにおいて、13がエレクトロンビームの
照射径路11をさらに高真空とするための高真空室であ
り、14は高真空にするための油拡散ポンプと真空回転
ポンプへの排気孔である。
In the present invention, in order to further increase the degree of vacuum in the electron beam irradiation region, a high vacuum chamber may be provided within the vacuum processing tank 2 as shown in FIG. 2. In other words, in the figure, 13 is a high vacuum chamber for making the electron beam irradiation path 11 even higher vacuum, and 14 is an exhaust hole for an oil diffusion pump and a vacuum rotary pump for making the electron beam irradiation path 11 even higher vacuum. It is.

(作 用) さて常法に従う仕上げ焼鈍工程を経たけい素鋼板に対す
る真空エレクトロンビーム照射処理は次の要領で行なわ
れる。
(Function) Vacuum electron beam irradiation treatment for a silicon steel plate that has undergone a final annealing process according to a conventional method is performed in the following manner.

最終処理を経て巻取られた一方向性けい素鋼板のコイル
は、アンコイラ−1で巻戻され、連続エアーツーエアー
による予備排気槽列3を通って真空処理槽2内に導入さ
れる。
The coil of unidirectional silicon steel plate wound after the final treatment is unwound by an uncoiler 1 and introduced into a vacuum treatment tank 2 through a continuous air-to-air preliminary evacuation tank array 3.

次いでエレクトロンビーム照射装置10を用いて鋼板の
圧延方向を横切る向きに3〜15−間隔においてエレク
トロンビームを走査する。ここにエレクトロンビームの
照射軌跡は必ずしも連続線である必要はなく、局所的に
断続した線であってもさらには破線であってもよい。
Next, using the electron beam irradiation device 10, the electron beam is scanned at intervals of 3 to 15 in a direction transverse to the rolling direction of the steel plate. Here, the irradiation locus of the electron beam does not necessarily have to be a continuous line, but may be a locally interrupted line or even a broken line.

なおこのときのエレトクロンビームは、真空度が低いと
真空放電を多発し、エレトクロンビームによる有効な処
理が減殺されるため鋼板の低鉄損化に支障をきたす。従
ってかかる不利を回避するためには第2図に示したよう
に、エレトクロンビームを鋼板に照射する領域(図中斜
線で示す15の領域)を真空槽2より一層高真空にする
ことが好ましい。このときの真空度差は、真空処理槽2
内が10−3〜10−’iffl)Igであるときは、
15の斜線領域はI Xl0−’〜10−’++uaH
g程度とすれば充分である。
Note that the electrochron beam at this time causes frequent vacuum discharges when the degree of vacuum is low, which reduces the effective treatment by the electrochron beam, which poses a problem in reducing the iron loss of the steel plate. Therefore, in order to avoid such disadvantages, as shown in FIG. 2, it is necessary to make the area where the steel plate is irradiated with the electrochron beam (area 15 indicated by diagonal lines in the figure) a higher vacuum than the vacuum chamber 2. preferable. The difference in degree of vacuum at this time is
When the inside is 10-3 to 10-'iffl)Ig,
The shaded area of 15 is I Xl0-'~10-'++uaH
It is sufficient if it is about 100 g.

ところで上記のようなエレクトロンビーム照射において
、位置が固定された照射源から、走行する鋼板の平面に
対して単に照射しただけでは、鋼板の板幅方向中央部と
端部とでは照射効果に差異が生じる。
By the way, in the above-mentioned electron beam irradiation, if the irradiation source at a fixed position simply irradiates the flat surface of a moving steel plate, there will be a difference in the irradiation effect between the center and the edges of the steel plate in the width direction. arise.

すなわちたとえば水平通板する500閣幅の鋼板に対し
、垂直距離で1000mmの上方からエレクトロンビー
ムを照射する場合を考えると、第3図に破線で示すよう
に、鋼板の中央部と端部とでは照射距離が30nnも異
なり、ビーム径の相違は約25%にも達し、従ってエレ
クトロン照射効果に鋼板板幅方向で不均一が生じていた
のであるや この点この発明では、以下に詳述する鋼板湾曲装置を用
いて上記の問題を解決した。
In other words, for example, if we irradiate an electron beam from a vertical distance of 1000 mm above a 500mm wide steel plate that is being threaded horizontally, the difference between the central part and the edge of the steel plate is as shown by the broken line in Figure 3. The irradiation distance was different by 30 nn, and the difference in beam diameter was about 25%, which caused non-uniformity in the electron irradiation effect in the width direction of the steel plate. A bending device was used to solve the above problem.

第4図に、この発明に従う鋼板湾曲装置の好適例を模式
で示し、図中番号16は回転子、17はかかる回転子を
多数具備して鋼板を上下から拘束する治具であって、上
記の鋼板湾曲装置は、かかる治具17をエレクトロン照
射領域を挟んでその前後に具備する。ここにかような治
具17による鋼板の湾曲形状は、エレクトロンビーム照
射源に対する鋼板板幅方向の対向姿勢が、該照射源を中
心とする円弧に沿う凹形状とすることが肝要である。
FIG. 4 schematically shows a preferred example of the steel plate bending device according to the present invention, in which numeral 16 is a rotor, 17 is a jig that is equipped with a large number of such rotors and restrains the steel plate from above and below, The steel plate bending apparatus is equipped with such jigs 17 in front and behind the electron irradiation area. It is important that the curved shape of the steel plate formed by the jig 17 is such that the facing attitude of the steel plate in the width direction with respect to the electron beam irradiation source is a concave shape along an arc centered on the irradiation source.

そしてエレクトロン照射領域については、鋼板を上記の
治具対による拘束下に通板させてやれば、第3図に実線
で示したように、鋼板板幅方向にわたるビームスポット
径の変化はなくなり、かくして板幅方向にわたって均一
な照射効果が得られることになるのである。
Regarding the electron irradiation area, if the steel plate is passed through while being restrained by the pair of jigs mentioned above, as shown by the solid line in Fig. 3, there will be no change in the beam spot diameter across the width of the steel plate. This results in a uniform irradiation effect across the width of the plate.

上記のようにして鋼板表面上にエレクトロンビームを照
射した鋼板は、真空処理槽2の出側でやはりこの処理槽
2に近い程高真空度に調圧区分した予備排気槽列4を経
由させて、大気中に導出し、その後コイル5に巻取る。
The steel plate whose surface has been irradiated with an electron beam as described above is passed through a pre-evacuation tank array 4 on the exit side of the vacuum treatment tank 2, which is divided into sections with a pressure regulated to a higher vacuum degree closer to the treatment tank 2. , led out into the atmosphere, and then wound into a coil 5.

かくして効果的に磁区が細分化され、ひいては鉄損特性
が向上するのである。
In this way, the magnetic domains are effectively subdivided, and as a result, the iron loss characteristics are improved.

(実施例) 実施機上 仕上げ焼鈍を経た一方向性けい素鋼板(厚み:0.23
mo+:幅:500ma+)に、りん酸塩とコロイダル
シリカとを主成分とする絶縁被膜を形成させて巻取った
コイル(約8トン)を、ラインスピード30m/1Ii
nにて前掲第1図に示した真空連続処理設備に通し、エ
レクトロンビームを鋼板の幅方向にわたって、加速電圧
65kV、電流60mA、走査間隔10薗、ビーム径0
.1 mm、第2図の15の真空度3 Xl0−5+n
mHgの条件下に照射した。なおエレクトロン照射領域
については、第4図に示した鋼板湾曲装置を用いて板幅
方向にわたる綱板面とエレクトロンビーム源との距離が
等しく 1000mmとなるよう円弧状に鋼板を湾曲さ
せた。
(Example) Unidirectional silicon steel plate (thickness: 0.23
mo+: Width: 500ma+) was wound with an insulating coating mainly composed of phosphate and colloidal silica (approximately 8 tons) at a line speed of 30m/1Ii.
The electron beam was passed through the vacuum continuous processing equipment shown in Figure 1 above at n, and the electron beam was applied across the width of the steel plate at an accelerating voltage of 65 kV, a current of 60 mA, a scanning interval of 10 mm, and a beam diameter of 0.
.. 1 mm, vacuum degree 3 of 15 in Figure 2 Xl0-5+n
Irradiation was performed under mHg conditions. Regarding the electron irradiation area, the steel plate was curved into an arc using the steel plate bending device shown in Fig. 4 so that the distance between the steel plate surface and the electron beam source in the width direction of the steel plate was equal to 1000 mm.

かくして得られた製品の磁気特性は次のとおりであった
The magnetic properties of the thus obtained product were as follows.

B、。=1.92T 、 Wl、zs。=0.79W/
kg。
B. =1.92T, Wl, zs. =0.79W/
kg.

尖施1− 鋼成分0.048%C,3,33%Si、 0.070
%Mn。
Sharpening 1 - Steel composition 0.048%C, 3.33%Si, 0.070
%Mn.

0.023%AI、 0.026%S、 0.09%S
n、 0.006%Cuの組成になる熱延板を、100
0°Cで3分間の中間焼鈍をはさんで2回の冷間圧延を
施して板厚0.20mmの冷延板としたのち、850 
’Cで脱炭処理後、850°Cから15°C/hで10
50°Cまで昇温しで2次再結晶させ、ついで1200
°Cで8時間の純化処理を施して得た一方向性けい素鋼
板につき、その表面上の酸化物を酸洗により除去した後
、電解研磨により中心線平均粗さRa=0.08μmに
鏡面研磨した後、イオンブレーティング装置を用いてT
iN被膜(0,8μm)を鋼板両面に形成させ、ついで
りん酸とコロイダルシリカとを主成分とする絶縁被膜を
形成させた。
0.023%AI, 0.026%S, 0.09%S
A hot rolled sheet having a composition of n, 0.006% Cu was heated to 100
After cold-rolling twice with intermediate annealing at 0°C for 3 minutes to obtain a cold-rolled plate with a thickness of 0.20 mm, the 850
After decarburizing at 'C, from 850°C to 15°C/h for 10
The temperature was raised to 50°C for secondary recrystallization, and then the temperature was raised to 1200°C.
A unidirectional silicon steel sheet obtained by purification treatment at °C for 8 hours was removed by pickling to remove oxides on its surface, and then electrolytically polished to a mirror-like surface with a centerline average roughness of Ra = 0.08 μm. After polishing, T is applied using an ion blating device.
An iN film (0.8 μm) was formed on both sides of the steel plate, and then an insulating film containing phosphoric acid and colloidal silica as main components was formed.

その後前掲第1図の装置を用いて、次の条件下に湾曲r
4板表面にエレクトロンビームを照射した。
Then, using the apparatus shown in Figure 1 above, bend r under the following conditions.
An electron beam was irradiated onto the surface of the four plates.

ラインスピード: 15m/m1n EB照射条件:加速電圧65kV :電流30mA :照射間隔8mm :照射径0.15薗 かくして得られた製品の磁気特性は B+o=1.947 、、L、zs。=0.5!E/k
g。
Line speed: 15m/m1n EB irradiation conditions: Acceleration voltage 65kV: Current 30mA: Irradiation interval 8mm: Irradiation diameter 0.15mm The magnetic properties of the product thus obtained are B+o=1.947, L, zs. =0.5! E/k
g.

であった。Met.

(発明の効果) かくしてこの発明によれば、一方向性けい素鋼板の表面
に有効にエレクトロンビームを照射することができるの
で、効果的な磁区の細分化ひいては鉄損の低減が達成さ
れる。
(Effects of the Invention) Thus, according to the present invention, since the surface of the unidirectional silicon steel plate can be effectively irradiated with an electron beam, effective subdivision of magnetic domains and reduction of iron loss can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う連続処理設備の好適例を模式
で示した図、 第2図は、高真空室をそなえる真空処理槽の詳細図、 第3図は、エレクトロンビーム照射時におけるエレクト
ロンビーム照射源と鋼板の位置関係を示した図、 第4図は、鋼板湾曲装置の模式図である。 1・・・アンコイラ−2・・・真空処理槽3.4・・・
予備排気槽列 5・・・巻取り機6・・・シャー   
   7a〜7c・・・回転真空ポンプ8・・・メカニ
カルブースタポンプと回転真空ポンプ9・・・油拡散ポ
ンプと回転真空ポンプ10・・・エレクトロンビーム照
射装置11・・・エレクトロンビーム
Fig. 1 is a diagram schematically showing a preferred example of continuous processing equipment according to the present invention, Fig. 2 is a detailed view of a vacuum processing tank equipped with a high vacuum chamber, and Fig. 3 is an electron beam during electron beam irradiation. FIG. 4, which shows the positional relationship between the irradiation source and the steel plate, is a schematic diagram of the steel plate bending device. 1...Uncoiler-2...Vacuum treatment tank 3.4...
Pre-exhaust tank row 5... Winder 6... Shear
7a to 7c...Rotary vacuum pump 8...Mechanical booster pump and rotary vacuum pump 9...Oil diffusion pump and rotary vacuum pump 10...Electron beam irradiation device 11...Electron beam

Claims (1)

【特許請求の範囲】[Claims] 1、一方向性けい素鋼板の常法に従う仕上げ焼鈍工程を
経た鋼板に対し、その圧延方向を横切る向きにエレクト
ロンビームを照射するエレクトロンビーム照射装置およ
びエレクトロンビーム照射時における該照射源に対する
鋼板板幅方向の対向姿勢を、該照射源を中心とする円弧
に沿う凹形状に保持する鋼板湾曲装置を有する真空処理
槽と、この真空処理槽の入側と出側にて、該処理槽に向
けて漸次に高真空度に調圧したそれぞれ複数の予備排気
槽列とをそなえてなる、一方向性けい素鋼板の鉄損低減
連続処理設備。
1. An electron beam irradiation device that irradiates an electron beam in a direction transverse to the rolling direction of a steel plate that has undergone a final annealing process according to the conventional method for unidirectional silicon steel sheets, and the width of the steel plate relative to the irradiation source during electron beam irradiation. A vacuum processing tank having a steel plate bending device that maintains a facing attitude in a concave shape along an arc centered on the irradiation source; Continuous processing equipment for reducing iron loss of unidirectional silicon steel sheets, which is equipped with multiple rows of pre-evacuation tanks, each of which is gradually regulated to a high degree of vacuum.
JP12854088A 1988-05-27 1988-05-27 Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet Pending JPH01298118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12854088A JPH01298118A (en) 1988-05-27 1988-05-27 Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12854088A JPH01298118A (en) 1988-05-27 1988-05-27 Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH01298118A true JPH01298118A (en) 1989-12-01

Family

ID=14987283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12854088A Pending JPH01298118A (en) 1988-05-27 1988-05-27 Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH01298118A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099219A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
JP2013159824A (en) * 2012-02-06 2013-08-19 Jfe Steel Corp Method and apparatus for refining magnetic domain
JP2013159845A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP2013234342A (en) * 2012-05-07 2013-11-21 Jfe Steel Corp Method of magnetic domain refinement and grain-oriented electromagnetic steel sheet
JP2014019901A (en) * 2012-07-18 2014-02-03 Jfe Steel Corp Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
CN105779732A (en) * 2012-10-30 2016-07-20 杰富意钢铁株式会社 Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099219A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 Device for improving core loss in grain-oriented electrical steel sheet
JPWO2013099219A1 (en) * 2011-12-27 2015-04-30 Jfeスチール株式会社 Iron loss improvement device for grain-oriented electrical steel sheet
US10745773B2 (en) 2011-12-27 2020-08-18 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
US11377706B2 (en) 2011-12-27 2022-07-05 Jfe Steel Corporation Device to improve iron loss properties of grain-oriented electrical steel sheet
JP2013159824A (en) * 2012-02-06 2013-08-19 Jfe Steel Corp Method and apparatus for refining magnetic domain
JP2013159845A (en) * 2012-02-08 2013-08-19 Jfe Steel Corp Method for producing grain-oriented magnetic steel sheet
JP2013234342A (en) * 2012-05-07 2013-11-21 Jfe Steel Corp Method of magnetic domain refinement and grain-oriented electromagnetic steel sheet
JP2014019901A (en) * 2012-07-18 2014-02-03 Jfe Steel Corp Method for producing grain oriented silicon steel sheet, and grain oriented silicon steel sheet
CN105779732A (en) * 2012-10-30 2016-07-20 杰富意钢铁株式会社 Method of manufacturing grain-oriented electrical steel sheet exhibiting low iron loss
CN105779732B (en) * 2012-10-30 2017-09-12 杰富意钢铁株式会社 The manufacture method of low iron loss orientation electromagnetic steel plate

Similar Documents

Publication Publication Date Title
JPH0672266B2 (en) Method for manufacturing ultra low iron loss unidirectional silicon steel sheet
JPH0657857B2 (en) Method for manufacturing low iron loss grain-oriented electrical steel sheet
JPH01298118A (en) Continuous iron loss reducing treatment apparatus for grain-oriented silicon steel sheet
JPH0222423A (en) Iron loss reduction continuous treating equipment for grain oriented silicon steel sheet
JPH02118022A (en) Manufacture of grain oriented silicon steel sheet reduced in iron loss
JPH0248622B2 (en)
JPS6335684B2 (en)
JPS5836053B2 (en) Processing method for electrical steel sheets
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JPH01147074A (en) Grain-oriented silicon steel sheet free from deterioration in property due to stress relief annealing
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JPH01191744A (en) Manufacture of grain-oriented electrical steel sheet with low iron loss
JPH01230A (en) Continuous treatment equipment to reduce iron loss for unidirectional silicon steel sheets
JPS6257689B2 (en)
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH0248621B2 (en)
JPS6318605A (en) Unidirectional silicon steel plate of extremely low iron loss
JPS6237367A (en) Iron loss decreasing device for grain oriented silicon steel sheet
JPH029111B2 (en)
JPH01100223A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS6318075A (en) Equipment for iron loss decreasing treatment for grain oriented silicon steel sheet
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH0335377B2 (en)
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet
JPS6396218A (en) Production of extremely low iron loss grain oriented silicon steel sheet